一株嗜酸真菌的分离鉴定及其两种苷酶的酶学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜酸微生物是极端环境微生物的重要类群,在酸性环境中发挥着重要的生态作用,对人们的生活生产具有潜在的生物技术价值。
     本研究从新疆某矿区铀矿酸性废水分离出一株真菌。依据ITS序列并结合形态特征分析,该菌株初步鉴定为Penidiella sp.,暂命名为Penidiella sp.HEY-1。该菌株的最适生长pH值为3.0~4.0,在pH值2.0也能较好生长,具有嗜酸性。以麸皮和豆渣为基质进行发酵产酶研究,该菌株能分泌产生木聚糖酶、淀粉酶、果胶酶、α-半乳糖苷酶、β-半乳糖苷酶以及β-葡萄糖苷酶等糖苷水解酶。是一株具有应用潜力的工业用酶产生菌。
     初步建立了能诱导菌株Penidiella sp.HEY-1同时产生上述六种酶的发酵方法。通过优化培养基中麸皮和豆渣的组成比例、培养的pH值和温度,建立了4种培养方法。方法1:只添加麸皮,pH值2.0,培养温度20℃,高产木聚糖酶。方法2:麸皮与豆渣比例为1:1,pH值2.5,培养温度25℃,高产淀粉酶、果胶酶。方法3:麸皮与豆渣比例为1:1,pH值4.0,培养温度30℃,高产α-半乳糖苷酶。方法4:只添加豆渣,pH值3.0,培养温度30℃,高产β-半乳糖苷酶和β-葡萄糖苷酶。
     采用乙醇沉淀、DEAE-Sepharose Fast Flow离子交换层析与Sephadex G-100凝胶过滤层析等步骤后获得了凝胶电泳均一的α-半乳糖苷酶和β-葡萄糖苷酶,它们的相对分子质量分别为52.5 kDa、65.5 kDa,比活分别为15.83 U/mmg和3.30U/mg、纯化倍数分别为15.05和4.52、回收率分别为14.6%和2.2%。
     α-半乳糖苷酶反应的最适温度为60℃,最适pH值为3.0,在60℃以下及pH值2.0~6.0范围内能保持稳定。Ba2+、Fe2+、Mg2+、Zn2+、Ca2+、Cu2+和K+对酶活有明显的激活作用,Mn2+和Fe3+对酶活性有极强的抑制作用,Hg+和Na+几乎完全抑制了酶活性。该酶可作用对-硝基苯-α-D-半乳糖苷(pNPGal)、棉籽糖和水苏糖,该酶作用于pNPGal的米氏常数(Km)值为0.768 mmol/L,酶促反应的最大速度(Vmax)为1.55×10-3mol/(L·min)。
     β-葡萄糖苷酶反应的最适温度为60~70℃,最适pH值为3.0,在70℃以下及pH值2.0~8.0范围内均能保持稳定。Mn2+对酶有激活作用,K+、Fe3+微弱的激活作用,而Na+对酶有明显的抑制作用,其他金属离子对酶的活性影响不大。该酶作用于对硝基苯-β-D-葡萄糖苷(pNPGlu)、邻硝基苯-p-D-半乳糖苷(oNPG)的米氏常数(Km)值分别为0.434 mmol/L和0.411mmol/L,酶促反应的最大速度(Vmax)分别为1.0×1O-3和3.3×10-4mol/(L·min)。
     研究表明α-半乳糖苷酶和β-葡萄糖苷酶均具有嗜酸性,可以应用于饲料、食品和医学等领域。
Acidophile playing important ecological roles in acid environment is an important member of the extremophilic family, which has potential biotechnology value in people's life and production.
     The strain HEY-1 isolated from the acidic waste water of some Uranium Mine in Xinjiang, China, was identified as(Penidiella sp.) according to its mycelia morphology and ITS sequence analysis, and was designated as Penidiella sp. HEY-1. The strain HEY-1 was able to grow at pH value 2.0, with the optimal growth at pH value 3.0~4.0. Wheat bran and soybean dregs were used as mediums to study the fermentation conditions for the strain HEY-1, experiments showed that the strain HEY-1 can secrete xylanase, amylase, pectinase, a-galactosidase, P-galactosidase andβ-glucosidase. being an application to potential enzyme producer.
