Paenibacillus sp.E18双功能木聚糖酶基因克隆及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木聚糖酶是可将木聚糖降解成低聚糖和木糖的一类酶的总称,是半纤维素酶类中最具代表性的组分,主要存在于微生物、植物和低等动物中。在造纸、食品、饲料、制药、能源以及环境保护等多方面都有着重要的应用价值。微生物是木聚糖酶最主要的来源,具有产量高、成本低、生产过程易控制等优点。
     本研究通过模拟菌株生长自然环境和功能性平板筛选,从玉米青贮中分离得到一株具有木聚糖降解能力的菌株,经16S rDNA鉴定为类芽胞杆菌,命名为Paenibacillus sp. E18。
     利用生物信息学方法,对微生物来源糖苷水解酶第十家族木聚糖酶氨基酸序列进行同源比对,设计保守区简并引物。利用Touchdown-PCR技术,克隆得到一个木聚糖酶基因片段,并通过两步Tail-PCR法获得该片段上下游侧翼序列。经序列比对、ORF分析,确定该段序列为一个基因簇,目前已得到三个完整的基因,分别命名为xynB-E18、abf43A-E18、axeE18。这三个基因同已发表的基因序列最高相似性分别为85%、56%和70%。其中xynB-E18是一个木聚糖酶编码基因,具有十家族保守氨基酸位点:Glu129和Glu236。abf43A-E18属于四十三家族,其表达产物可能具有木聚糖酶或阿拉伯呋喃糖苷酶活性,axeE18与一个假设的乙酰酯酶基因具有最高相似性。后两者所编码蛋白可能作为辅酶在木聚糖降解过程中发挥作用。由于目前得到的序列中未预测到有启动子存在,推测该基因簇可能包含更多相关基因。
     xynB-E18插入pET22b(+)构建表达载体,在大肠杆菌BL21(DE3)中得到了表达。通过盐析和离子交换层析纯化得到电泳纯重组蛋白XynB-E18。该酶的最适pH和最适温度分别为7.0和50℃;有较好的pH稳定性,在pH 6.0~10.5范围内酶活性维持在80%以上;但热稳定性较差。
     其最适底物为桦木木聚糖,同时对大麦葡聚糖、地衣多糖、昆布多糖也有一定水解能力,活性相对于桦木木聚糖在20~40%。经基因序列分析和混合底物条件下动力学研究,确定XynB-E18为单结构域双功能木聚糖酶,即在同一催化位点实现对木聚糖和葡聚糖的水解作用。
     本实验进一步确立了从环境菌群中快速分离产酶菌株并应用简并引物获得基因片段的方法,克隆得到同一基因簇中三个基因,并对其中木聚糖酶基因作了表达及性质研究,为多功能木聚糖酶的深入研究提供了参考和经验。
Xylanases are enzymes to catalyze the hydrolysis of xylan into xylose and oligosaccharide. They are crucial hemicellulases and produced mainly by microorganisms, plants and lower animals. Xylanases have been widely used in many industry processes, such as pulp and paper, foodstuff, animal feed, pharmacy, energy and environmental protection. Microbial xylanases are more promising due to high production, easy to control, low cost and so on.
     In this study, a strain, E18, showing xylan-degrading activity was isolated by simulation of the natural environment and using selective screening plates, and was identified to be Paenibacillus sp. based on 16S rDNA sequence.
     By using bioinformatical methods, the amino acid sequences of microbial xylanases from glycoside hydrolase (GH) family 10 were aligned, and a pair of degenerate primers was designed based on the conserved regions. A xyalanse gene fragment was cloned by a Touchdown-PCR, and the flanking regions were obtained by using two step TAIL-PCR. Based on sequence comparison and open reading frame (ORF) analysis, the fragment assembly contained a gene cluster including three genes, xynB-E18, abf43A-E18 and axeE18. The highest homologies of these three genes to known sequences were 85%, 56% and 70%, respectively. xynB-E18 was a xylanase-coding gene containing two highly conserved glutamate, Glu129 and Glu236, of GH 10 members. The deduced amino acid sequence of abf43A-E18 encoded a protein belonging to GH 43, which recombinant protein had both xylanase and arabinofuranohydrolase activities. The sequence of axeE18 exhibited high identity with a putative esterase. The encoded proteins of abf43A-E18 and axeE18 might play a role in xylan degradation as coenzymes. No promoter has been identified yet, suggesting that the xylanolytic gene cluster had more than three members.
