来源于嗜酸真菌Bispora sp. MEY-1的α-半乳糖苷酶和β-半乳糖苷酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-半乳糖苷酶(EC 3.2.1.22)和β-半乳糖苷酶(EC 3.2.1.23)是自然界中广泛存在的两类糖苷水解酶,能从一系列化合物中释放以α-或β-键连接的D-半乳糖。利用α-半乳糖苷酶可以对半乳甘露聚糖进行酶法改性,使改性后的产品具有更多优良的性能,从而使其能够广泛的应用于食品,医药和造纸等行业。β-半乳糖苷酶则可以将乳制品中的乳糖水解为葡萄糖和半乳糖,利用微生物产的β-半乳糖苷酶生产口服剂,可以有效地缓解因不能吸收乳糖而引起的“乳糖不耐症”。本研究从嗜酸真菌Bispora sp. MEY-1中克隆到三个α-半乳糖苷酶基因和一个β-半乳糖苷酶基因,使其在毕赤酵母中进行表达并进行相关酶学性质的研究。
     三个α-半乳糖苷酶AgalA、AgalB和AgalC都属于27家族糖苷水解酶。AgalA和AgalC与Lachancea thermotolerans (耐热克鲁维酵母)来源的α-半乳糖苷酶相似性最高均为52%,而AgalA与AgalC两者间的氨基酸一致性仅为57.6%; AgalB则与Penicillium simplicissimum (青霉)来源的α-半乳糖苷酶有最高一致性为36%, AgalB与AgalA和AgalC的氨基酸一致性分别为24.9%和27.2%。三个重组α-半乳糖苷酶的最适pH分别为5.5、3.5和7.0,最适温度分别为55°C、55°C和45°C。AgalA、AgalB和AgalC对不同底物表现出不同的特异性: AgalA只对合成底物pNPG有降解能力,对蜜二糖、棉子糖和水苏糖等半乳寡糖均不表现其活性;而AgalB则不仅能催化pNPG、蜜二糖、水苏糖和棉子糖等小分子半乳寡糖,而且对瓜尔豆胶和角豆胶等半乳甘露聚糖也有较高的水解能力; AgalC对不同底物的特异性与AgalB类似。AgalA、AgalB和AgalC的比活分别为31.2 U/mg、581 U/mg和128.8 U/mg。AgalB与同来源的β-甘露聚糖酶Man5A协同降解瓜尔豆胶的实验结果表明: AgalB不仅能单独对瓜尔豆胶侧链的半乳糖残基进行降解,而且能与Man5A一起协同降解瓜尔豆胶。延长AgalB对侧链的作用时间,能显著地促进Man5A对主链的降解。而且随着作用温度的提高,反应速率加快,产物中的还原糖含量也随之增加。AgalA与AgalC则均不能与Man5A发生协同作用。
     β-半乳糖苷酶BgalA属于糖苷水解酶35家族,其最适pH为1.5,最适温度为60°C。BgalA在整个pH范围内均能保持稳定。有很好的抗胃蛋白酶和胰蛋白酶的能力。大多数金属离子对其酶活性没有显著地影响。重组酶的比活为99.5 U/mg。BgalA对ONPG和乳糖两种底物的Km值分别5.22 mM和0.31 mM, Vmax值分别为120.8μmol/(min·mg)和137.3μmol/(min·mg)。与商业化的Aspergillus oryzae来源的β-半乳糖苷酶相比, BgalA在整个模拟人工胃液条件下均能稳定的存在,且重组BgalA对牛奶中的乳糖的水解率可达85.8%,而作为对照的A. oryzae来源的β-半乳糖苷酶在动态模拟人工胃液条件下对乳糖的水解率只能达到3.5%。
     综合以上实验结果:α-半乳糖苷酶AgalB和β-半乳糖苷酶BgalA不仅耐酸,而且对胃蛋白酶和胰蛋白酶都有很好的抗性,具有很好的工业应用前景。本研究为其将来的工业应用打下了良好的基础。
α-Galactosidase (EC3.2.1.22) andβ-galactosidase (EC 3.2.1.23) are two types of glycoside hydrolases widely existed in nature, which can cleaveα- orβ-linked galactose residues from a series of compounds. The modification of galactomannan byα-galactosidase extended its applications in food, pharmacy, and pulp industries.β-Galactosidase hydrolyze lactose in milk into galactose and gluctose. Supplementation of microbialβ-galactosidase could alleviate the symptoms caused by lactose intolerance. In this study, threeα-galactosidase genes and oneβ-galactosidase gene from the acidophilic fungus Bispore sp. MEY-1 were cloned, expressed and characterized.