     A fermentation system was initially established to induce HEY-1 to secrete the six enzymes of the above mentioned. By optimizing the proportion of wheat bran and soybean dregs in the medium, pH value and temperature, four methods were formulated to induce different enzymes. The first method for high-yield of xylanase: only wheat bran, while pH value 2.0 and 20℃. The second method for high-yield of amylase and pectinase:the proportion of wheat bran and soybean dregs was 1:1, while pH value 2.5 and 25℃. The third method for high-yield of a-galactosidase:the proportion of wheat bran and soybean dregs was 1:1, while pH value 4.0 and 30℃. And the fourth method for high-yield ofβ-galactosidase andβ-glucosidase:only soybean dregs, pH value 3.0 and 30℃.
     The purification of a-galactosidase and P-glucosidase from Penidiella sp.HEY-1 in fermentation medium, that has been studied to use ethanol precipitation, DEAE-Sepharose Fast Flow chromatography, followed by Sephadex G-100 chromatography. By running SDS-PAGE, their molecular weights were determined to be 52.5 kDa forα-galactosidase while 65.5 kDa forβ-glucosidase, their specific activities were 15.83 U/mg and 3.30 U/mg respectively, and the purification multiples were 15.05 and 4.52, their recovery rate were 14.6% and 2.2% respectively.
     The a-galactosidase characteristics research showed that its optimum pH value and temperature was 3.0 and 60℃respectively. It was stable in the pH value range of 4.0~6.0 and up to 60℃. And it was also clearly found that the enzyme can be significantly stimulated by Ba2+N、Fe2+、Mg2+、Zn2+、Ca2+、Cu2+ and K+, especially significantly inhibited by Mn2+ and Fe1+. But it is likely that Hg+ and Fe1+ inhibit the enzyme activity completely. The results showed that the enzyme can hydrolyze small galacto-oligosaccharides such as p-Nitrophenyl-a-D-Galactopyranoside (pNPGal). raffinose and stachyose. And the Km and Kmax were 0.768 mmol/L,1.55x10-3 mol/L·min when pNPGal as substrate.
     The (3-glucosidase characteristics research indicated that its optimum pH value and temperature was 3.0 and 60~70℃respectively. It was stable in the pH value range of 2.0~8.0 and up to 70℃. It was also found that theβ-glucosidase can be stimulated by Mn2+, little activated by K+ or Fe3+ and inhibited by Na+ obviously. But other metal ions had little effects on the activity of P-glucosidase. The results showed that the enzyme effects directly on (3-glucosidic compounds such as p-Nitrophenyl-β-D-glucopyranoside (pNPGlu) and o-Nitrophenyl-β-D-Galactopyranoside (oNPG). And the Km was 0.434 mmol/L and 1.0×10-3 mol/L·min respectively, when pNPGlu was as substrate. The parameters Vmax were 0.411 mmol/L and 3.3×10-4mol/L·min respectively, when oNPG was as substrate.
     The research showed that two enzymes are all acidophilic, can be used in feed、food and medicine industrial applications.
引文
[1]张敏,东秀珠.973项目“极端微生物及其功能利用的基础研究”研究进展[J].微生物学报,2006,46(2):336.
    [2]Edwards C, Microbiology of extreme Environments [J]. New York:McGraw-Hill publishing company,1990,33-54.
    [3]沈萍,陈向东.微生物学(第2版)[M].北京:高等教育出版社,2006.
    [4]Zettler L A A, Gomez F, Zettler E, et al. Eukaryotic diversity in Spain's River of Fire [J]. Nature,2002,417:137.
    [5]Gyure R A, Konopka A, Brooks A, et al. Algal and bacterial activities in acidic (pH3) strip mine lakes. Appl.Environ [J]. Microbiol,1987,53:2069-2076.