     The gene xynB-E18 was cloned into vector pET22b(+) and then expressed in Escherichia coli. The recombinant protein was purified to electrophoretic homogeneity by ammonium sulfate precipitation and hydrophobic chromatography. The optimum temperature and pH for activity of the recombinant protein XynB-E18 was 50oC and pH 7.0, respectively. The enzyme was pH stable, retaining more than 80% of the initial activity at pH 6.0
引文
1.陈静,倪坚,陈江野.简并PCR法用于白色念珠菌MAPK新基因的筛选[J].生物化学与生物物理学报,2000,32:305~311.
    2.陈庆庆,夏黎明.豆粕异黄酮酶法提取的研究[J].中国粮油学报,2005,20(5):78~81.
    3.胡学智.日本的保健食品[J].工业微生物,2000(3):44~49.
    4.江正强.微生物木聚糖酶的生产及其在食品工业中应用的研究进展[J].中国食品学报,2005,5 (1):1~9.
    5.刘勇,苏占锋,郭明磊.青贮饲料营养价值变化及其影响因素[J].中国奶牛,2008,8:19~22.
    6.刘相梅,祁蒙.短小芽孢杆菌A-30耐碱性木聚糖酶基因的分子生物学研究[J].应用与环境生物学报,2001,7(1):6~165.
    7.罗会颖.极端嗜酸真菌Bispora sp. MEY-1胞外糖苷水解酶类的产酶分析及其相关基因的克隆与表达. [博士学位论文].北京:中国农业科学院,2008.
    8.日下部功,安井恒男,小林達吉.Streptomyces属のxylanase系に関する研究(第1報)菌体外放線菌xylanaseの諸性質について.農化[J]. 1969,43(3):145~153.
    9.史兆兴,王恒樑,苏国富,黄留玉.简并PCR及其应用[J].生物技术通讯,2004,15:172~175.
    10.苏玉春,陈光,白晶等.木聚糖酶的研究进展[J].牧草与饲料,2008,2(4):14~18.
    11.孙迅,朱陶,朱启忠等.产胞外木聚糖酶放线菌的分离与筛选[J].微生物学杂志,1998,18(4):
    29~32.
    12.唐胜球.木聚糖酶的研究及其在动物饲料中的应用[J].中国畜牧杂志,2004,40(2):42~44.
    13.王大成.蛋白质工程.化学工业出版社,2002,118~130.
    14.吴克.黑曲霉木聚糖酶的底物特异性和低聚木糖的生产[J].工业微生物,2000,30(1):18~20.
    15.谢响明,孙晓霞,吴玉英.绿色糖单胞菌产木聚糖酶规律及其耐碱耐热性的初步研究[J].生命科学研究,2005,9(1):132~135.
    16.许正宏,熊筱晶,陶文沂.低聚木糖的生产及应用研究进展[J].食品与发酵工业,2001,28(1):56~59.
    17.薛业敏,毛忠贵,邵蔚蓝.利用玉米芯木聚糖酶法制备低聚木糖的研究[J].中国酿造,2003,129(6):7~9.
    18.杨瑞鹏,赵学慧.木聚糖酶高产菌株筛选与鉴定[J].华中农业大学学报,1990,9(3):311~314.
    19.闫会平,陈士华,吴兴泉.黑曲霉β-葡萄糖苷酶的研究进展[J].纤维素科学与技术,2007,15(1):59~63.
    20. Ahsan MM,Kimura T.,Karita S.,et al.. Cloning, DNA sequencing,and expression of the gene encoding Clostridium thermocellum cellulase CelJ, the largest catalytic component of the cellulosome[J]. Bacteriol,1996,178:5732~5740.
    21. Bergquist P.,Te’o V.,Gibbs M.,et al.. Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts[J]. Extremophiles,2002,6(3):177~184.
    22. Biely P.,Kluepfel D.,Morosoli R.,Shareck F.. Mode of action of three endo-beta-1,4-xylanasesof Streptomyces lividans[J]. Biochim Biophys Acta,1993,26,1162(3):246~254.
