极端嗜酸真菌Bispora sp. MEY-1胞外糖苷水解酶类的产酶分析及其相关基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极端微生物在生态系统中发挥着重要作用,为人类提供了丰富的微生物资源。随着越来越多的极端微生物被分离鉴定,极端酶被分离纯化和极端酶工程研究的进展,极端酶在生物催化和生物转化中的应用将会得到更进一步的拓展。
     本文对分离自江西“721”矿区铀矿废水的真菌MEY-1进行了初步鉴定。该菌具有极端嗜酸性,它的最适生长pH为2.5~3.0,在pH1.0下也能较好生长。经ITS序列比对并结合形态分析,MEY-1属于Bispora属。嗜酸真菌Bispora sp. MEY-1能分泌产生多种重要的工业用酶,其中包括木聚糖酶、β-葡聚糖酶、β-甘露聚糖酶、CMCase、淀粉酶、果胶酶、α-半乳糖苷酶、β-半乳糖苷酶以及β-葡萄糖苷酶等九种糖苷水解酶。是一株优良的工业用酶产生菌。
     初步建立了一种能诱导嗜酸真菌MEY-1同时产生上述九种酶的发酵方法。通过优化培养基中麸皮、玉米芯粉、魔芋粉及豆粕的组成比例,培养的pH和温度,建立了4种诱导不同酶产生的方法。方法1:麸皮、玉米芯粉、豆粕比例为2:5:2,pH 2.0,培养温度20℃,高产β-甘露聚糖酶、CMCase、淀粉酶、果胶酶。方法2:麸皮、玉米芯粉、豆粕比例为2:5:2,pH 2.0,培养温度30℃,高产β-葡聚糖酶。方法3:麸皮、玉米芯粉、豆粕比例为1:1:7,pH4.0,培养温度30℃高产α-半乳糖苷酶、β-半乳糖苷酶和β-葡萄糖苷酶。方法4:麸皮、玉米芯粉、豆粕比例为5:2:2,pH 4.0,培养温度30℃,高产木聚糖酶。
     本文通过糖苷水解酶基因序列分析,从嗜酸真菌Bispora sp. MEY-1分离克隆到7种9个糖苷水解酶的基因。分别是:木聚糖酶基因3个,β-甘露聚糖酶基因、α-淀粉酶基因、α-半乳糖苷酶基因、β-半乳糖苷酶基因、β-葡萄糖苷酶基因、α-L-鼠里糖苷酶基因各1个。通过BLAST比对和序列一致性分析,它们核苷酸和氨基酸序列的最高相似性分别为:木聚糖酶基因xyl11A, 85.3%和93.7%;木聚糖酶基因xyl11B, 61.4%和57.0%;木聚糖酶基因xyl10A, 49.8%和43.6%;β-甘露聚糖酶基因man5A, 45.4%和47.1%;α-淀粉酶基因amyA, 60.2%和62.0%;α-半乳糖苷酶基因agalA, 54.2%和49.7%;β-半乳糖苷酶基因bgalA,56.8%和55.5%;β-葡萄糖苷酶基因bglA,49.5%和34.8%;α-L-鼠里糖苷酶基因rhaA,55.0%和44.9%。并对其中的8个酶做了三维结构的模拟和催化位点的分析,结果表明,除xyl11A外,这些基因均具有较高的新颖性。
     将Bispora sp.MEY-1来源的β-甘露聚糖酶基因man5A,和3个木聚糖酶基因xyl11A, xyl11B, xyl10A在毕赤酵母中进行了表达。在摇床水平上β-甘露聚糖酶MAN5A的表达量为64 U/mL,木聚糖酶XYL11A,XYL11B和XYL10A的表达量分别为:83 U /mL,54 U /mL和101 U /mL。验证了基因的功能。
     对重组的β-甘露聚糖酶MAN5A和3个木聚糖酶进行了纯化和酶学性质分析。β-甘露聚糖酶MAN5A的最适pH为1.0~1.5,在pH1.0~5.5范围内酶活性均能维持在70%以上。这是目前报道的最适pH最低的β-甘露聚糖酶。三个木聚糖酶XYL11A,XYL11B和XYL10A的最适pH分别为2.4,2.6和3.0。均为极端嗜酸木聚糖酶。MAN5A的最适温度为65℃,木聚糖酶XYL11A,XYL11B和XYL10A的最适温度分别为60℃和65℃和80℃。他们都具有极好的抗胃蛋白酶和胰蛋白酶的能力,37℃条件下处理60min后的酶活力是处理前的85~150%。大部分金属离子不影响酶活力或对酶有激活作用。重组的β-甘露聚糖酶比活为3373U/mg,Km值为1.56mg/mL, Vmax为6587.6μmol/min·mg。三个重组木聚糖酶XYL11A,XYL11B和XYL10A的比活分别为8334U/mg,2049U/mg和5437U/mg。Km分别为19.907 mg/mL,29.96 mg/mL和1.005 mg/mL。Vmax为7308.5μmol/min·mg,1757.2μmol/min·mg和2709μmol/min·mg。结果表明该四个酶都是极端嗜酸酶,具有很高的比活性。综合酶学性质表明他们都具有很好的工业应用前景。
Extremophiles play important roles in the ecosystem and provide rich microbial resources for human beings. Along with the isolation and identification of more and more extremophiles, various extremozymes have been isolated and purified, leading to the expansion of more applications of extremozymes in biocatalysis and biotransformation.