    [6]Pronk J K, Johnson D B. Oxidation and reduction of iron by acidophilic bacteria [J]. Geomicrobiol,1992,10:173-192.
    [7]Edwards K J, Bond P L, Gihring T M, et al. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage [J]. Science,2000,287:1796-1799.
    [8]Schleper C, Puhler G, Holz I, et al. Picrophilusgen. nov., fam. nov.:a Novel Aerobic Heterotrophic, Thermoacidophili Genus and Family Comprising Archaea Capable of Growt aroundpHO [J]. Bacteriol,1995,177:7050-7059.
    [9]Umita T. Biological mine drainage treatment [J]. Resources,Conservation and Recycling, 1996,16:179-188.
    [10]Fourniera D, Lemieuxb R, Denis C. Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process [J]. Environ Pollut,1998,101:303-309.
    [11]罗会颖.极端嗜酸真菌Bispora sp.MEY-1胞外糖苷水解酶类的产酶分析及其相关基因的克隆与表达[D].中国农业科学院,2008.
    [12]王慧.来源于嗜酸真菌Bispora sp.MEY-1的α-半乳糖苷酶和β-半乳糖苷酶的研究[D].中国农业科学院,2010.
    [13]赵林果,游丽金,孟鹏,等.黑曲霉胞外耐高糖p-葡萄糖苷酶的分离纯化及部分特性研究[J].林产化学与工业,2007,27(6):41-46.
    [14]密士军,柏映国,孟昆,等.一种来源于青霉的新的α-半乳糖苷酶的分离纯化及其酶学性质[J].2007,47(1):156-160.
    [15]Kang H C, Lee S H. Characteristics of an a-galactosidase associated with grape flesh [J]. Phytochemistry,2001,58(2):213-219.
    [16]Gitzelmann R, Auricchio S. The handling of soy alpha-galactosidase by a normal and galactosemic child [J]. Pediatrics,1965,36:231-235.
    [17]吴劲松,冯万祥.α-半乳糖苷酶[J].生命的化学,2002.20:84-86.
    [18]李孝辉,陈声明.微生物源α[-半乳糖苷酶的研究进展[J].微生物学通报,2002,29:71-74.
    [19]曹雅男.微生物来源α-半乳糖苷酶基因的克隆与性质研究[D].中国农业科学院,2008.
    [20]Keller F, Pharr D M. Metabolism of carbohydrates in sink and sources:galactosyl-sucrose oligosaccharides. In E Zamski, AA Schaffer, eds, Photoassimilate Distribution in Plants and Crops [J]. Marcel Dekker, NewYork,1996, pp157-183.
    [21]徐晓锋.黄瓜α-半乳糖苷酶基因克隆及表达分析[D].扬州大学,2006.
    [22]Liljestrom P L, Liljestrom P. Nucleotide sequence of the melA gene,coding of alpha-galactosidases in Escherichia coli K-12 [J]. Nucleic Acids Res,1987,15(5):2213-2220
    [23]Dey P M, Pridham J B. Biochemistry of a-galactosidases [J]. Advances in Enzymology and Related Areas of Molecular Biology,1972,36:91-130.
    [24]Dey P M, Campillo E D. Biochemistry of the multiple forms of glycosidases in plants [J]. Advances in Enzymology and Related Areas of Molecular Biology,1984,56:141-249.
    [25]Ademark P, Larsson M, Tjenreld F, et al. Mutiple α- galactosidase from Aspergillus niger purification, characterization and substrate specifities [J]. Enzyme Microbial technology, 2001,29:1-8.
    [26]Luonteri E, Alatalo E, Siika-allo M, et al. alpha-galactosidase of Penicillium simplicissimum: Production, purification and characterization of the gene encoding AGLI [J]. Biotechnol APPI Biochem,1998,28:179-188.
    [27]Shibuya H, Kobayashi H, Sato T, et al. Purifiction, characterization and cDNA cloning of a novel a-galaetosidase from Monierella vinaeea[J]. Biosci Biotech Biochem,1997,61(4): 592-598.
