PTD-BCR/ABL SH3融合蛋白对肝细胞肿瘤杀伤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝脏恶性肿瘤主要有肝细胞癌(hepatocellular carcinoma,HCC)和胆管细胞癌,而前者的发病率约为后者的十倍。全世界每年大约有一百万新增病例,并且有明显的地理分布性。我国是肝癌高发地区,全世界每年新发病例中大约45%在中国。每年由肝硬化发展为肝细胞癌的病例呈现出逐年上升的趋势(大约1%-6%)。目前主要的治疗方法包括有肝切除术、肝移植术、冷冻治疗、射频治疗、微波治疗等等。由于单一治疗模式效果往往都不是非常理想,现多采用多种治疗方式联合应用的综合疗法。
     诱导肿瘤细胞凋亡是现在肿瘤治疗研究中的新领域,相关的生物学药物既达到了杀伤肿瘤细胞的目的,又避免了由于本身的毒副作用和肿瘤细胞死亡后的炎性反应的影响,为恶性肿瘤的治疗开辟了新的前景。
     BCR-ABL是与慢性粒细胞白血病发病密切相关的恶性蛋白,梁英民等利用基因重组技术将bcr-abl基因中编码SH3结构域的基因与HIV病毒的编码蛋白转导结构域(PTD)的基因进行融合表达,获得了一种相对分子量为23kD的PTD-BCR/ABL SH3融合蛋白。表达的PTD-BCR/ABL SH3融合蛋白由于PTD的存在,融合蛋白可以有效的转入细胞内,并且直接
    
     第四军医大学硕士学位论文
    定位于细胞核,该蛋白可以诱导白血病细胞K562发生调亡。
     SH3结构域是指蛋白酪氨酸激酶在与下游蛋白相作用的时候都享有
    的共同结构Src同源区3结构域。同时含有SHZ和SH3结构域的蛋白酪
    氨酸激酶复合作用于生长调节的信号网络,包括那些含有小G蛋白和磷
    酸肌醉第二信使的信号转导过程。因为SH3结构域参与生长调节信号转
    导中许多特殊的蛋白间的相互作用,所以作为新的抗增殖药物的潜在的
    靶位点吸引了研究人员的关注。
     人类免疫缺陷病毒(HIV)·1所编码的反式激活蛋白工叮的基序中
    含有蛋白转导结构域(R旧teinT]甩几妇讹tion Domain,PTD),可以穿越细
    胞膜性结构,直接进入细胞浆,其特点是转导速度快,效率高.将PTD
    于其它外源性效应分子融合后,可介导提高效应分子向细胞内的转运,
    从而提高细胞杀伤效应。
     基于以上实验基础及相关理论,本文将该蛋白与肝癌细胞进行共培
    养,试图观察这种来源于血液病的相关蛋白对实体瘤细胞是否具有同样
    促凋亡活性,同时对其促凋亡机理进行讨论。通过免疫细胞化学染色、
    光镜及电镜观察等方法证实,
     PTD一BCR/ABL SH3融合蛋白与肝癌细胞共培养后,首先,融合蛋白
    进入肝癌细胞内主要分布在细胞核,胞浆亦有少量分布。细胞与蛋白共
    培养而加蛋白组在加入蛋白后4h,细胞形态上开始发生变化,部分细胞
    皱缩,失去原来伸展生长的成纤维细胞样的形态,细胞透光度下降。24
    小时后实验组内约80%细胞死亡。细胞计数、MTT检测发现,对照相比,
    加入PTD一BC侧ABL SH3融合蛋白的细胞生长出现下降,蛋白浓度
    七0.14mg/ml时,随着浓度的增加和作用时间的延长,细胞生长受抑制的
    程度增加,呈现剂量依赖性和时间依赖性。当蛋白浓度低至0.08mg/m】
    时,36h后细胞又逐渐开始生长,说明这个浓度不足以抑制所有细胞,
    经过对数生长期,存活的细胞再次恢复生长,因此,低于此浓度将不会
    