     In this study, an acidophilic fungus, MEY-1, was isolated from the acidic waste water of "721" Uranium Mine in Jiangxi, China. Isolate MEY-1 was able to grow at pH1.0~6.0, with the optimal growth at pH 2.5~3.0. Based on morphology and ITS sequence analysis, isolate MEY-1 was identified to belong to the genus Bispora. Being an excellent industrial enzyme producer, Bispora sp. MEY-1 can secrete nine important industrial enzymes, including xylanase,β-glucanase,β-mannanase, CMCase, amylase, pectinase,α-galactosidase,β-galactosidase andβ-glucosidaset.
     A fermentation system was initially established to induce MEY-1 to secrete the nine enzymes mentioned above. By optimizing the proportion of wheat bran, corncob powder, konjac flour and soybean meal in the medium, pH and temperature, four methods were used to induce different enzymes. Method 1 for high-yield ofβ-mannanase, CMCase, amylase and pectinase: the proportion of wheat bran, corncob powder and soybean meal was 2:5:2, pH 2.0 and 20℃. Method 2 for high-yield ofβ-glucanase: the proportion of wheat bran, corncob powder and soybean meal was the same as Method 1, pH 2.0 and 30℃. Method 3 for high-yield ofα-galactosidase,β-galactosidase andβ-glucosidase: the proportion of wheat bran, corncob powder and soybean meal was 1:1:7, pH4.0 and 30℃. Method 4 for high-yield of xylanase: the proportion of wheat bran, corncob powder and soybean meal was 5:2:2, pH 4.0 and 30℃.
     Based on sequence analysis, nine glucoside hydrolase genes belonging to seven kinds of enzymes were cloned from the acidophilic fungus Bispora sp. MEY-1. They are three xylanase genes, oneβ-Mannanase gene, oneα-amylase gene, oneα-galactosidase gene, oneβ- galactosidase gene, oneβ-glucosidase gene and oneα-L- rhamnosidase gene, respectively. Homology searches in GenBank using BLAST and multiple alignment using CLUSTALW were performed. The highest identity of nucleotide and amino acid sequences of these enzymes to known glucoside hydrolases are: xylanase gene xyl11A, 85.3% and 93.7%; xylanase gene xyl11B, 61.4% and 57.0%; xylanase gene xyl10A, 49.8% and 43.6%;β-mannanase gene man5A, 45.4% and 47.1%;α-amylase gene amyA, 60.2% and 62.0%;α-galactosidase gene agalA, 54.2% and 49.7%;β-galactosidase gene bgalA, 56.8% and 55.5%;β-glucosidase gene bglA, 49.5% and 34.8%;α-L- rhamnosidase gene rhaA, 55.0% and 44.9 %. Except for rhaA, all other enzymes were subject to three-dimensional structure and catalytic site analysis, indicating the novelty of eight enzymes besides xyl11A.
     Theβ-mannanase gene man5A, and three xylanase genes xyl11A, xyl11B and xyl10A were expressed in Pichia pastoris with the activity of 64, 83, 54 and 101 U/mL in flasks, verifying the function of these genes.
     The recombinantβ-mannanase MAN5A (MAN5A) and three xylanases (XYL11A, XYL11B and XYL10A) were purified and characterized. MAN5A had the optimum pH of 1.0~1.5, lower than all the knownβ-mannanases, and retained >70% activity over pH 1.0~5.5. The optimum pHs of XYL11A, XYL11B and XYL10A were 2.4, 2.6 and 3.0, respectively. The optimum temperatures of MAN5A, XYL11A, XYL11B and XYL10A were 65, 60, 65 and 80℃, respectively. All the recombinantβ-mannanase and three xylanases had strong resistance to pepsin and trypsin treatmen, retaining 85~150% activities at 37°C for 60 min. Metal ions and chemical reagents enhanced or had no effects on enzyme activities. The Km and Vmax values for MAN5A were 1.56 mg/mL and 6587.6μmol/min ? mg, respectively, with the specific activity of 3373 U/mg. The specific activity of XYL11A, XYL11B and XYL10A were 8334, 2049 and 5437 U/mg, respectivley. The Km and Vmax values for XYL11A, XYL11B and XYL10A were 19.907 and 7308.5, 29.96 and 1757.2, and 1.005 mg/mL and 2709μmol/min ? mg, respectively. All these four enzymes are acidicphilic with very high specific activities, suggesting their good prospects in industrial applications.