    23. Bolam DN,Xie H.,Pell G.,et al.. X4 modules represent a new family of carbohydratebinding modules that display novel properties[J]. Biol Chem,2004,279:22953~22963.
    24. Boraston AB,Bolam DN,Gilbert HJ,et al.. Carbohydrate-binding modules: fine-tuning polysaccharide recognition[J]. Biochem,2004,382:769~781.
    25. Cepeljnik T.,Rincon MT,Flint HJ,et al.. Xyn11A, a multidomain multicatalytic enzyme from Pseudobutyrivibrio xylanivorans Mz5T[J]. Folia Microbiol,2006,51:263~267.
    26. Chen H.,Yan X.,Liu X.,et al.. Purification and characterization of novel bifunctional xylanase, XynIII, isolated from Aspergillus niger A-25[J]. Microbiol Biotechnol,2006,16:1132~1138.
    27. Chen YL,Tang TY,Cheng KJ. Directed evolution to produce an alkalophilic variant from a Neoallimasti patritciarum xylanase[J]. Microbio,200l,47:l088~ l094.
    28. Chow,V. G. Nong,J. F.. Preston.Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2[J]. Bacteriol,2007,189:8863~8870.
    29. Dekker R. F. H.. Biodegradation of the hetero-1,4-linked xylans[A].In:Lewis NCx,Paice MCP eds.Plant cell wall polymers[C]. Washingon:American Chemical Society,1989:619~629.
    30. Dodd,D.S. A. Kocherginskaya,M. A. Spies,K. E. Beery,C. A. Abbas,R. I. Mackie, and I. K. Cann. Biochemical Analysis of a beta-D-xylosidase and a Bifunctional Xylanase-Ferulic Acid Esterase from a Xylanolytic Gene Cluster in Prevotella ruminicola 23[J]. Bacteriol,2009,In press.
    31. Flint HJ,Martin J.,McPherson CA,et al.. A bifunctional enzyme with separate xylanase andβ-1,3-1,4-glucanase domains,encoded by the XynD gene of Ruminococcus flavefaciens[J]. Bacteriol,1993,175:2943~2951.
    32. Foong F.,Hamamoto T.,Shoseyov O.,et al.. Nucleotide sequence and characteristics of endoglucanase gene engB from Clostridium cellulovorans[J]. Gen Microbiol,1991,137:1729~1736.
    33. Gasparic,A.J. Martin,A. S. Daniel,H. J. Flint.. A xylan hydrolase gene cluster in Prevotella ruminicola B(1)4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and beta-(1,4)-xylosidase activities[J]. Appl. Environ. Microbiol,1995,61: 2958~2964.
    34. Gibbs MD,Reeves RA,Farrington GK,et al.. Multidomain multifunctional glycosyl hydrolasess from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1[J]. Current Microbiology,2000,40:333~340.
    35. Gilbert HJ,Hazelwood GP. Bacterial celluloses and xylanases[J]. Gen Microbiol,1993,139:187~194.
    36. Haruta. S.,Z. Cui,Z. Huang,M. Li,M. Ishii,Y. Igarashi.Construction of a stable microbial community with high cellulose-degradation ability[J]. Appl. Microbiol. Biotechnol,2002,59:529~534.
    37. Heck.J. X.,Fl?res.S. H.,Hertz. P. F.,Ayub. M. A.Statistical optimization of thermo-tolerant xylanase activity from Amazon isolated Bacillus circulans on solid-state cultivation[J]. Biotechno,2006,15(97):1902~1906.
    38. Henrissat B.,Bairoch.A..New families in the classification of glycosy hydrolases based on amino acid sequence similarities[J]. Bioehem,l993,293(3):78l~788.
    39. Henrissat B.,Davies GJ. Glycoside hydrolases and glycosyltransferases. Families,modules,and implications for genomics[J]. Plant Physiol,2000,124:1515~1519.
    40. Hernandez M.,Hernandez-Coronado MJC,Montiel MD,et al.. Analysis of alkali-lignin in a paper mill effluent decolourised with two Streptomyces strains by gas chromatography-mass spectrometry after cupric oxide degradation[J]. Chromatography,2001,919:389~394.
