来源于嗜酸真菌Bispora sp. MEY-1三种糖苷水解酶的基因克隆、表达与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜酸真菌Bispora sp. MEY-1分离自江西金属矿废水,具有极端嗜酸性,最适生长的pH为2.5-3.0,可分泌产生多种重要的工业用酶,包括β-葡聚糖酶、木聚糖酶、果胶酶、β-甘露聚糖酶、α-半乳糖苷酶、β-半乳糖苷酶、淀粉酶、CMCase以及β-葡萄糖苷酶等九种糖苷水解酶,是一株优良的工业产酶菌。
     本文从嗜酸真菌Bispora sp. MEY-1分离克隆到3个糖苷水解酶基因,即β-1,3-1,4-葡聚糖酶bgl7A、木聚糖酶xylD和多聚半乳糖醛酸酶pga1。对三个基因进行了序列分析,并进行了三维结构的预测。它们的氨基酸序列同已知序列一致性在50–68%之间,具有较高的新颖性。将这三个基因在毕赤酵母中进行表达,并对重组酶进行了纯化和性质测定。
     β-1,3-1,4-葡聚糖酶BGL7A与来源于Aspergillus terreus的假定第七家族内切葡聚糖酶EG-1氨基酸序列具有最高一致性(59.5%)。BGL7A的最适pH值有三个峰值分别是pH 1.5、3.5和5.0,其中pH 5.0为最高值,最适温度为60°C,在pH 1.0–8.0之间和60°C分别处理60 min酶的稳定性良好。以大麦葡聚糖为底物测得Km和Vmax分别是9.16 mg/ml和6,737μmol/min/mg。以大麦葡聚糖和地衣多糖为底物分析BGL7A的比活分别为4,040和2,740 U/mg,高于CMC-Na的比活395 U/mg,这一点不同于其他已报道的第七家族内切葡聚糖酶。
     木聚糖酶XYLD与来源于Talaromyces stipitatus的假定内切-1,6-β-D-葡聚糖酶氨基酸序列具有最高一致性(49.9%),与来源于Leptosphaeria maculans的假定木聚糖酶的序列一致性为38.8%,但经性质研究发现其只具有木聚糖酶活性,不具有葡聚糖酶活性,经分析确定其为第30家族的木聚糖酶。最适pH值为3.0,最适温度为60°C,pH 1.0–6.0之间和温度60°C下分别处理60 min稳定性良好。XYLD以山毛榉木聚糖、桦木木聚糖、4-O-甲基-D-葡糖醛酸木聚糖和燕麦木聚糖为底物的比活分别是2,463、2,144、2,020和1,429 U/mg。以山毛榉木聚糖为底物分析表观Km和Vmax分别是5.6 mg/ml和3,622μmol/min/mg。
     多聚半乳糖醛酸酶PGA1与来源于Colletotrichum lupini的内切多聚半乳糖醛酸酶氨基酸序列具有最高一致性(67.2%)。最适pH和最适温度分别为3.5和55°C。在pH 2.0–7.0之间和60°C下稳定性良好。PGA1以多聚半乳糖醛酸和果胶为底物的比活分别为1,520和725 U/mg。以多聚半乳糖醛酸为底物分析表观Km和Vmax分别为1.25 mg/ml和2,526μmol/min/mg。用10 U/mL的PGA1处理苹果汁,可使苹果汁的粘度降低7.7%,而透光率增加84%。结果表明,酸性条件下PGA1具有良好工业应用潜力。
     本实验中克隆到的三个酶都是嗜酸酶,在饲料、食品等领域有广阔的应用前景。
Bispora sp. MEY-1 is an acidophilic fungal strain isolated from the acidic wastewater of Uranium Mine in Jiangxi, China. Strain MEY-1 shows optimal growth at pH 2.5–3.0 and can secrete several important industrial enzymes, such asβ-glucanase, xylanase, pectinase,β-mannanase, amylase, CMCase,α-galactosidase,β-galactosidase,β-glucosidase and so on.