    第四军医大学硕士学位论文
    有效抑制肿瘤细胞生长。进一步电镜观察显示肝癌细胞在PTD一BC侧ABL
    SH3融合蛋白的作用下细胞死亡,但胞膜完整,有凋亡小体形成,呈现
    出凋亡细胞的明显特征。
     将融合蛋白肿瘤局部注射荷有肝癌细胞HHCC肿瘤的裸鼠,可观察
    到实验组瘤体的生长速度明显慢于对照组,治疗治疗组裸鼠存活时间延
    长。HE染色表明,对照组肿瘤细胞生长活跃并可见异常核分裂向,而治
    疗组可见嗜酸性小体样结构,而其它组织如心、肝、脾、肾中未检测到
    异常形态。
     综上所述,PTD一BCRjABL SH3融合蛋白可以顺利导入肝癌细胞内,
    通过诱导肝癌细胞凋亡从而杀伤肝癌细胞,具有高效性;在裸鼠体内可
    有效抑制肿瘤的生长,延长动物生存时间.因此,本实验为将
    PTD一BCR/ABL SH3融合蛋白运用于肝癌的介入治疗提供理论依据。
There are two kinds of primary malignant liver tumours, hepatocellular carcinoma (HCC) and cholangiocarcinoma. Hepatocellular carcinoma is 10 times more frequent than cholangiocarcinoma. The overall incidence is estimated to be 1 million cases per year with a wide geographic variability. China is a countary with high risk of HCC, 45 percent of the new cases of the world are occurred in China approximately. There also appears to be a clear association with cirrhosis with an annual risk of developing HCC in such cases of 1% to 6%. Until now, the main treatments include surgical resection, liver transplantation, cryoablation, radiofrequency (RF), microwave therapy, etc. But the effect of single therapy mode is usually not good enough, one
    treatment always combine with others.
    The thought of inducing tumor cell apoptosis will lead to the emergence of novel antitumor therapy with high efficacy and low toxicity and inflammatory reaction.
    SH3 domain belongs to Src homology domain which exists in protein-tyrosine kinase and its downstream proteins. Protein-tyrosine kinases include both SH2 and SH3 domains participate in signal net, which also
    
    
    
    contains signal transduction of small G protein and phosphocreatine second messenger. Because SH3 domain is involved with growth-adapting signal transduction, it attracts many attention of being applied in targeted anti-proliferation drugs.
    PTD derives from tat of HIV-1 can translocate across cell membrane and get into cytoplasma directly effiently and promptly. When fused with some effectors it can lead these factors into cytoplasma, which can improve the cytotoxity of them.
    In this paper, hepatocellular carcinoma cells were co-cultured with PTD-BCR/ABL SH3 fusion protein. We wanted to know whether this fusion protein could induce stereo-tumor apoptosis and discuss the mechanism of apoptosis.
    After hepatocellular carcinoma cells were co-cultured with PTD-BCR/ABL SH3 fusion protein, most fusion protein was localized in nuclei, and little in cytoplasma. After co-ccultured 4h some cells shrinked, and after 24h 80% died by immunocytochemistry staining and light microscope observation. The results of cell counting and MTT assay in expriment group showed that the cell growth was inhibited, and when the protein's concentration >0.14mg/ml, the higher protein concentration was given, the more inhibition cells suffered. It was dosage and time dependent. But when protein concentration declined to 0.08mg/ml, cell groethed again after 36h, which indicated this dosage couldn't inhibit cell growth effectively. Electron microscopy analyses displayed shrinkage nuclei, chroatin condensation, plasma membrane bledding and chromatin breakage fragments and apoptotic bodies.
    We next tested antitumor activity of PTD-BCR/ABL SH3 fusion protein in nude mouse models. It was observed that tumor local administration of PTD-BCR/ABL SH3 fusion protein suppressed HHCC tumor. PTD-BCR/ABL SH3 fusion protein was administrated into the nude mice
    