    41. Hogg D.,Woo EJ,Bolam DN,et al.. Crystal structure of mannanase 26A from Pseudomonas cellulose and analysis of residues involved in substrate binding[J]. Bio Chem,2001,276:31186~31192.
    42. Hrmova.M.,G. Fincher. Plant enzyme structure. Explaining substrate specificity and the evolution of function[J]. Plant Physiol,2001,125: 54~57.
    43. Huang X.,Holden HM,Raushel FM. Channeling of substrates and intermediates in enzyme catalyzed reactions[J]. Annu Rev Biochem,2001,70:49~180.
    44. James CL,Viola RE. Production and characterization of bifunctional enzymes. Domain swapping to produce new bifunctional enzymes in the aspartate pathway[J]. Biochem,2002,41:720~3725.
    45. Jenkins,J.L. Lo Leggio,G. Harris,R. Pickersgill.β-Glucosidase,β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-foldβ/αarchitecture and with two conserved glutamates near the carboxy-terminal ends ofβ-strands four and seven[J]. FEBS Lett,1995,362: 281~285.
    46. Jun,H. S.,J. K. Ha,L. M. Jr. Malburg,G. A. Verrinder,C. W. Forsberg. Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85[J]. Can. J. Microbiol,2003,49:171~180.
    47. Ko EP,Akatsuka H.,Mofiyanm H.,et a1.. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus[J]. Biocchemical J,1992,288:117~l21.
    48. Khandeparke R.,M.T.Numan. Bifunctional xylanases and their potential use in biotechnology[J]. Microbiol Biotechnol,2008,35: 635~644.
    49. Kuhad,R. C.,A. Singh,K. E. Eriksson. Microorganisms and enzymes involved in the degradation of plant fiber cell walls[J]. Adv. Biochem. Eng. Biotechnol,1997,57: 45~125.
    50. Kulakarni N.Shendyee A.,Rao M. Molecu A,Rao M.. Molecular and biotechnological aspects of xylan and biotechnological aspects of xylanase[J]. Microb. Rev,1999,23:411~456.
    51. Kye Man Cho,Su Young Hong,Sun Mi Lee,et al.. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains[J]. Appl Microbiol Biotechnol,2006,73:618~630.
    52. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1997,227:680~685.
    53. Lamed R.,Bayer EA. The cellulosome concept: Exocellular enzyme reactor centers for efficient binding and cellulolysis[A]. In:Aubert JP,Beguin P.,Millet J. eds.Biochemistry and genetics ofcellulose degradation[C]. London:Academic Press,1988:101~116.
    54. Lee YE,Le we SE,Henrissat B.,et a1.. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaer obaeterium saccharolytieum B6A-RI[J]. Bacteriol,1993,175(18):5890~5898.
    55. Li X. T.,Jiang Z. Q.,Li L. T.,et a1.. Characterization of a cellulose-free,neutral xylanase from Thermomyces len uginosus CBS 288.54 and its biobleaching efect on wheat straw pulp[J]. Bioresource Teehnol,2005,96:l370~1379.
    56. Liang PH,Anderson KS. Substrate channeling and domain–domain interactions in bifunctional thymidylate synthase–dihydrofolate reductase[J]. Biochem,1998,37:12195~12205.
    57. Liu YG,Whiner RF. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragment from PI and YAC clones for chromosome walking[J]. Genomics,1995,25:674~681.
    58. Lv,Z. J. Yang,H. Yuan. Production, purification and characterization of an alkaliphilic endo-β-1,4-xylanase from a microbial community EMSD5[J]. Enzyme Microb. Technol.,2008,43: 343~348.
    59. McCarthy AA,Morris DD Belgquist PL,et al.. Structure of XynB, a highly thermostable beta-l,4-xylanase from Dictyoglornus thermophilure Rt46B.l at l 8 resolution[J]. Acta Crystallogr D Biol Crystallogr. 2000,56(Pt l1):1367~1375.
    60. Medve J.. Cellulose Hydrolysis by Trichoderma reesei cellulases: studies on adsorption,sugar production and synergism of cellobiohydrolase I, II and endoglucanase II. PhD Thesis,1997,Department of Biochemistry,Lund University,Lund, Sweden,49.