     Based on sequence analysis, three glycoside hydrolase genes encoding an endo-β-1,3-1,4-glucanase (bgl7A), a xylanase (xylD) and an endo-polygalacturonase (pga1), were cloned from strain MEY-1 and expressed in Pichia pastoris GS115. The deduced protein sequences showed 50–68% identities to the known proteins, suggesting their novelty. All the proteins were subjected to tertiary structure prediction and catalytic sites were identified, respectively.
     bgl7A showed the highest amino acid sequence identity of 59.5% to a putative family 7 endoglucanase EG-1 from Aspergillus terreus. Purified BGL7A had three activity peaks at pH 1.5, 3.5, and 5.0 (maximum), respectively, and a temperature optimum at 60°C. The enzyme showed good pH stability at pH 1.0–8.0 and thermostability at 60°C. The Km and Vmax values for barleyβ-glucan were 9.16 mg/ml and 6,737μmol/min/mg, respectively. The specific activities of BGL7A towards barleyβ-glucan and lichenan (4,040 and 2,740 U/mg) were higher than that of carboxymethyl cellulose sodium (CMC-Na; 395 U/mg), which was different from other family 7 endo-β-glucanases.
     The xylanase gene xylD shared the highest amino acid sequence identity of 49.9% to a putative endo-1,6-β-D-glucanase from Talaromyces stipitatu. Purified recombinant XYLD was more homologous to members of GH 30 based on phylogenetic analysis. The maximal activity of XYLD occurred at pH 3.0 and 60°C. The pH stability and thermostability were good at pH 1.0–6.0 and 60°C, respectively. The specific activity of XYLD towards beechwood xylan, birchwood xylan, 4-O-methyl-D-glucuronoxylan, and oat spelt xylan was 2,463, 2,144, 2,020 and 1,429 U/mg, respectively. The apparent Km and Vmax values for beechwood xylan were 5.6 mg/ml and 3,622μmol/min/mg, respectively.
     The deduced catalytic domain sequence of PGA1 was 67.2% identical with the polygalacturonase from Colletotrichum Lupini. The optimum pH and temperature were pH 3.5 and 55°C, respectively. The enzyme showed good pH stability at pH 2.0–7.0 and thermostability at 55°C. The specific activity of PGA1 towards polygalacturonic acid and pectin was 1,520 and 725 U/mg. The apparent Km and Vmax values for polygalacturonic acid were 1.25 mg/ml and 2,526μmol/min/mg, respectively. The capacity of PGA1 to reduce the viscosity of apple juice was also determined. The intrinsic viscosity reduction was equal to 7.7% of the initial viscosity value, and the light transmittance was increased more than 84% after treatment with 10 U/ml PGA1.
     These three enzymes are all acidophilic, having a broad prospects for feed and food industrial applications.
引文
1.谷嵩,刘翌辉.纤维素酶的研究进展,安徽农业科学, 2007, 35(25):7736-7737, 7747.
    2.何永志,姚斌,王亚茹等.来源于Strepomyces olivaceoviridis A1的高比活木聚糖酶的高效表达及其酶学性质的研究.微生物学报, 2004, 44(3):340–344.
    3.李岩,蒋继志,梁宁.一种快速提取丝状真菌染色体DNA的方法.生物学杂志, 2006, 23(6):49,52–53
    4.罗会颖.极端嗜酸真菌Bispora sp. MEY-1胞外糖苷水解酶类的产酶分析及其相关基因的克隆与表达.中国农业科学院; 2008.
    5.罗丽娟,施季森.一种DNA侧翼序列分离技术—TAIL-PCR.南京林业大学学报, 2003, 27(4): 87–90.
    6.王建平,陈小娥. CMCase的研究概况.浙江水产学院院报, 1996, 15(2):140–144.
    7.张洪勋,郝春博,白志辉.嗜酸菌研究进展.微生物学杂志, 2006, 26(2):68–72.
    8. Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F.. Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991. 252:1651–1656.
    9. Ahmed S, Riaz S, Jamil A. Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol. 2009, 84:19–35.
    10. Alkorta, I.; Garbisu, C.; Llama, M.J.; Serra, J.L. Industrial applications of pectic enzymes. Process. Biochem. 1998, 33, 21?28.
    11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990, 215:403–410.
    12. Altschul SF, Lipman DJ. Protein database searches for multiple alignments. Proc Natl Acad Sci. 1990, 87:5509–5513.
    13. Altschul SF, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25:3389–3402.
    14. Amadioha, A.C. Effect of cultural conditions on the growth and amylolytic enzyme production by Rhizopus oryzae. Acta Phytopathologica et Entomologica Hungarica. 1998, 33(1/2):115–121.