引文
1. 鲍晓明. 嗜热细菌木糖异构酶基因 xylA 在酿酒酵母中的高效表达.微生物学报,1999,39(1):49~54.
    2. 曹云鹤,陈小玲,贺平丽等.硫色曲霉木聚糖酶基因 xynA 的克隆、表达及酶学性质分析.生物技术通讯,2006, 17(6):878~881.
    3. 陈凤毛. 真菌 ITS 区序列结构及其应用.林业科技开发. 2007, 21(2):5~7.
    4. 陈坚,刘立明,堵国成. 环保酶制剂的研究与应用现状.苏州城建环保学院学报, 2002, 15(2):1~7.
    5. 陈小兵,乔宇,丁宏标等. 里氏木霉 RUT-C30 内切 β- 甘露聚糖酶基因在毕赤酵母中的分泌表达. 农业生物技术学报,2007, 15 (1):142~143.
    6. 方洛云,邹晓庭,许梓荣.木 聚糖酶的分子生物学与基因工程. 中国饲料,2002,(7):11-13.
    7. 顾园,诸欣平,王少华. 毕赤酵母表达蛋白质的糖基化.生命的化学, 2004,24(4):353~355.
    8. 何永志,姚斌,王亚茹等. 来源于 Strepomyces olivaceoviridis A1 的高比活木聚糖酶的高效表达及其酶学性质的研究. 微生物学报,2004,44(3):340~344.
    9. 胡沂淮,邵蔚蓝. 木聚糖酶. 生命的化学,2002,12(3):281~285.
    10. 黄大肪,林敏. 农业微生物基因工程,北京,科学出版社, 2001
    11. 姜成林,徐丽华. 微生物资源开发利用. 北京:中国轻工业出版社, 2001, 66~67.
    12. 李大卫,何方淑. 极限环境中的生命. 生物学通报, 1995, 30(1):19~21.
    13. 李子东,藏立华,孟双. 极端微生物:一种新型的酶资源. 微生物学杂志, 2004, 24 (5) : 89~91.
    14. 刘会强,张立丰,韩彬等. 嗜盐菌的研究新进展. 新疆师范大学学报(自然科学版), 2005, 24 (3):87.
    15. 刘亮伟, 秦天苍, 刘新育等. 热稳定性木聚糖酶结构模拟及分析.河南农业大学学报,2007,41(3):304~308.
    16. 刘相梅,祁蒙,曲音波. 木聚糖酶基因克隆、表达、与分泌及定点诱变研究进展.生物工程进展, 2001,,21(2):28~31.
    17. 刘燕,张宏福,孙哲. CMCase的分子生物学与基因工程研究进展.饲料工业, 2007, 28(18):11~14.
    18. 陆健,曹钰,陈坚等. 米曲霉 RIB128 耐酸性木聚糖酶的研究.无锡轻工大学学报, 2001, 6:608~611.
    19. 马延和. 嗜碱微生物. 微生物学通报, 1999, 26(4): 309~310.
    20. 米琴,张玉琴,陈义光等. 青海盐环境下革兰氏阳性中度嗜盐细菌的分离及其生物学特性的初步研究.陕西师大学报,2005,(3):86~90.
    21. 乔宇,陈小兵,丁宏标等.甘露聚糖酶基因在毕赤酵母中的表达及酶学性质研究. 中国生物工程杂志,2006,26 (7): 52~56 .
    22. 任培根,周培瑾. 中度嗜盐菌的研究进展.微生物学报, 2003, 43(3):427~431.
    23. 日下部功,安井恒男,小林達吉.Streptomyces 属の xylanase 系に関する研究(第 1 報)菌体外放線菌 xylanase の諸性質について.農化, 1969, 43(3):145~153.
    24. 司马义,萨依木. 极端环境中的低温微生物及其应用.生物学通报,2002,37 (8):15.
    25. 孙迅,朱陶,朱启忠等. 产胞外木聚糖酶放线菌的分离与筛选. 微生物学杂志, 1998, 18(4):29~32.
    26. 唐兵,唐晓峰,彭珍荣. 嗜冷菌研究进展.微生物学杂志, 2002, 22(1):51~53.
    27. 唐雪明,王正祥,诸葛健. 具有工业价值的高热稳定性极端酶. 食品与发酵工业, 2000, 27(5):65~70.