    
    with HHCC xenograft. The growth rate of tumor of treament group was distinctly slower than that of control group, and survival time of treament group mice was longer than that of control group. Tumor cells of control group growth actively and showed pathologic karyokinestic image, and treament group showed many acidophilia bodys. While in other tissues, such as heart, liver, spleen, lung, kidney displayed normal morphology.
    In summary, PTD-BCR/ABL SH3 fusion protein can enter into hepatocellular carcinoma cells and induce these cells apoptosis, showes high cytotoxity, and in vivo it can suppress tumor growth and prolong nude mice' life span. Therefore the present study probably provides laboratory data for the application of PTD-BCR/ABL SH3 fusion protein into interventional therapy of hepatocellular carcinoma.
引文
1) Qian J, Feng G S, Vogl T. Combined interventional therapies of hepatocellular carcinoma.World J Gastroenterol 2003 September; 9 (9) :1885-1891
    2) Scholten JD, Zimmerman K, Oxender M, Sebolt-Leopold J, Gowan R, Leonard D, Hupe DJ. Inhibitors of farnesyl protein transferase: a possible cancer chemotherapeutic. Bioorg Med Chem 1996;4:1537-43.
    3) Levitzki A. Protein tyrosine kinase inhibitors as novel therapeutic agents. Pharmacol Ther 1999;82:231-9.
    4) Smithgall TE. SH2 and SH3 domains: potential targets for anti-cancer drug design. J Pharmacol Toxicol Methods 1995;34:125-32.
    5) 梁英民,孙强,蒋姗姗等.PTD-bcr/abl融合癌蛋白片段的表达及其跨膜转运。细胞与分子免疫学杂志,2001,17(4):377-380.
    6) 梁英民,孙强,蒋姗姗等.蛋白转导结构域-ber/abl融合基因的构建和表达。中华血液学杂志,2002,23(1):5-8.
    7) Groffen J, Stephenson JR, Heiserkamp N, et al. Philadelphia chromosomal breakpoins are clusted within a limited region, bcr, on chromosoma 22. Cell,1984;36:93-97
    8) Rowley PT, Keng PC, Kosciolek BA. The effect of ber-abl antisende oligonucleotide on DNA synthesis and apoptosis in K562 chronic myeloid leukemia cells. Leuk Res, 1996; 20. 473-480.
    9) Salgia R, Sattler M, Pisick E et al. P210BCR/ABL induces formation of complexes containing focal adhesion proteins and the protooncogene product p120c-Cbl. Exp Hematol, 1996; 24:310-3
    
    
    10) Skorski T, Karakaraj P, Kr DH et al. Negative regulation of p210GTPase promoting activity by p210/ber-abl:Implication for Ras-dependent ph(+) cell growth. J Exp Med, 1994;179:1855-65
    11) McWhirter JR, Galasso and Wang JY A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Ber-abl oncoproteins. Mol Cell Biol 1993; 13:7587-95
    12) Rellther GW, Fu H, Cripe LD, et al. Association of the protein kinase cBer and Ber-Abl with proteins of the 14-3-3 family. Science 1994; 266:129-33
    13) Yaku H, Sasaki T and Takai Y. The Dbl oncogene product as a GDP/GTP exchange protein for the Rho family: its properties in comparison with those of Smg GDS. Bioehem Biophys Res Comun 1994, 198:811-7
    14) Maru Y, Witte O N, Shibuya M Deletion of the ABL SH3 domain reactivates de-oligomerized BCR-ABL for growth factor independence. FEBS L, 379 (1996) 241-246
    15) Pendergast AM, Gishizky ML, Haviik MH, et al. SHI domain autophosphorylation of p210 BCR-ABL is required for transformation but not growth factor independence. Mol Cell Biol 1993; 13:1728-36
    16) Pendergast AM, Muller AJ, Havlik MH, et al. BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a nonphosphotyrosine-dependent manner. Cell 1991;66: 161-71
    17) Wang JY Abl tyrosine kinase in signal transduction and cell-cycle regulation. Curr Opin Genet Dev 1993; 3:35-43
    18) Ahmad K and Naz RK. Protein phosphorylation pattern and role of products of c-erbB-1 and c-abl proto-oncogenes in murine preimplantation
    