    15. Atkinson, R.G. A cDNA clone for endopolygalacturonase from apple. Plant. Physiol. 1994, 105, 1437–1438.
    16. Beg QK, Kapoor M, Mahajan L, Hoondal GS. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001, 56:326–338.
    17. Beli?n T, Joye IJ, Delcour JA, Courtin CM. Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability. Protein Eng Des Sel. 2009, 22:587–596.
    18. Benen, J.A.E.; Kester, H.C.M.; Visser, J. Kinetic characterization of Aspergillus niger N400endopolygalacturonases I, II, and C. Eur. J. Biochem. 1999, 259, 577–585.
    19. Biely P. Microbial xylanolytic systems. Trends Biotechnol. 1985, 3:286–290.
    20. Biely P, Vrsanska M, Tenkanen M, Kluepfel D. Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol. 1997, 57:151–166.
    21. Boyce A, Walsh G. Production, purification and application-relevant characterization of an endo-1,3(4)-β-glucanase from Rhizomucor miehei. Appl Microbiol Biotechnol. 2007, 76:835–841
    22. Brook T D, Madigan M T, Martinko J M et al.,Biology of Microorganisms, seventh edition, New Jersey 07632: Prentice Hall, Englewood cliffs, 1994.
    23. Buliga GS, Brant DA, Fincher GB. The sequence statistics and solution conformation of a barley (1,3-1,4)-β-D-glucan. Carbohydr Res. 1986), 157:139–156.
    24. Cecília R C, Calado M, ?ngela Taipa, et al., Optimisation of conditions and characterization of cutinase produced by recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology. 2002, 31:161–170.
    25. Chàvez R, Bull P, Eyzaguirre J. The xylanolytic enzyme system from the genus Penicillium. J Biotechnol. 2006, 23:413–433.
    26. Cheremisinoff P N,Ferrante L M. Biotechnology current progess[M]. Lancaster:Technomic publishing Co Inc, 1991, 183-183.
    27. Claeyssens M, van Tilbeurgh H, Kamerling JP, Berg J, Vrsanska M, Biely P. Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM 9414. Biochem J. 1990,
    270:251–256.
    28. Collins T, Gerday C, Feller G. Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol Rev. 2005, 29:3–23.
    29. Contreras Esquivel, J.C.; Voget, C.E. Purification and partial characterization of an acidic polygalacturonase from Aspergillus kawachii. J. Biotechnol. 2004, 110, 21–28.
    30. de Lemos Esteves F, Ruelle V, Lamotte-Brasseur J, Quinting B, Frère JM. Acidophilic adaptation of family 11 endo-β-1,4-xylanases: Modeling and mutational analysis. Protein Sci. 2004, 13:1209–1218.
    31. Edwards K.J., Bond P.L., Gihring T.M., et al. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science. 2000, 287: 1796–1799.
    32. El-Shaieb, M.K.Z., Malibari, A.A. Enzymatic activities of soft rot causal organisms affecting vegetables and fruits in Saudi Arabia. Alexandria Journal of Agricultural Research. 1995, 40(3):293–304.
    33. Forgarty, W.M.; Kelly, C.T. Pectic enzymes. In Microbial Enzymes and Biotechnology. Fogarty, W.M., Ed., Applied Science Publishers, London, U.K. 1983; pp. 131–182.
    34. Fourniera D, Lemieuxb R,Denis C. Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process [J].Environ Pollut ,1998 ,101 :303–309.
    35. Fushinobu S, Ito K, Konno M, Wakagi T, Matsuzawa H. Crystallographic and mutational analysesof an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng. 1998, 11:1121–1128.
    36. Gainvors, A.; Nedjaoum, N.; Gognies, S.; Muzart, M.; Nedjma, M.; Belarbi, A. Purification and characterization of acidic endo-polygalacturonase encoded by the PGL1–1 gene from Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2002, 183, 131–135.
    37. Gognies, S.; Gainvors, A.; Aigle, M.; Belarbi, A. Cloning, sequence analysis and overexpression of a Saccharomyces cerevisiae endopolygalacturonase-encoding gene (PGL1). Yeast 1999, 15, 11–22.
    38. Golyshina O.V., Golyshin P.N., Timmis K.N., et al. The“pH optimum anomaly”of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 2006,8(3): 416–425.
    39. Henriksson G., Nutt A., Henriksson H., et al. Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase.Eur J Biochem 1999, 259(1-2):88–95.
    40. Hrmova M, Fincher GB. Plant enzyme structure. Explaining substrate specificity and the evolution of function. Plant Physiol. 2001, 125: 54–57.