    28. 王建平,陈小娥. CMCase 的研究概况.浙江水产学院院报, 1996, 15(2):140~144.
    29. 王健鑫.嗜极菌的极端酶的若干研究进展.浙江海洋学院学报(自然科学版), 2003, 22(2):158~162.
    30. 王兰芳. 功能性低聚糖在动物营养中的应用. 中国饲料, 2001, (6):21-21.
    31. 辛明秀, 周培瑾.冷适应微生物产生的冷活性酶.微生物学报,2000,40(6):661~664.
    32. 许正宏,熊筱晶,陶文沂. 低聚木糖的生产及应用研究进展.食品与发酵工业, 2001, 28(1):56~
    59.
    33. 闫会平,陈士华,吴兴泉. 黑曲霉β-葡萄糖苷酶的研究进展. 纤 维 素 科 学 与 技 术, 2007,
    15(1):59~63.
    34. 杨瑞鹏,赵学慧. 木聚糖酶高产菌株筛选与鉴定.华中农业大学学报, 1990, 9(3):311~314.
    35. 袁铁铮,姚斌,罗会颖等. 来源于酸热脂环酸杆菌的嗜酸性 α-淀粉酶的表达研究. 生物工程学报,2005a,1:78~83.
    36. 袁铁铮,姚斌,罗会颖等. 一种高温酸性 α-淀粉酶基因的高效表达和表达产物分析.高技术通讯,2005b,15(11):63~68.
    37. 张洪勋,郝春博,白志辉. 嗜酸菌研究进展.微生物学杂志, 2006, 26(2):68~72.
    38. 张敏,东秀珠. 973 项目“极端微生物及其功能利用的基础研究”研究进展. 微生物学报,2006, 46(2):336.
    39. 张平平,刘宪华. 纤维素生物降解的研究状况与进展.天津农学院学报,2004,11(3):48~54.
    40. Adams M.W. , Kelly R.M. . Finding and using hyperthermophilic enzymes. Trends Biotechnol 1998, 16(8): 329~332.
    41. Al Balaam B., Wouters J., Dogne S. . et al.. Identification, cloning and expression of the Scytalidium acidophilum XYL1 gene encoding for an acidophilic xylanase. Biosci Biotechnol Biochem 2006, 70(1): 269~272.
    42. Alfredo A. . Extremophile research in the European Union: from fundamental aspects to industrial expectations. FEMS Microbiol. Rev. 1996, 18: 89~92.
    43. Antje C. . SpringerHandbook of Enzymes, 2nded, New York: Springer Verlag Berlin Heidelberg 2003, pp.:1~39.
    44. Beguin P. . Molecular biology of cellulose degradation. J Microbiol 1990, 44: 219~248.
    45. Bertoldo C. . Antranikian G. . Starch-hydrolyzing enzymes from thermophilic Archaea and bacteria. Curr Opin Chem Biol 2002, 6: 151~160.
    46. Bewley J.D. , Burton R.A. , Morohashi Y. , et al.. Molecular cloning of a cDNA encoding a(1--4)-beta-mannan endohydrolase from the seeds of germinated tomato (Lycopersicon esculentum). J Planta 1997, 203(4): 454~459.
    47. Biely P. , Kluepfel D. , Morosoli R. , Shareck F. . Mode of action of three endo-beta-1,4-xylanases of Streptomyces lividans. Biochim Biophys Acta 1993, 26: 1162(3): 246~254.
    48. Bourne Y. , Henrissat G.B. . Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin in Struct Biol 2001, 11: 573~580.
    49. Buonocore V. , Caporale C. , De Rosa M. , et al.. Stable, inducible thermoacidophilicα-amylase from Bacillus acidocaldarius. J Bacteriol 1976, 128(2): 515~521.
    50. Cavicchioli R. , Siddiqui K.S. , Andrews D. , et al.. Low-temperature extremophiles and their applications. Curr Opin Biotechnol 2002, 13: 253.
    51. Chen J. P. , Pai H. . Hydrolysis of milk fat with lipase in reversed micelles. J Food Science 1991, 56(1): 234~237.
    52. Chen X. , Cao Y. , Ding Y. , et al.. Cloning functional expression and characterization of Aspergillus sulphureus beta-mannanase in Pichia pastoris. J. Biotechnol 2007, 128(3): 452~461.
    53. Collins T. , Gerday C. , Feller G. . Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005, 29(1): 3-23.
    54. Davies G. , Henrissat B. . Structures and mechanisms of glycosyl hydrolases. Structure 1995, 3: 853-859.
    55. Demirjian D.C. , Morís-Varas F. , Cassidy C.S. . Enzymes from extremophiles. Curr Opin Biotechnol 2001, 5: 144~151.
    56. Dong G.Q. , Vieille C. , Savcheuko A. , et al.. Cloning, sequencing and expression of the gene encoding extracellular α-amylase from Pyrococcus f uriosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 1997, 63: 3569~3576.