    [28]Baik S H, Saito K, Yokota A, et al. Molecular Cloning and High-Level Expression in Escherichia coli of Fungal a-Galactosidase from Abisidia Corymbifera IFO8084 [J]. Biosci Bioeng,2000,90:168-173.
    [29]Ruben Cruz, Somiari, Esteher Bologh [J]. Enyzme Micro Technol,1995,17:311-316.
    [30]Shibuya H, Kobayashi H, Yoshida S, et al. Purification and Characterization of Recombinant Mortierella vinacea a-Galactosidase I andⅡ Expressed in Saccharomyces cerevisiae [J]. Biosci Biotech Biochem,1999,63(6):1096-1099.
    [31]密士军.来源于青霉F63的a-半乳糖昔酶的纯化,基因克隆表达与性质研究[D].中国农业科学院,2006.
    [32]Talbot G, Sygusch J. Purification and characterization of therm ostable β-mannanase and a-galactosidase from Bacillus stearotherm ophilus [J]. Appl Environ Microbiol,1990,56: 3505-3510.
    [33]Shibuya H, Kobayashi H, Park G G, et al. Purification and some properties of a-galactosidase from Penicillium pur-purogenum [J]. Biosci Biotechnol Biochem,1995,59:2333-2335.
    [34]King M R, White B A, Blaschek H P, et al. Purification and characterization of a thermostable a-galactosidase from Therm oanaerobacterium polysaccharolyticum [J]. Agric Food Chem, 2002,50:5676-5682.
    [35]Del Compillo E, Shannon L M, Hankins, C N. Molecular properties of the enzymic phytohemagglutinin of mung bean [J]. The Journal of Bacteriology,1981,256:7177-7180.
    [36]Balasubramaniam K, Mathew C D. Purification of alpha-galactosidase from coconut [J]. Phytochemistry,1986,25:1819-1821.
    [37]Sugimoto H and Van Buren JP. Removal of oligosaccharides from soy milk by an enzyme from Aspergillus saitoi [J]. Food Sci,1970,35:655-657.
    [38]Thaaanunkul D, Tanaka M, Chichester CO, et al. Degradation of raffionse and stachyose in soybean milk by a-Galactosidase from Mortierella vinacea. Entrapment of a-Galactosidase withpolyacrylamide gel [J]. Food Sci,1976,41:173-175.
    [39]Cruz R, Batistela J C, Wosiacki G. Microbial a-Galactosidase for soybean processing [J]. Journal of Food Science,1981,46:1196-1200.
    [40]张树政主编.酶制剂工业[M].北京:科学出版社,1984.
    [41]杨冠东,刘芳,李荷.α-半乳糖苷酶的研究进展概况[J].现代食品科技,22(3):275-276.
    [42]Desnick R J, loannou Y A, Eng C M. α-Galactosidase A deficiency:Fabry disease. In:Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease [J].8. New York:McGraw-Hill,2001, p.3733-3774.
    [43]Bulpin P V, Gidley M J, Jeffcoat R, et al. Development of a biotechnological process for the modification of galactomannan polymers with plant a-galactosidase [J]. Carbohydrate Polymers,1990,12:155-168.
    [44]Critchley P. Commercial aspects of biocatalysis in low-water systems. In:Laane C, Tramper J and Lilly M D(Eds.). Biocatalysis in Organic Media. Amsterdam [J]. Elsevier Science Publishers B V,1987,173-183.
    [45]Nielsen R I, Schulein M Pat. Polypeptide product. EP 0 192 401 B1.1993.
    [46]McCleary B V, Critchley P, Bulpin P V. Processing of polysaccharides. Pat.Appl. EP 0 121 960 A2.1984.
    [47]Kilabata S, Hara K, Fujita K, et al. Synthesis of 6-O-a-D-Galactosyla-Cyclodextrin by Coffee Bean a-Galactosidase [J]. Biosci Biotechnol Biochem,1992,56:1518-1519.
    [48]岑沛霖.工业微生物[M].北京:化学工业出版社,2000:295-296.
    [49]Cochet N. Cellulase of Trichoderma reesei:influence of culture conditions upon enzymatic profile [J]. Enzyme Micro technol,1991,13(2):104-109.