    41. Huang Y.W., Krauss G., Cottaz S., Driguez H., Lipps G. A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem. J. 2005, 385, 581–588.
    42. Huber D.J., The role of cell wall hydrolases in fruit soft-ening, Horticultural Reviews. 1983, 5:169-219.
    43. Hurlbert JF, Preston III JF. Functional characterization of a novel xylanase from a corn strain of Erwinia chrysanthemi. J Bacteriol. 2001, 183:2093–2100.
    44. J?gensen H., M?keberg A., Krogh K.B.R., et al. Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb. Technol. 2005, 36: 42–48.
    45. Kang S.W. , Park Y.S. , Lee J.S. , et al.. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol. 2004, 91(2): 153–156.
    46. Kashyap D.R., Vohra P.K., Chopra S., Tewari R. Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 2001, 77:215–227.
    47. Kassim E.A.. Cellulase enzyme from Aspergillus niger. Microbiol Immunol. 1982, 26(6): 449–454.
    48. Keen NT, Boyd C, Henrissat B. Cloning and characterization of a xylanase gene from corn strains of Erwinia chrysanthemi. Mol Plant Microbe Interact. 1996, 9:651–657.
    49. Kitamoto N, Go M, Shibayama T, Kimura T, Kito Y, Ohmiya K, Tsukagoshi N. Molecular cloning, purification and characterization of two endo-1,4-β-glucanases from Aspergillus oryzae KBN616. Appl Microbiol Biotechnol. 1996, 46:538–544.
    50. Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stahlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA. The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes. J Mol Biol. 1997, 272:383–397.
    51. Kolattukudy P E, Purdy R E, Maiti I B. cutinases from fungi and pollen [J]. Methods inEnzymology, 1981, 71:652–664.
    52. K?ller W, Parker D M, Purification and Characterization of Cutinase from Venturia inaequalis Phytopathology.1989, 79:278–283.
    53. Lang, C.; D?nenburg, H. Perspectives in the biological function and the technological application of polygalacturonases. Appl. Microbiol. Biotechnol. 2000, 53, 366–375.
    54. Li R., Rimmer R., Buchwaldt L., Sharpe A.G., Ginette Séguin-Swartz G., Hegedus D.D. Interaction of Sclerotinia sclerotiorum with Brassica napus:cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet. Biol. 2004, 41, 754–765.
    55. Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 1995, 25:674–681.
    56. Luo H, Wang Y, Wang H, Yang J, Yang Y, Huang H, Yang P, Bai Y, Shi P, Fan Y, Yao B. A novel highly acidicβ-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol. 2009a, 82:453–461.
    57. Luo H, Wang Y, Li J, Wang H, Yang J, Yang Y, Huang HQ, Fan YL, Yao B. Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb Technol. 2009b, 45:126–133.
    58. Luo H, Li J, Yang J, Wang H, Yang Y, Huang H, Shi P, Yuan T, Fan Y, Yao B. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles. 2009c, 13:849–857.
    59. Mannesse M L M, Boots J W P, Dijkman R, et al. Phosphonate analogues of triacylglycerols are potent inhibitors of lipase. Biochimica et Biophysica Acta.1995, 1259:56–64.
    60. Markovi?, O.; Jana?ek, ?. Pectin degrading glycoside hydrolases of family 28: sequence-structural features specificities and evolution. Prot. Eng. 2001, 14, 615–631.
    61. Marra, M.A., Hillier, L., Waterston, R.H. Expressed sequence tags—EST ablishing bridges between genomes. Trends Genet. 1998, 14:4–7.
    62. Martel, M.B.; Letoublon, R.; Fevre, M. Purification of endo polygalacturonases from Sclerotinia sclerotiorum:multiplicity of the complex enzyme sstem. Curr. Microbiol. 1996, 33, 243–248.
    63. Massa, C.; Degrassi, G.; Devescovi, G.; Venturi, V.; Lamba, D. Isolation, heterologous expression and characterization of an endo-polygalacturonase produced by the phytopathogen Burkholderia cepacia. Protein Expr. Purif. 2007, 54, 300–308.
    64. McCarthy T, Hanniffy O, Savage A, Tuohy MG. Catalytic properties and mode of action of three endo-β-glucanases from Talaromyces emersonii on solubleβ-1,4-andβ-1,3,1,4-linked glucans. Int J Biol Macromol. 2003, 33:141–148.