    57. Duffner F. , Bertoldo C. , Andersen J.T. , et al.. A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification and characterization of the recombinant enzyme after expression in Bacillus subtilis. J. Bacterio 2000,182: 6331~6338.
    58. Edwards K.J. , Bond P.L. , Gihring T.M. , et al.. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 2000, 287: 1796~1799.
    59. Ferrer M. , Golyshina O.V. , Plou F.J. , et al.. A novel α-glucosidase from the acidophilic archaeon Ferroplasma acidiphilum strain Y with high transglycosylation activity and an unusual catalytic nucleophile. Biochem J 2005, 391(15): 269~276.
    60. Franco P. F. , Ferreira H. M. , Filho E. X. . Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4. Biotechnol Appl. Biochem 2004, 40: 255~259.
    61. Frédéric de L. E., Virginie R, Josette L.B. Acidophilic adaptation of family 11 endo-β-1,4-xylanases: Modeling and mutational analysis. Protein Science 2004 , 13:1209~1218.
    62. Fushinobu S., Ito K., Konno M., et al.. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 1998, 11: 1121~1128
    63. Galkin A. , Kulakova L. , Ashida H. . et al .. Cold-adapted alanine dehydrogenases from two antarctic bacterial strains: Gene cloning, protein characterization, and comparison with mesophilic and thermophilic counterparts. Appl Environ Microbiol 1999, 65: 4014~4020.
    64. Gemmell R. T. , Knowles C.J. . Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. Thepotential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavymetals. FEMS Microbiol. Lett 2000, 192: 185.
    65. Gilbert M. , Yaguchi M. , Watson D.C. , et al.. A comparison of two xylanases from the thermophilic fungi Thielavia terrestris and Thermoascus crustaceus. J Appl Microbiol Biotechnol 1993, 40(4): 508~514.
    66. Golyshina O.V. , Golyshin P.N. , Timmis K.N. , et al.. The “pH optimum anomaly” of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 2006,8(3): 416~425.
    67. Gubitz G. M. , Hayn M. , Sommerauer M. , et al.. Mannan degrading enzymes from Sclerotium rolfsii: Characterization and synergism of two endo β-mannanases and a β-mannosidase. Bioresource Technol 1996, 58: 127~135.
    68. Guyer R. L. & Koshland Jr D. E. . The Molecule of the Year. Science 1989, 246: 1543~1547.
    69. H.-Y. Luo, L.-H. Miao, C.-X. Fang , et al.. Nesterenkonia flava sp. nov., isolated from paper mill effluent. Int J Syst Evol Microbiol (in press) 2008.
    70. Hagglund P. , Eriksson T. , Collen A. , Nerinckx W. , Claeyssens M. , Stalbrand H. .A cellulose-binding module of the Trichoderma reesei beta-mannanase Man5A increases the mannan-hydrolysis of complex substrates. J Biotechnol 2003, 101(1): 37~48.
    71. Haki G. D. , Rakshit S. K. . Developments in industrially important thermostable enzymes: a review. Bioresour Technol 2003, 89: 17.
    72. He YZ(何永志), Yao B(姚斌),Wang YR(王亚茹),et al.. Overexpression of strepomyces olivaceoviridis a1 xylanase with high specific activity and analysis of enzymic properties. Acta Microbiologica Sinica 2004, 44(3): 340-344.
    73. Henriksson G. , Nutt A. , Henriksson H. , et al.. Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase.Eur J Biochem 1999,259(1-2):88~95.
    74. Henrissat B. , Coutinho P.M. . Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol 2001, 330: 183-201.
    75. Henrissat B. . A classification of glycisyl hydrolases based on amino acid sequence similarities. Biochem J 1991, 280: 309-316.
    76. Henrissat B. T., Teeri T., Warren R. A. J.. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett 1998, 425: 352~354.
    77. Hess J.M. , Tchernajenko V. , Vieille C. , et al.. Thermotoga neapolitana homotetrameric xylose isomerase is expressed as a catalytically active and thermostable dimer in Escherichia coli.Appl Environ Microbiol 1998, 64(7): 2357-2360.
    78. Hilge M. , Gloor S.M. , Rypniewski W. , et al.. High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosylhydrolase family 5. J Structure 1998, 6(11): 1433~1444.
    79. Hong J. , Tamaki H. , Akiba S. , et al.. Cloning of a gene encoding a highly stable endo-beta-1,4-glucanase from Aspergillus niger and its expression in yeast. J Biosci Bioeng 2001, 92: 434~441.
    80. Horikoshi K. . Alkaliphiles: some applications of their products for biotechnology. MicrobiolMol Biol Rev 1999, 63 (4): 735.