    embryonic development. Am J Report Immunol 1994; 32:226-37
    19) Wetzler M, Talpaz M, Van Etten RA, et al. Subcellular localization of Bcr, Abl, and Bcr-abl proteins in normal and leukemic cells and correlation of expression with myeloid differenation. J Clin Invest 1993; 92:1925-39
    20) Goga A, Liu X, Hambuch TM, et al. P53 dependent growth suppression by the c-abl nuclear tyrosine kinase. Oncogene 1995; 11:791 -9
    21) SaWyers CL, McLaughlin J, Goga, et al. The nuclear tyrosine kinase c-abl negatively regulates cell growth. Cell 1994; 77:121-31
    22) Fantl WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Annu Rev Biochem 1993 62:453-481
    23) Bolen JB Rowley RB, Spana C, Tysgankov A Y. The Src family of tyronsine protein kinases in hemopotietic signal transducfion. FASEB J 1992 6:3403-3409
    24) Wang JYJ. Abl tyrosine kinase in signal transduction and cell-cycle regulation. Curt Opin Genet Dev 1993 3:35-43
    25) Glazer RI, Smithgall TE, Yu G, Borellini E The role of the c-fes proto-oncogene protein-tyrosine kinase in myeloid differentiation. In Genetic Approaches to Understanding Cell Activation.Eds. J Mond, A Weiss, and J Cambier. New York: Raven Press, 1991:41-60
    26) Ihle JN, Witthulm BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, Silvennoinen O. Signaling by the cyto kine receptor superfamily:JAKs and STATs. Trends Biochem Sci 1994 19:222-227
    27) Hanazono Y, Chiba S, Sasaki, Mano H, Miyajima A, Arai K, Yazaki Y , Hirai H. c-fps/fes protein-tyrosine kinase is implicated in a signaling pathway triggered by gramulocyte-macrophage colony-stimulating factor and interleukin-3, EMBO J 1993 12:1641 - 1646
    
    
    28) Hanazono Y, Chiba S, Sasaki, Mano H, Miyajima A, Yazaki Y, Hirai H. Erythropoietin induces tyrosine phosphorylation and kinase activity of the c-fps/fes proto-oncogene product in human erythropoietin-responsive cells. Blood 1993 81:3193-3196
    29) Izuhara K, Feldman RA, Greer P, Harada N. Interaction of the c-fes proto-oncogene product with the interleukin-4 receptor, J Boil Chem. 1994 269:18623-18629
    30) Sawyers CL. the bcr-abl gene in chronic myelogenous leukemia. Cancer Surv 1992 15:37-51
    31) Salmon DJ, Clark GM, Wong SG, Levin WJ, Ulrich A, Mcguire WL. Human breast cancer :Correlation of relapse and survival with amplification of HER-2/neu oncogene. Science 1987 235:177-182
    32) Salmon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG Ulrich A, Press MF. Studies of HER-2/neu oncogene in human breast and ovarian cancer. Science 1987 235:177-182
    33) Levitzild A, Gazit A. Tyrosine kinase inhibition:an approach to drug development. Science 1995 267:1782-1788
    34) Mayer BJ, Baltimore D. Signaling through SH2 and SH3 domains. Trends cell boil 1993 3:8-13
    35) Pawson T, Gish G. SH2 and SH3 domains:from structure to function. Cell 1992 71:359-362
    36) Brugge JS . New intracellular targets for therapeutic drug design. Science 1993 260:918-919.
    37) Gibbs JB, Oliff A. Pharmaceutical research in molecular oncology. Cell 1994 79:193-198
    38) Schlessinger J. SH2/SH3 signaling proteins. Curr Opin Genet Dev
    