    65. Mitreva-Dautova M, Roze E, Overmars H, de Graaff L, Schots A, Helder J, Goverse A, Bakker J, Smant G. A symbiont-independent endo-1,4-beta-xylanase from the plant-parasitic nematode Meloidogyne incognita. Mol Plant Microbe Interact. 2006, 19:521–529.
    66. Naidu, G.S.N.; Panda, T. Production of pectolytic enzymes–a review. Bioprocess Biosyst. Eng. 1998, 19:355–361.
    67. Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y. Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Appl Microbiol Biotechnol. 2008, 81:681–689.
    68. Nicholas KB, Nicholas Jr HB. GeneDoc: a tool for editing and annotating multiple sequence alignments. 1997. (Distributed by the author. http://www.psc.edu/biomed/genedoc)
    69. Niture, S.K. Comparitive biochemical and structural characterizations of fungal polygalacturonases. Biologia. 2008, 63, 1–19.
    70. Norris P. R., Johnson D. B.. Acidophilic microorganisms. In Extremophiles Microbial Life in Extreme Environments. New York, John Wiley. 1998, 133–154.
    71. Oh BC, Choi WC, Park S, Kim YO, Oh TK. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol. 2004, 63:362–372.
    72. Parton A, Bayne CJ, Barnes DW.Analysis and functional annotation of expressed sequence tags from in vitro cell lines of elasmobranchs: Spiny dogfish shark (Squalus acanthias) and little skate (Leucoraja erinacea).Comp Biochem Physiol Part D Genomics Proteomics. 2010 Apr 24.[Epub ahead of print]
    73. Planas A. Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering. Biochem Biophys Acta. 2000, 1543:361–382.
    74. Polizeli M. L. T. M. , Rizzatti A. C. S. , Monti R., et al.. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol. 2005, 67: 577–591.
    75. Promdonkoy P, Tang K, Sornlake W, Harnpicharnchai P, Kobayashi RS, Ruanglek V, Upathanpreecha T, Vesaratchavest M, Eurwilaichitr L, Tanapongpipat S. Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiol Lett. 2008, 290:18–24.
    76. Pronk J. K., Johnson D. B.. Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol J. 1992, 10: 173–192.
    77. Rarnana, V.V., Reddy, V.K., Reddy, S.M., et al. Production of cellulases, hemicellulases, pectinases, proteinases and lipases by Cephalosporium maydis isolated from Zea mays stalks. Scientific Publishers. 1997,187–192.
    78. Sakai T., Sakamoto T., Hallaert J., Vandamme E.J.. Pectin, pectinase and protopectinase: production, properties and applications. Adv. Appl. Microbiol. 1993, 39, 213–294.
    79. Schleper C., Puhler G., Holz I., et al.. Picrophilusgen. nov., fam. nov.: a Novel Aerobic Heterotrophic, Thermoacidophili Genus and Family Comprising Archaea Capable of Growt around pH0. J Bacteriol. 1995, 177: 7050–7059.
    80. Schou C, Rasmussen G, Kaltoft MB, Henrissat B, Schülein M. Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. Eur J Biochem. 1993,217:947–953.
    81. Serapion, J., Kucuktas, H., Feng, J., Liu, Z., Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus). Biotechnol. 2004, 6:364–377.
    82. Shimizu, T.; Miyairi, K.; Okuno, T. Determination of glycosylation sites disulfide bridges and the C-terminus of Stereum purpureum mature endopolygalacturonase I by electrospray ionization mass spectrometry. Eur. J. Biochem. 2000, 267, 2380–2389.
    83. Sieiro C., Sestelo A.B., Villa T.G. Cloning, characterization, and functional analysis of the EPG1-2 gene: a new allele coding for an endopolygalacturonase in Kluyveromyces marxianus. J. Agric. Food. Chem. 2009, 57, 8921–8926.
    84. S?rensen HR, Pedersen S, J?rgensen CT, Meyer AS. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant“minimal”enzyme cocktail containingβ-xylosidase and novel endo-1,4-β-xylanase andα-l-arabinofuranosidase activities. Biotechnol Prog. 2007, 23:100–107.
    85. Spagnuolo M, Crecchio C, Pizzigallo M D R, et al. Synergistic effects of cellulolytic and pectinolytic enzymes in degrading sugar beet pulp. Bioresource Technology. 1997, 60(3):215–222.