    81. Hough D.W. , Danson M.J. . Extremozymes: Current Opinion in Chemical Biology 1999, 3:39~46.
    82. Huang Y. W. , Krauss G. , Cottaz S. , et al.. A highly acid-stable and thermostablen endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochemical Journal 2005, 385: 581~588.
    83. Huang Y.W. , Gerhard K. , Sylvain C. , et al.. A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem. J 2005, 385: 581~588.
    84. Iefuji H. , Chino M. , Kato M. , et al.. Acid xylanase from yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biosci Biotechnol Biochem 1996, 60: 1331~1338.
    85. Inagaki K. , Nakahira K. , Mukai K. , et al.. Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci. Biotechnol. Biochem 1998, 62: 1061~1067.
    86. Ingle M.B. , Erickson R.J. . Bacterial α-amylases. Adv Appl Microbiol 1978, 24: 257~278.
    87. Irwin J.A. , Gudmundsson H.M. , Marteinsson V.T. , et al . Characterization of alanine and malate dehydrogenases from a marine psychrophile strain PA243. Extremophiles 2001, 5: 199~211.
    88. Ito K.,Ogasawara H. , Sugimoto T. , et al.. Purification and properties of acid stable xylanases from Aspergillus kawachii. Biosci Biotech Biochem 1992, 56: 547~555.
    89. J?gensen H. , M?keberg A. , Krogh K.B.R. , et al.. Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb. Technol 2005, 36: 42~48.
    90. Johan M. , Crous, Isak S. , Pretorius, Willem H. , van Zyl. Cloning and expression of an Aspergillus kawachii endo-1,4-β-xylanase gene in Saccharomyces cerevisiae. Current Genetics 1995, 28(5): 467~473.
    91. Johnson D. B. , Hallberg K. B. . Acid mine drainage remediation options: a review Science of the Total Environment 2005, 338: 3~14.
    92. Jordan M. A. , Ginness M. , Phillips C. V. , Acidophilic bacteria-their potentialmining and environmental applications. EnvironMinerEng 1996, 9(2): 169.
    93. Kang S.W. , Park Y.S. , Lee J.S. , et al.. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 2004, 91(2): 153~156.
    94. Kanno M. . A Bacillus acidocaldarius α-amylase that is highly stable to heat under acidic conditions. Agric Biol Chem 1986, 50: 23~31.
    95. Karlsonn E.N. , Holst O. , Tocaj A. . Efficient production of truncated thermostable xylanases from Rhodothermus marinus in Escherichia coli fed-batch cultures. J. Biosci. Bioeng 1999,87: 598~606.
    96. Kassim E.A. . Cellulase enzyme from Aspergillus niger. Microbiol Immunol 1982, 26(6): 449~454.
    97. Kim S.W. , Knabe D.A. , Hong K.J. , et al.. Use of carbohydrases in corn–soybean meal-based nursery diets1. J Anim Sci 2003, 81(10): 2496~2504.
    98. Kimura T. , Ito J. , Kawano A. , et al.. Purification, characterization and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci Biotechnol Biochem 2000, 64: 1230~1237.
    99. Kobayashi H. , Takaki Y. , Kobata K. , et al.. Characterization of α-maltotetraohudrolase produced by a Psedomonas sp. MS300 isolated from the deepestsite ofMarianaTrench. Extremophiles 1998, 2 (4): 401.
    100. Krengel U. , Dijkstra B. W. . Three-dimensional structure of endo-1,4-β-xylanase I from Aspergillus niger molecular basis for its low pH optimum. J. Mol. Biol 1996, 263: 70~78.
    101. Kulakova L. , Galkin A. , Kurihara T. , et al.. Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 1999, 65(2): 611-617.
    102. Kulkarni N. , Shendye A. , Rao M. . Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews 1999,23: 411~456.
    103. Lee J.T. , Bailey C.A. , Cartwright A.L. . Beta-mannanase ameliorates viscosity-associated depression of growth in broiler chickens fed guar germ and hull fractions. J Poult Sci 2003, 82 (12): 1925~1931.
    104. Lee R. , Lynd, Paul J. , Weimer, Willem H. , van Zyl, et al.. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews 2002, 506~577.
    105. Liu L., Zhang J., Chen B., et al.. Principle component analysis in F/10 and G/11 xylanase. Biochem Biophys Res Commun 2004, 322(1): 277~280.
    106. Lynd L.R. , Weimer P.J. , van Zyl, W.H. , et al.. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66(3): 506~577.
    107. Matzke J. , Schwermann B. , Bakker E.P. . Acidostable and acidophilic proteins: the example of the α-amylase from Alicyclobacillus acidocaldarius. Comp Biochem Physiol 1997, 118: 475~479.