    61. Meek TD,Garvey EP,Santi DV. Purification and characterization of the bifunctional thymidylate synthetase-dihydrofolate reductase from methotrexate-resistant Leishmania tropica[J]. Biochem,1985,24:678~686.
    62. Michiels A.,Tucker M.,Ende WVD, Laere AV. Chromosomal walking of flanking regions from short known sequences in GC-Rich plant genomic DNA[J]. Plant Mol Biol,2003,21:295~302.
    63. Miles EW,Rhee S.,Davies DR. The molecular basis of substrate channeling[J]. Biol Chem,1999,274:12193~12196.
    64. Moreau A.,Roberge M.,Mallill C.,et al.. Identification of two acidic residues involved in the catalysis of xylanase A from Streptoyces lividans[J]. Bioehem J,l994,302:291~295.
    65. Moreland D. Gibbs,Rosalind A. Reeves,G. King Farrington,et al.. Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1[J]. Current Microbiology,2000,40:333~340.
    66. Morris DD,Gibbs MD,Ford M.,et al.. Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. Rt69B.1[J]. Extremophiles,1999,3(2):103~112.
    67. Motomura M.,Chihaya N.,Shinozawa T.,Hamasaki T. Yabe K.. Cloning and characterization of the O-methyltransferase I gene (dmtA) from Aspergillus parasiticus associated with the conversions of demethylsterigmatocystin to sterigmatocystin and dihydrodemethylsterigmatocystinto dihydrosterigmatocystin in aflatoxin biosynthesis[J]. Appl Environ Microbiol,1999,65:4987~4994.
    68. Murashima K.,Kosugi A.,Doi RH. Synergistic effects of cellulosomal xylanase and celluloses from Clostridium cellulovorans on plant cell wall degradation[J]. Bacteriol,2003,185:1518~1524.
    69. Nakamura S.,Nakai R.,Namba K.,et a1.. Structure-function relationship of the xylanase from alkaliphilie Bacillu. sp strain 41M-1[J]. Nucleic Acids Symp Set,1995,(30):99~100.
    70. Nascimento R. P.,Coelhor R.,Marques S.,et a1.. Production an d partial charactefisation of xylanase from Streptomyces sp. strain AMT-3 solated from Brazilian cerrado soil[J]. Enzyme Microb Teeh,2002,31:549~555.
    71. Ninawe S.,Kuhad R. C. Bleaching of wheat straw-rich soda pulp with xylanase from a thermoalkalophilic Streptomyces cyaneus SN32[J]. Bio Technol,2006,97:2291~2295.
    72. Olivetraa L. A.,Porto A. L F,Tambourgi .E B.. Production of xylanase and protease by Penicillium janthinellum sp.87M-115 from different agricultural wastes[J]. Bioresource Teehnol,2006,97:862~867.
    73. Peter B.. Biochemical aspects of the production of microbial hemicellulases.In:Coghlan M.P,Hazelwood G.P.(eds). Hemicellulose and Hemicellulases.London:Portland Press,1993:29~51.
    74. Petit-Benvegnen,MD,Saulnier L.,et al..Solubilition of pentosan from isolated water-unextractable and wheat flour doughs by cell wall degrading enzymes[J]. Cereal Chem,1998,75(4):551~556.
    75. Pohlschroder M. , Leschine SB , Parola EC. Multicomplex cellulase–xylanase system of Clostridium papyrosolvens C7[J]. Bacteriol,1994,176:70~76.
    76. Pojgan Kavoosi. Inexpesive one-step purification of polypept-ides expressed in Escherichia coli as fusions with the family 9 carbohydrate-binding module of xylanase 10A from maritime[J].Journal of Chromatography,2004,807:87~94.
    77. Polizeli M. L.,Rizzatti A. C.,Monti R.,et a1.. Xylanases from fungi:properties and industrial applications[J]. Appl Microbiol Biotechnol,2005,67(5):577~582.
    78. Poon DK,Webster P.,Withers. SG,el al.. Characterizing the pH-dependent stability and cata1ytic mechanism of the family 11 xylanase from the alkalophilic Bacillus agaradbaerens[J]. Carbohydr Res,2003,338(5):4l5~42l.
    79. Poorma C. A.,Prema P.. Production of cellulose-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling[J]. Bioresouree Technol,2007,98:485~490.