    1994;4:25-30.
    39) Sadowski I, Stone JC, Pawson T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol Cell Biol 1986;6:4396-408.
    40) Morton CJ, Campbell ID. SH3 domains. Molecular 'Velcro'. Curr Biol 1994;4:615-7.
    41) Musacchio A, Gibson T, Lehto VP, Saraste M. SH3, an abundant protein domain in search of a function. FEBS Lett 1992;307:55-61.
    42) Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 1993;363:88-92.
    43) Liu X, Pawson T. Biochemistry of the Src protein-tyrosine kinase: regulation by SH2 and SH3 domains. Recent Prog Horm Res 1994;49:149-60.
    44) Koblan KS, Schaber MD, Edwards G, Gibbs JB, Pompliano DL. Src-homology 2 (SH2) domain ligation as an allosteric regulator: Modulation of phosphoinositide-specific phospholipase C gamma 1 structure and activity. Biochem J 1995;305:745-51.
    45) Smithgall TE. SH2 and SH3 domains: potential targets for anti-cancer drug design. J Pharmacol Toxicol Methods 1995;34:125-32.
    46) Dalgarno D, Metcalf C, Shakespeare W, Sawyer T. Signal transduction drug discovery: targets, mechanisms and structurebased design. Curt Opin Drug Discov Dev 2000;3:549-64.
    47) Sattoh T, Nakafuku M, Kaziro Y. Function of ras as a molecular switch in single transduction.J Bio Chem, 1992;267:24149-152.
    
    
    48) Schlessinger CL.How receptor tyrosine kinase activate Ras.Trends Biochem Sci, 1993; 18:273-275.
    49) Daum G, Eisenmann-TappeI, Fries H-W, etal. The ins and outs of Raf kinase. Trends Biochem Sci, 1994; 19:474-480.
    50) Bollage G, McCormick F. Regulators and effectors of ras proteins. Annu Rev Cell Biol, 1991 ;7:601-632.
    51) Briggs SD, Jove R, Sanderson SD, etal. The Ras GTPase-activating protein(GAP) is an SH3 domain-binding protein and substrate for the Src-related tyrosine kinase,Hck. J Biol Chem, 1995;270:14718-724.
    52) McGlade J, Brunkhorst B, Anderson D, et al. The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J, 1993;12:3037-3081.
    53) Moran MF, Polakis P, McCormick F, et al. Protein-tyrosine kinase regulate the phosphorylation, protein interactions, subcellular distribution and activity of p21~(ras) GTPase-activating protein. Mol Cell Bio1,1991 ;11:1804-1812.
    54) Luttrell DK, Lee A, Lansing T J, Crosby RM, Jung KD, Willard D, Luther M, Rodriguez M, Berman J, Gilmer TM. Involvement of pp60c-src with two major signaling pathways in human breast cancer. Proc Natl Acad Sci USA 1994;91:83-7.
    55) Biscardi JS, Belsches AP, Parsons SJ. Characterization of human epidermal growth factor receptor and c-Sre interactions in human breast tumor cells. Mol Carcinog 1998;21:261-72.
    56) Li W, Hu P, Skolnik EY, Ullrich A, Schlessinger J. The SH2 and SH3 domain-containing Nck protein is oncogenic and a common target for phosphorylation by different surface receptors. Mol Cell Biol
    