     All the threeα-galactosidases AgalA、AgalB and AgalC from Bispore sp. MEY-1 belong to glycoside hydrolase family 27. Both of AgalA and AgalC exhibited the highest amino acid sequence identity (52%) with theα-galactosidase from Lachancea thermotolerans; however, the amino acid identity between AgalA and AgalC was only 57.6%. The deduced amino acid sequence of AgalB showed the highest identity (36%) with that of theα-galactosidase from Penicillium simplicissimum, and 24.9% and 27.2% to that of AgalA and AgalC, respectively. The optimal pH of AgalA、AgalB and AgalC were 5.5、3.5 and 7.0, respectively. The temperature optima of the threeα-galactosidases were 55°C、55°C and 45°C, respectively. AgalA、AgalB and AgalC exhibited different activity towards different substrates. AgalA only hydrolyzes synthetic substrate pNPG; AgalB and AgalC have ability to not only hydrolyze small galacto-oligosaccharides (melibiose, raffinose and stachyose), but also galactomannan polysaccharides (guar gum and locust bean gum). The specific activity of AgalA、AgalB and AgalC towards pNPG was 31.2 U/mg、581 U/mg and 128.8 U/mg, respectively. The synergistic action of AgalB and family 5β-mannanase Man5A from the same organism to degrade guar gum showed that AgalB not only degrade the side-chain of guar gum alone, but also acts synergisitically withβ-mannanase. When increased the incubation period of AgalB, the action of Man5A was enhanced significantly. Neither AgalA nor AgalC had ability to act synergisitically withβ-mannanase.
     Belonging to glycoside hydrolase family 35,β-galactosidase BgalA showed optimal activity at pH 1.5 and 60°C. BgalA was stable over the whole pH range and was strongly resistant to pepsin and trypsin digestion. Most of metal ions have no significant effects on its activity. The specific activity of r-BgalA towards ONPG was 99.5 U/mg. The Km and Vmax of BgalA for ONPG and lactose are 5.22 mM and 120.8μmol/ (min·mg), and 0.31 mM and 137.3μmol/ (min·mg), respectively. Compared with the low hydrolysis ratio (3.5%) of commercialβ-galactosidase from Aspergillus oryzae, BgalA was more stable and showed higher hydrolysis ability (85.8%) toward milk lactose under simulated gastric conditions.
     In summary,α-galactosidase AgalB andβ-galactosidase BgalA were resistant to acid and proteases, and have great potential in industrial applications. This study provides more information for development of future industrial enzymes.
引文
[1]蒋国桥,张炳华,洪涛.乙型腺病毒载体的构建和β-半乳糖苷酶基因表达.中华实验和临床病毒学杂志, 1995, 9: 1-61.
    [2]李孝辉,陈声明.微生物源α-半乳糖苷酶的研究进展.微生物学通报, 2002, 29: 71-74.
    [3]罗会颖,黄火清,柏映国,王亚茹,杨培龙,孟昆,袁铁铮,姚斌.增加植酸酶基因appA-m的拷贝提高其在巴斯德毕赤酵母的表达量.生物工程学报, 2006, 22: 528-533.
    [4]秦燕,宁正详.β-半乳糖苷酶的应用研究进展.食品研究与开发, 2000, 21: 3-6.
    [5]王晓丹,杨天忠,彭朝辉.质粒型单纯疱疹病毒载体的构建及其在真核细胞中的表达.中华微生物学和免疫学杂志, 1997, 17: 267-270.
    [6]吴劲松,冯万祥.α-半乳糖苷酶.生命的化学, 2002, 20: 84-86.
    [7]于成国,曹玲,邢伟.关于alkA基因启动子不同点突变对诱导酶活性的比较研究.中国医科大学学报, 1995, 24: 342-344.