    108. Matzke J. , Schwermann B. , Bakker E.P. . Acidostable and acidophilic proteins: the example of the α-amylase from Alicyclobacillus acidocaldarius. Comp Biochem Physiol A Physiol 1997, 118(3): 475-479.
    109. Medve J.. Cellulose Hydrolysis by Trichoderma reesei cellulases: studies on adsorption, sugar production and synergism of cellobiohydrolase I, II and endoglucanase II. PhD Thesis, 1997,Department of Biochemistry, Lund University, Lund, Sweden, 49.
    110. Miura Y., et al.. High level production of thermostable α-amylase from Sulfolobus solfataricus in high cell density culture of the food yeast Candida utilis. J. Mol. Microbiol.Biotechnol 1999, 1: 129~134.
    111. Nies D.H.. Heavy metal-resistant bacteria as extremophiles: molecular physiology andbiotechnological use of Ralstonia sp. Ch34. Extremophiles 2000, 4: 77~82.
    112. Norris P. R., Johnson D. B.. Acidophilic microorganisms. In Extremophiles Microbial Life in Extreme Environments. New York, John Wiley 1998, 133~154.
    113. Ogasawara H. , Takahashi K. , Iitsuka K., et al.. Contribution of hemicellulase in shochu koji to the resolution of barley in the shochu mash. J . Brew. Soc. Japan 1991, 4: 304~307.
    114. Omogbenigun F.O., Nyachoti C.M., Slominski B.A.. Dietary supple mentation with multienzyme preparations improves nutrient utilization and growth performance in weaned pigs. J Anim Sci 2004, 82: 1053~1061.
    115. Percival Zhang Y.H. , Himmel M.E. , Mielenz J.R. . Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006, 24(5): 452~481.
    116. Phoebe C. H. , Combie J. , Albert F. G. , et al.. Extremophilic organisms as an unexplored source of antifungal compounds. J Antibiot 2001, 54 (1): 56.
    117. Piera-Velaiquez S. , Marhuenda-Egea F. , Cadenas E.. Increased stability of malate dehydrogcnase from Halobaclerium salinarum at low salt concentration in reverse micelles. Extremophiles 2002, 6(5): 407~412.
    118. Polizeli M. L. T. M. , Rizzatti A. C. S. , Monti R., et al.. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 2005, 67: 577~591.
    119. Poon D.K., Webster P., Withers S.G., et al.. Characterizing the pH-dependent stability and catalytic mechanism of the family 11 xylanase from the alkalophilic Bacillus agaradhaerens. Carbohydr Res 2003, 338(5): 415~421.
    120. Prade R.. Xylanases: from biology to biotechnology. Biotechnology and Genetic Engineering Reviews 1995, 13(12): 101~131.
    121. Pronk J. K., Johnson D. B.. Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol J 1992, 10: 173~192.
    122. Puls J.. Chemistry and biochemistry of hemicelluloses—relationship between hemicellulose structure and enzymes required for hydrolysis. Macromol Symp 1997, 120: 183~196.
    123. Ramos L.P.. Steam pretreatment and enzymatic hydrolysis of Eucalyptus viminalis chips. Ph.D. Thesis, 1992,Ottawa-Carleton Biology Institute de Biology, University de Ottawa, Canada, 215.
    124. Regalado C. , Garcia-Almendarez B. E. , Venegas-Barrera L. M. , et al.. Production partial purification and properties of β-mannanases obtained by solid substrate fermentation of spent soluble coffee wastes and copra paste using Aspergillus oryzae and Aspergillus niger. J. Sci. Food Agric 2000, 80: 1343~1350.
    125. Romanos M. A. , Scorer C. A. , Clare J. J. . Foreign gene expression in yeast: a review. Yeast 1992,8: 423~488.
    126. Russell N. J. . Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 2000, 4 (2): 83.
    127. Sachslehner A. , Foidl G. , Foidl N. , et al.. Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. J Biotechnol 2000, 80(2): 127~134.
    128. Sakon J., Adney W.S., Himmel M. E., et al... Crystal Structure of Thermostable Family 5 Endocellulase E1 from Acidothermus cellulolyticus in Complex with Cellotetraose. Biochemistry 1996, 35:10648~10660.
    129. Saloheimo M. T. , Nakari-Seta¨la¨ M. , Tenkanen , et al.. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in Yeast. Eur. J. Biochem 1991, 249: 584~591.
    130. Sambrook J. , Fritsch E. F. , Maniatis T. . Molecular Cloning(M). New York: Cold Spring Harbor Laboratory Press 1992.
    131. Schleper C., Puhler G., Holz I., et al.. Picrophilusgen. nov., fam. nov.: a Novel Aerobic Heterotrophic, Thermoacidophili Genus and Family Comprising Archaea Capable of Growt around pH0. J Bacteriol 1995, 177: 7050~7059.