    1992; 12:5824-33.
    57) McCarty JH. The Nck SH2/SH3 adaptor protein: a regulator of multiple intracellular signal transduction events. Bioessays 1998;20:913-21.
    58) Sastry L, Cao T, King CR. Multiple Grb2-protein complexes in human cancer cells. Int J Cancer 1997;70:208-13.
    59) Pandey P, Kharbanda S, Kufe D. Association of the DF3/MUCI breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res 1995;55:4000-3.
    60) Daly R J, Binder MD, Sutherland RL. Overexpression of the Grb2 gene in human breast cancer cell lines. Oncogene 1994;9:2723-7.
    61) Xie Y, Li K, Hung MC. Tyrosine phosphorylation of Shc proteins and formation of Shc/Grb2 complex correlate to the transformation of NIH3T3 cells mediated by the point-mutation activated neu. Oncogene 1995;10:2409-13.
    62) Pelicci G, Lanfrancone L, Salcini AE, Romano A, Mele S, Gracia Borrello M, Segatto O, Di Fiore PP, Pelicci PG. Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 1995; 11:899-907.
    63) Salcini AE, McGlade J, Pelicci G, Nicoletti I, Pawson T, Pelicci PG. Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins. Oncogene 1994;9:2827-36.
    64) Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der C J, Schlessinger J. BCR-Ablinduced oncogenesis is mediated by direct interaction with the SH2 domain of the Grb2 adaptor protein. Cell 1993;75:175-85.
    65) Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T. Bcr-Abl oncoproteins bind directly to activators of the Ras
    
    signalling pathway. EMBO J 1994;13:764-73.
    66) De Jong R, Haataja L, Voncken JW, Heisterkamps N, Groffen J. Tyrosine phosphorylation of murine Crkl. Oncogene 1995; 11:1469-74.
    67) De Jong R, Van Wijk A, Haataja L, Heisterkamp N, Groffen J. BCR-ABL-indueed leukemogenesis causes phosphorylation of Hefl and its association with Crkl. J Biol Chem 1997;272:32649-55.
    68) Nichols GL, Raines MA, Vera JC, Lacomis L, Tempst P, Golde DW. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood 1994;84:2912-8.
    69) Ten Hoeve J, Arlinghaus RB, Guo JQ, Heisterkamp N, Groffen J. Tyrosine phosphorylation of CRKL in Philadelphia+leukemia. Blood 1994;84:1731-6.
    70) Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, Matsuda M. Activation of Racl by a Crk SH3-binding protein, DOCK180. Genes Dev 1998; 12(21):3331-6.
    71) Cho SY, Klemke RL. Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. J Cell Biol 2000; 149:223-36.
    72) Yu H, Rosen MK, Shin TB, Seidel-Dugan C, Brugge JS, Schreiber SL. Solution structure of the SH3 domain of Src and identification of its ligand-binding site. Science 1992;258:1665-8.
    73) Musacchio A, Noble M, Pauptit R, Wierenga R, Saraste M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 1992;359:851-5.
    74) Booker GW, Gout I, Downing AK, Driscoll PC, Boyd J, Waterfield MD, Campbell ID. Solution structure and ligandbinding site of the SH3
    
    domain of the p85 alpha subunit of phosphatidylinositoi 3-kinase. Cell 1993;73:813-22.
    75) Kohda D, Hatanaka H, Odaka M, Mandiyan V, Ullrieh A, Schlessinger J, Inagaki F. Solution structure of the SH3 domain of phospholipase C-gamma. Cell 1993;72:953-60.
    76) Kohda D, Terasawa H, Ichikawa S, Ogura K, Hatanaka H, Mandiyan V, Ulldch A, Schlessinger J, Inagaki F. Solution structure and ligand-binding site of the carboxy-terminal SH3 domain of Grb2. Structure 1994;2:1029-40.
    77) Yang YS, Garbay C, Duchesne M, Cornille F, Jullian N, Fromage N, Toeque' B, Roques BP. Solution structure of GAP SH3 domain by 1H NMR and spatial arrangement of essential Ras signaling-involved sequence. EMBO J 1994;13:1270-9.
    78) Goudreau N, Cornille F, Duchesne M, Parker F, Tocque' B, Garbay C, Roques BP. NMR structure of the N-terminal SH3 domain of Grb2 and its complex with a proline-rich peptide from Sos. Nature Struct Biol 1994; 1:898-907.
    79) Yu H, Rosen MK, Sin TB, et al. Solution structure of the SH3 domain of Src and identification of its ligand binding site. Science. 1992;258:1665-1668.
    80) Briggs SD, Jove R, Sanderson SD, etal. The Ras GTPase-aetivating protein(GAP) is an SH3 domain-binding protein and substrate for the Sre-related tyrosine kinase,Hck. J Biol Chem, 1995;270:14718-724.
    81) Alexandropoulos K, Cheng G, Baltimore D. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proc Natl Acad Sci USA 1995;92:3110-4.
    82) Lim WA, Richards FM, Fox RO. Structural determinants of
    