    [50]Wen Z, Liao W, Chen S. Production of cellulose/β-glucosidase by the mixed fungi culture and on dairy manure [J]. Process Biochemistry,2005,40(9):3087-3094.
    [51]Hsieh M C, Graham T L. Partial purification and characterization of a soybean β-glucosidase with high specific activity towords isoflavone conjugates [J]. Phytochemistry,2001,58: 995-1005.
    [52]吴东儒.糖类的生物化学[M].北京:高等教育出版社,1987.
    [53]宛晓春.水果风味及风味酶的研究[D].无锡:无锡轻工大学,1992.
    [54]李远华.p-葡萄搪苷酶的研究进展[J].安徽农业大学学报2002,29(4):421-425.
    [55]韩笑,陈介南,王义强,等.葡萄糖营酶基因的克隆与表达研究进展[J].生物技术通报,2008,3:8-12.
    [56]Paavilainen S, Hillman J, Korpela T. Purification, characterization, gene cloning, and sequencing of a new beta-glucosidase from Bacillus circulans subsp. alkalophilus [J]. Appl Environ Microbiol,1993,59:927-932.
    [57]Gonzalez candelas L, Ramon D, Polainal J. Sequenees and homology analysis of two genes encoding β-glucosidase from Bacillus polimyxa [J]. Gene,1990,95:31-38.
    [58]Bauer M W, Bylina E J, Swanson R V, et al. Comparsion of a beta-glucosidase and a beta-Mannosidase from the Hyperthermophilic Archaeon Pyrococcus furiosus. Purification, characterization,gene cloning and sequence analysis [J]. The Journal of Biological Chemistry, 1996,271(39):23749-23755.
    [59]Kempton J B, Withers S G. Mechanism of Agrobacterium (3-glucosidase:Kinetic studies [J]. Biochemistry,1992,31:9961-9969.
    [60]孙迎庆,曹淑桂,韩四平.葡萄糖苷酶分离纯化性质研究[J].生物学杂志,1997,14(5):12-15.
    [61]杜娟,庄蕾,季明杰,等.棘孢曲霉SM-L22 a-葡萄糖苷酶的纯化与性质[J].菌物系统,21(2):239-245.
    [62]陈红漫,赵璐.芽孢杆菌p-葡萄糖苷酶的分离纯化及特性研究[J].河北农业大学学报,2009,32(3):39-42.
    [63]孟宪文,宋小红,陈历俊,等.p-葡萄糖苷酶的研究进展[J].中国乳业,2009,10:42-44.
    [64]王剑锋,陈今朝,梁华正,等.黑曲霉水解京尼平苷β-葡萄糖苷酶的分离纯化及其酶学性质[J].菌物学报,2010,29(5):683-690.
    [65]Kengen S W, Luesink E J, Stams A J, et al. Purification and characterization of an Extremely thermostable beta-glucosidase from the hyper thermophilic archaeon pyrococcus furiosus [J]. European Jounal of Biochemistry,1993,213:305-312.
    [66]曾宇成,张树政.海枣曲霉p-葡萄糖苷酶的提纯与性质[J].微生物学报,1989,29(3):195-199.
    [67]许晶,张永忠,孙艳梅.p-葡萄糖苷酶的研究进展[J].食品研究与开发,2005,26(06):183-186.
    [68]Liyaw-kuen. [J]. chn.Chem.Soc.(Taipei),1998,269(26):17537-17541.
    [69]Himmel M E, Adney W S, Fox J W, et al. Isolation and characterization of two beta-Mannosidase from Aspergillus niger [J]. Appl Biochem Biotechnol,1993,39-40: 213-225.
    [70]Yi Q, Sarney D B, Khan J A, et al. A novel approach to biotransformations in aqueous-organic two-phase systems:Enzymatices synthesis of alkyl β-D-glucosides using microencapsulated β-D-glucosides [J]. Biotechnology and Bioengineering,1998,60(3): 385-390.