    132. Scigelova M. , Singh S. , Crout D. H. G. . Glycosidases a great synthetic tool. J. Mol. Catal. B: Enzyme 1999, 6: 483~494.
    133. Sears P. , Wong C.H. . Intervention of carbohydrate recognition by proteins and nucleic acids. Proc Natl Acad Sci USA 1996, 93: 12086–12093.
    134. Serour E. , Antranikian G. . Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophylus torridus and Picrophilus oshhimae. Antonie Van Leeuwenhoek 2002, 81: 73~83.
    135. Setati M. E. , Ademark P. , Vanzyl W.H. , et al.. Expression of the Aspergillus aculeatus endo-β-1,4-mannanase encoding gene (man1) in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Protein Express Purif 2001, 21: 105~114.
    136. Shibuya I. , Tsuchiya K. , Tamura G. , et al.. Overproduction of an alpha-amylase/glucoamylase fusion protein in Aspergillus oryzae using a high expression vector. Biosci Biotechnol Biochem 1992, 56(10): 1674-1675.
    137. Sielecki A. R., edorov A. A. , dhoo A., et al... Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8A° resolution. J. Mol. Biol.1990, 214: 143~170.
    138. Stalbrand H. , Saloheimo A. , Vehmaanpera J. , et al... Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei β-mannanase gene containing a cellulose binding domain. J Appl Environ Microbiol 1995, 61(3): 1090~1097.
    139. St?lbrand H. , Saloheimo A. , Vehmaanper? J. , et al... Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta-mannanase gene containing a cellulose binding domain. Appl Environ Microbiol 1995, 61(3): 1090~1097.
    140. Stalbrand H. , Siika-Aho M. , Tenkanen M. , et al.. Purification and characterisation of two β-mannanases from Trichoderma reesei. J. Biotechnol 1993, 29: 229~242 .
    141. Sternberg D. . β-Glucosidase of Tricoderma: its biosynthesis and role in saccharification of cellulose. Appl Environ Microbiol 1976, 31: 648~654.
    142. Tanaka H., Okuno T. , Moriyama S. . Acidophilic xylanase from Aureobasidium pullulans: efficient expression and secretion in Pichia pastoris and mutational analysis. J Biosci Bioeng 2004, 98(5):338~343.
    143. Uchino F.. A thermophilic and unusually acidophilic amylase produced by a thermophilic acidophilic Bacillus sp.. Agric Biol.Chem 1982, 13: 291~297.
    144. Unsworth L.D. , van der Oost J. , Koutsopoulos S. . Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications. FEBS J 2007, 274(16): 4044~4056.
    145. Uzcategui E. , Ruiz A. , Montesino R. , et al... The 1,4-beta-D-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. J Biotechnol 1991, 9(2-3): 271~285.
    146. Van den Burg B. , Vriend G. , Veltman O.R. , et al.. Engineering an enzyme to resist to boiling. Proc Natl Acad Sci USA 1998, 95: 2056~2060 .
    147. Van Rensburg P. , van Zyl W. H. , Pretorius. I. S. . Engineering yeast for efficient cellulose degradation. Yeast 1998, 14: 67~76.
    148. Van Wyk J.P.H.. Hydrolysis of pretreated paper materials by different concentrations of cellulase from Penicillium funiculosum. Bioresour. Technol 1999, 69: 269~273.
    149. Varki A. . Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 2: 97–130 .
    150. Walsh D.J., Gibbs M.D., Berquist P. L.. Expression and secretion of a xylanase from the extreme thermophile, thermotoga stain FJSS3B.1, in Kluveromyces lactis. Extremophiles 1998, 2: 9~14.
    151. Withers S.G. Mechanisms of glycosyl transferases and hydrolases. Carbohydrate Polymers. 2001, 44: 325~337.
    152. Yoshioka H., Nagato N., Chavanich S., et al.. Purification and properties of thermostable xylanase from Talaromyces byssochlamydoides YH-50. Agricultural and Biological Chemistry 1981,45 : 2425~ 2432.
    153. Zettler L. A. A. , Gómez F. , Zettler E. , et al.. Eukaryotic diversity in Spain’s River of Fire. Nature 2002, 417: 137.
    154. Zurbriggen B. D., Bailey M. J., Penttila M. E., et al.. Pilot scale production of a heterologous Trichoderma reesei cellulose by Saccharomyces cerevisiae. J. Biotechnol 1990, 13: 267~278.
    155. Zurbriggen B. D., Penttila M. E.. , Viikari L. et al... Pilot scale production of a Trichoderma reesei endo-glucanase by brewer’s yeast. J. Biotechnol 1991, 17: 133~146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700