    peptide-binding orientation and of sequence specificity in SH3 domains. Nature 1994;372:375-9.
    83) Feng S, Kasahara C, Rickles RJ, Schreiber SL. Specific interactions outside the proline-dch core of two classes of Src homology 3 ligands. Proc Nail Acad Sci USA 1995;92:12408-15.
    84) Chen JK, Lane WS, Brauer AW, Tanaka A, Schreiber SL. Biased combinatorial libraries: novel ligands for the SH3 domain of phosphatidylinositol 3-kinase. J Am Chem Soc 1993;115:12591-2.
    85) Ren R, Mayer BJ, Cicchetti P, Baltimore D. Identification of a ten-amino acid proline-rich binding site. Science 1993;259:1157-61.
    86) Sparks AB, Hoffman NG, McConnell SJ, Fowlkes DM, Kay BK. Cloning of ligand targets: Systematic isolation of SH3 domain-containing proteins. Nature Biotech 1996; 14:741-806.
    87) Cheadle C, Ivashchenko Y, South V, Searfoss GH, French S, Howk R, Ricca GA, Jaye M. Identification of a Src SH3 domain binding motif by screening a random phage display library. J Biol Chem 1994;269:24034-9.
    88) Sparks AB, Rider JE, Hoffman NG, Fowlkes DM, Quilliam LA, Kay BK. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLC_, Crk, and Grb2. Proc Natl Acad Sci USA 1996;93:1540-4.
    89) Feng S, Kapoor TM, Shirai F, Combs AP, Schreiber SL. Molecular basis for the binding of SH3 ligands with non-peptide elements identified by combinatorial synthesis. Chem Biol 1996;3:661-70.
    90) Combs AP, Kapoor TM, Feng S, Chen JK, Daude-Snow LF, Schreiber SL. Protein structure-based combinatorial chemistry: discovery of non-peptide binding elements to Src SH3 domain. J Amer Chem Soc
    
    1996;118:287-8.
    91) Morken JP, Kapoor TM, Feng S, Shirai F, Schreiber SL. Exploring the leucine-proline binding pocket of the Src SH3 domain using structure-based, split-pool synthesis and affinitybased selection. J Am Chem Soc 1998;120:30-6.
    92) Kapoor TM, Andreotti AH, Schreiber SL. Exploring the specificity pockets of two homologous SH3 domains using structure-based, split-pool synthesis and affinity-based selection. J Amer Chem Soc 1998; 120:23-9.
    93) Nguyen .JT, Turck CW, Cohen FE, Zuckermann RN, Lira WA. Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. Science 1998;282:2088-92.
    94) WiRer DJ, Famiglietti SJ, Cambier JC, Castelhano AL. Design and synthesis of SH3 domain binding ligands: Modifications of the consensus sequence XPPXP. Bioorg Med Chem Lett 1998;8:3137-42.
    95) Schumacher TN, Mayr LM, Minor DL Jr, Milhollen MA, Burgess MW, Kim PS. Identification of D-peptide ligands through mirror-image phage display. Science 1996;271:1854-7.
    96) Vidal M, Gigoux V, Garbay C. SH2 and SH3 domains as targets for anti-proliferative agents. Crit Rev Oncol Hematol 2001 ;40; 175-186
    97) Maignan S, Guilloteau JP, Fromage N, Arnoux B, Becquart J, Ducruix A. Crystal structure of the mammalian Grb2 adaptor. Science 1995 ;268:291-3.
    98) Cussac D, Vidal M, Leprince C, Liu WQ, Comille F, Tiraboschi G, Roques BP, Garbay C. A Sos-derived dimeric peptide blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity. FASEB J 1999;13:31-8.
    99) Rojas M, Donahue JP, Tan Z, Lin YZ. Genetic engineering of proteins
    