    [71]Saloheimo M, Panula J K, Ylosmaki E, et al. Enyzmatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLⅡ(CellA) [J]. Applied Enviornment Microbiology,2002,68(9):4546-4553.
    [72]Christakopoulos P, Macris B J, Kekos D. On the mechanism of direct conversion of cellulose to ethanol by Fusariumoxy sporum:effect of cellulose and beta-glucosidase [J]. APPI Microbiol Biotechnol,1990,33:18-20.
    [73]马莺.低聚糖生产与应用概况[J].粮油与食品科技,1999,2:19-21.
    [74]Delcroix A, Gunata Z, SaPis J C, et al. Glycosidase activities of three enological yeast strains during wine making:Effeet on the terpenol content of Muscat wine [J]. American Joural ofEnology and Viticulture,1994,45:291-296.
    [75]顾卫民.p-葡萄糖苷酶的特性及其在食品工业中的应用[J].江苏食品与发酵,2003,(1):5-7.
    [76]徐茂军.p-葡萄糖苷酶对豆奶及豆奶粉中大豆异黄酮糖苷化合物的转化作用研究[J].中国食品学报,2005,5(4):328-331.
    [77]伍毅,王洪新.p-葡萄糖苷酶水解银杏黄酮糖苷的研究[J].安徽农业科学,2008,36(1):30-32.
    [78]Verdoucq L, Moriniere J, Bevan D R, Esen A, et al. Structural determinants of substrate specificity in family 1 beta-glucosidases:novel insights from the crystal structure of sorghum dhurrinase-1, a plant beta-glucosidase with strict specificity, in complex with its natural substrate. [J]. Biol Chem,2004,279(30):31796-31803.
    [79]邵金辉,韩金祥,朱有名,等.β-葡萄糖苷酶在工农医领域的应用[J].生命的化学,2005,25(01):22-24.
    [80]T R Yan, J C Liau. Synthesis of alkyl β-glucosides from cellobiose with Aspergillus niger (3-glucosidase Ⅱ [J]. Biotechaology Letters,1998,20(7):653-657.
    [81]袁晓华.β-葡萄糖苷酶产生菌的筛选、培养条件优化及p-葡萄糖营酶应用研究[D].山东大学,2009.
    [82]Kelly D P, wood A P. International Journal of Systematic and Evolutionary Microbiology [J]. 2000,50:511-516.
    [83]Johnson D B, Hallberg K B. Acid mine drainage remediation options [J]:a review Science of the Total Environment.2005,338:3-14.
    [84]Johnson D B, Okibe N, hallberg K B. Journal of Microbiological Methods [J].2005,60:299-313.
    [85]孙立夫,张艳华,裴克全.一种高效提取真菌总DNA的方法[J].菌物学报,2009,2:299-302.
    [86]张丽英.大豆寡糖对断奶仔猪抗营养作用及机理的研究[D].中国农业大学,2000.
    [87]李建武,袁明秀.生物化学实验原理和方法[M].北京:北京大学出版社,2000:89-130.
    [88]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,2001,161-191.
    [89]刘彩琴,何国庆.臭曲霉ZU-G1-半乳糖苷酶的分离纯化及酶学性质[J].中国食品学报,2009,9(4):70-75.
    [90]严白正,朱静.分枝犁头霉α-半乳糖苷酶的纯化和性质[J].微生物学报,1989,29(4):265-271.
    [91]谢宇尚,晓娴,胡金刚.β-葡萄糖苷酶的纯化及酶学性质研究[J].江西农业大学学报,2008,30(3):521-524.
    [92]刘敏,欧阳嘉,勇强,等.黑曲霉液体发酵制备β-葡萄糖苷酶的研究[J].生物质化学工程,2008,42(5):5-8.
    [93]Souza FHM, Nascimento C V, Rosa J C, et al. Purification and biochemical characterization of a mycelial glucose-and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens [J]. Process Biochemistry,2010,45(2):272-278.
    [94]Joo A R, Marimuthu J, Lee K M, et al. Production and characterization of (3-1,4-glucosidase from a strain of Penicillium pinophilum [J]. Process Biochemistry,2010,45(6):851-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700