    80. Prade R.. Xylanases: from biology to biotechnology[J]. Biotechnology and Genetic Engineering Reviews,1995,13(12):101~131.
    81. Prates JA,Tarbouriech N.,Charnock SJ,et al.. The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition[J]. Structure (Camb),2001,9:1183~1190.
    82. Raghothama S.,Simpson PJ,Szabo L.,et al.. Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A[J]. Biochemistry,2000,39:978~984.
    83. Rakhee Khandeparker,Mondher Th,Numan. Bifunctional xylanases and their potential use in biotechnology[J]. Ind Microbiol Biotechnol,2008,35:635~644.
    84. Roberge M.,Shareck F.,Morosoli R.,et al..Characterization of two important histidine rcsidues in the active site of a xylanase from Streptomyees lividans,a family 10 glyeanase[J]. Biochemistry,1997,36(25):7769~7775.
    85. Shao W.,Deboois S.,Wiegel F. A high-molecular-weight cell-associated xylanase isolated from exponentially growing Thermoanaero-bacterium sp. strain JW/SL-YS485[J]. Appt. Environ. Microbiol,1995,61(3):937~940.
    86. Sivaswamy S. N.. Enzymatic pretreatment of pulp for reduction in consumption of bleach chemicals[J]. Ippta,1998,10(2):1~9.
    87. Solbak AI,Richardson TH,McCann RT,et al.. Discovery of pectin-degrading enzymes and directed evolution of a novel pectate lyase for processing cotton fabric[J]. Biol Chem,2005,280:9431~9438.
    88. Sternberg D..β-Glucosidase of Tricoderma: its biosynthesis and role in saccharification of cellulose[J]. Appl Environ Microbiol,1976,31:648~654.
    89. Suijie Wu,Bin Liu,Xiaobo Zhang. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific[J]. Appl Microbiol Biotechnol,2006,72:1210~1216.
    90. Tanaka T.,Fukui T.,Imanaka T.. Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1[J]. Biol Chem,2001,276:35629~35635.
    91. Tephtsky A.,Mechaly. A.,Stojanoff,el al.. Structure determination of tile extracellar xylanase from Geobacillus stearother|mophilus by selenometlnonnyl MAD phasing[J]. Acta Crystallogr D Biol Crystallogr,2004,60(Pt 5):836~848.
    92. Tunnicliffe RB,Bolam DN,Pell G.,et al.. Structure of a mannan-specific family 35 carbohydratebinding module: evidence for significant conformational changes upon ligand binding[J]. Mol Biol,2005,347:287~296.
    93. Van den Broek,L. A. M.,R. M. Lloyd,G. Beldman,J. C. Verdoes,B. V. McCleary,A. G. J. Voragen. Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083[J]. Appl. Microbiol. Biotechnol,2005,67:641~647.
    94. Vrzheshch PV. Steadystate kinetics of bifunctional enzymes taking into account kinetic hierarchy of fast and slow catalytic cycles in a generalized model[J]. Biochem,2007,72:936~943.
    95. Wong KK,Tan LU,Saddler JN. Multiplicity ofβ-1,4-xylanase in microorganisms: functions and applications[J]. Microbiol Rev,1988,52:305~317.
    96. Wouters J. , Georis J. , Engher D. , et al.. Crystallographie analysis of family 11 endo-beta-1.4-xylanase XyⅡfrom Streptomyces sp. S3-8[J]. Acta Crystallogr D Biol Crystallogr,2001,57(Pt 12):1813~l8l9.
    97. Xie G.,Bruce DC,Challacombe JF,et al.. Genome Sequence of the cellulolytic gliding bacteriumCytophaga hutchinsonii[J]. Appl Environ Microbiol,2007,73:3536~3546.
    98. Zhang JX,Flint HJ. A bifunctional xylanase encoded by the XynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by anasparagine/glutamine-rich sequence[J]. Mol Microbiol,1992,6:1013~1023.
    99. Ziate-Shirkolaee Y.,Talebizadeh A.,Soltanali S.. Comparative study on application of lanuginosus SSBP xylanase and commercial xylanase on biobleaching of non wood pulps[J]. Bio-Technol,2008,99:7433~7437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700