    86. St John FJ, Rice JD, Preston JF. Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J Bacteriol. 2006, 188:8617–8626.
    87. St?lbrand H., Saloheimo A., Vehmaanper? J., Henrissat B., Penttila, M. Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reeseiβ-mannanase gene containing a cellulose binding domain. Appl. Environ. Microbiol. 1995, 61, 1090–1097.
    88. Suzuki T, Ibata K, Hatsu M, Takamizawa K, Kawai K, Cloning and expression of a 58-kDa xylanase VI gene (xynD) of Aeromonas caviae ME-1 in Escherichia coli which is not categorized as a family F or family G xylanase. J Ferment Bioeng. 1997, 84:86–89.
    89. Terashita T., Kono M., Yoshikawa K., et al. Productivity of hydrolytic enzymes by mycorrhizal mushrooms. Mycoscience. 1995, 36(2):221–225.
    90. Terauchi R, Kahl G. Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of PalandPgigenes from Yams(Dioscorea). Mol Gen Genet, 2000, 263: 554-560.
    91. Umita T. Biological mine drainage treatment [J]. Resources, Conservation and Recycling, 1996, 16 :179–188.
    92. Uzcategui E., Ruiz A., Montesino R., et al. The 1,4-beta-D-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. J Biotechnol. 1991, 9(2-3): 271–285.
    93. Van Buren, J.P. The chemistry and technology of pectin. Academic Press, San Diego, 1991, pp. 1–22.
    94. Van Wyk J.P.H.. Hydrolysis of pretreated paper materials by different concentrations of cellulase from Penicillium funiculosum. Bioresour. Technol. 1999, 69: 269–273.
    95. Wan L.L., Xiuyun Xia X.Y., Hong D.F., Yang G.S. Molecular analysis and expression of a floral organ-specific polygalacturonase gene isolated from rapeseed (Brassica napus L.). Mol. Biol. Rep.2010, DOI 10.1007/s11033-010-0041-2.(In press)
    96. Willats W.G.T., McCartney W., Mackie W., Knox J.P. Pectin: cell biology and prospects for functional analysis. Plant. Mol. Biol. 2001, 47, 9–27.
    97. Wong KKY, Tan LUL, Saddler JN. Multiplicity ofβ-1,4- xylanase in microorganisms: functions and applications. Microbiol Rev. 1988, 52:305–317.
    98. Woosley B., Xie M., Wells L., Orlando R., Garrison D., King, D., Bergmann C. Comprehensive glycan analysis of recombinant Aspergillus niger endo-polygalacturonase C. Anal. Biochem. 2006a, 354, 43–53.
    99. Woosley, B.D.; Kim, Y.H.; Kumar Kolli, V.S.; Wells, L.; King, D.; Poe, R.; Orlando, R.; Bergmann, C. Glycan analysis of recombinant Aspergillus niger endo-polygalacturonase A. Carbohydr. Res. 2006b, 341, 2370-2378.
    100. Wubben J.P., Mulder W., Have T., Van Kan J.A.L., Visser J. Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Appl. Environ. Microbiol. 1999, 65, 1596–1602.
    101. Xie M., Krooshof G.H., Benen J.A., Atwood J.A., King D., Bergmann C., Orlando R. Post-translational modifications of recombinant B. cinerea EPG 6. Rapid. Commun. Mass. Spectrom. 2005, 19, 3389–397.
    102. Xue Y, Peng J, Wang R, Song X. Construction of the trifunctional enzyme associating the Thermoanaerobacter ethanolicus xylosidase-arabinosidase with the Thermomyces lanuginosus xylanase for degradation of arabinoxylan. Enzyme Microb Technol. 2009, 45:22–27.
    103. Yang PL, Shi PJ, Wang YR, Bai YG, Meng K, Luo HY, Yuan TZ, Yao B. Cloning and overexpression of a Paenibacillusβ- glucanase in Pichia pastoris: purification and characterization of the recombinant enzyme. J Microbiol Biotechnol. 2007, 17:58–66.
    104. Yang S, Yan Q, Jiang Z, Fan G, Wang L. Biochemical characterization of a novel thermostableβ-1,3-1,4-glucanase(lichenase) from Paecilomyces thermophila. J Agric Food Chem. 2008, 56:5345–5351.
    105. Zettler L. A. A. , Gómez F. , Zettler E. , et al.. Eukaryotic diversity in Spain’s River of Fire. Nature 2002, 417: 137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700