    with cell membrane permeability. Nature Biotechnol 1998;16:370-5.
    100) Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994;269:10444-50.
    101) Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Anternnapedia homeodomain is receptor-independent. J Biol Chem 1996;271:18188-93.
    102) Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997;272:16010-7.
    103) Schwarze SR, Ho A, Dowdy SF。In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999 , 3: 285(5433): 1569-72.
    104) Morals SJ, Smith H, Sweet C. Exploitation of the herpes simplex virus translocating protein VP22 to carry influenza virus protein into cells for studies of apoptosis : direct confirmation that neuraminidase induces apoptosis and indications that other protein may have a role. Arch Virol,2002; 147:961-79.
    105) Ruben S, et al. Structure and functional characterization of human immunodeficiency virus Tat protein. J Virol, 1989;63:1-8.
    106) Vogel BE, et al. A novel integrin specificity exemplified by binding of the avb5 integrin to the basic domain of the HIV Tat protein and vitrunectin.J Cell Biol,1993;121:461-468.
    107) Frankel AD, Pabo CO, et al. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell,1988; 55:1189-1193.
    108) Fawell S, et al. Tat-mediated delivery of heterologous protein into
    
    cells.Proc Natl Acad Sci USA, 1994; 91:664-668.
    109) Jinseu P, Jiyoon R, Kyeong K, et al. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J General Virol,2002;83:1173-1181.
    110) Michelle S, Mudit T, Mauro G, et al. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Euro J Biochem,2002;269:494-501.
    111) Taseiotti E, Zoppe M, Giacca M. Transcellular transfer of active HSV-1 thymidine kinase mediated by an 11-amino-acid peptide from HIV-1 Tat. Cancer Gene Ther,2003 ; 10:64-74.
    112) Lea NC, Buggins AG, Orr SJ, et al. High efficiency protein transduction of quiescent and proliferating primery hematopoietic cells. J Biochem Biophy Methods, 2003;55:251-8.
    113) Yang Y, Ma J, Song Z, et al. HIV-1 TAT-mediated protein transduction and subcellular localization using novel expression vectors. FEBS Lett, 2002;532:36-44.
    114) Leifert JA, Lindencrona JA, Charo J, et al. Enhancing T cell activation and antiviral protection by introducing the HIV-protein transduction domain into a DNA vaccine. Hum Gene Ther, 2001; 12:1181-92.
    115) Xia H, Mao Q, Davidson BL. The HIV Tat prtein transduction domain improves the biodisreibution of bata-glucuronidase expressed from recombinant viral vectors. Nat Biotechnol, 2001; 19:640-4.
    116) Vazquez J, Sun C, Du J, et al. Transduction of a functional domain of the AT1 receptor in neurons by HIV-Tat PTD. Hypertension, 2003;41:751-6.
    117) Ezhevsky SA, Nagahara H, Vocero-Akbani AM, et al.
    
    Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D: Cdk4/6 complexes results in active pRb. Proc Natl Acad Sci , 1997, 30;94(20): 10699-704.
    118) Lissy NA, Van Dyk LFm, Becker-Hapak M, et al. TCR antigen-induced cell death occurs from a late G1 phase cell cycle check point. Immunity. 1998. 8(1):57-65.
    119) Vocero-Akbani AM, Heyden NV, Lissy NA, et al. Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat Med, 1999, 5(1):29-33.
    120) 梁英民,蒋姗姗,韩骅等。TAT PTD-BCR/ABL SH3融合蛋白对白血病细胞系K562凋亡诱导作用。第四军医大学学报,2002:23(9):821-824。
    121) 阴继凯,马庆久,梁英民等。PTD-BCR/ABL SH3融合蛋白对肝癌细胞株SMMC-7721的杀伤作用。外科理论与实践,2003:8(6):475-478。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700