    [8]袁铁铮,姚斌,罗会颖,王亚茹,柏映国,伍宁丰,范云六.一种高温酸性淀粉酶基因的高效表达和表达产物分析.高技术通讯,2005, 21: 78-83.
    [9]张伟,姚斌,王磊,范云六.来源于Aspergillus candidus的乳糖酶基因的克隆及序列分析.生物工程学报, 2005, 18: 561-571.
    [10] Ademark, P., de Vries. R. P., St?lbrand, H., Visser, J. Cloning and characterization of Aspergillus niger genes encoding an alpha-galactosidase and a beta-mannosidase involved in galactomannan degradation. European Journal of Biochemistry, 2001, 268: 2982-2990.
    [11] Aduse-Opoku, J., Tao, L., Ferretti, J. J., Russell, R. R. B. Biochemical and genetic analysis of Streptococcus mutansα-galactosidase. Journal of General Microbiology, 1991, 137: 757-764.
    [12] Akiba, T., Horikoshi, K. Identification and growth characteristics ofα-galactosidase producing microorganisms. Agricultural Biology and Chemistry, 1976, 40: 1845-1849.
    [13] Banerjee, M., Chakravarty, A., Majumdar, S. K. Immobilization of yeast cells containingβ-galactosidase. Biotechnology and Bioengineering, 1982, 24: 1839-1850.
    [14] Becker, V. E., Evans, H. J. The influence of monovalent cations and hydrostatic pressure onβ-galactosidase activity. Biochimica Biophysica Acta, 1969, 191: 95-104.
    [15] Berg, J., Lindqvist, L., Nord, C. Purification of glycoside hydrolases from Bacteroides fragilis. Applied and Environmental Microbiology, 1980, 40: 40.
    [16] Biermann, L., Glantz, M. D. Isolation and characterization ofβ-galactosidase from Saccharomyces lactis. Biochimica et Biophysica Acta, 1968, 167: 373-377.
    [17] Bishop, D. F., Calhoun, D. H., Bernstein, H. S., Hantzopoulos, P., Quinn, M., Desnick, R. J. Humanα-galactosidase A: Nucleotide sequence of a cDNA clone encoding the mature enzyme. Proceedings of the National Academy of Sciences, 1986, 83: 4859-4863.
    [18] Brouns, S. J. J., Smits, N., Wu, H., Snijders, A. P. L., Wright, P. C., de Vos, W. M., van der Oost, J. Identification of a Novel alpha-Galactosidase from the Hyperthermophilic Archaeon Sulfolobussolfataricus. The Journal of Bacteriology, 2006, 188: 2392-2399.
    [19] Bulpin, P. V., Gidley, M. J., Jeffcoat, R., Underwood, D. J. Development of a biotechnological process for the modification of galactomannan polymers with plantα-galactosidase. Carbohydrate Polymers, 1990, 12: 155-168.
    [20] Cai, S-R., Xu, G., Becker-Hapak, M., Ma, M., Dowdy, S. F., McLeod, H. L. The kinetics and tissue distribution of protein transduction in mice. European Journal of Pharmaceutical Sciences, 2006, 27: 311-319.
    [21] Carrera-Silva, E., Silvestroni, A., LeBlanc, J., Piard, J., de Giori, G., Sesma, F. A thermostableα-galactosidase from Lactobacillus fermentum CRL722: genetic characterization and main properties. Current Microbiology, 2006, 53: 374-378.
    [22] Cavaille, D. C. D. Characterization ofβ-galactosidase from Kluyveromyces lactis. Biotechnology and Applied Biochemistry. 1995, 22: 55–64.
    [23] Chinen, I., Nakamura, T., Fukuda, N. Purification and properties of alpha-galactosidase from immature stalks of Saccharum officinarum (sugar cane). Journal of Biochemistry, 1981, 90: 1453-1461.
    [24] Civas, A., Eberhard, R., Le Dizet, P., Petek, F. Glycosidases induced in Aspergillus tamarii. Mycelialα-D-galactosidases. Biochemical Journal, 1984a, 219: 849-855.
    [25] Civas, A., Eberhard, R., Le Dizet, P., Petek, F. Glycosidases induced in Aspergillus tamarii. Secretedα-D-galactosidase andβ-D-mannanase. Biochemical Journal, 1984b, 219: 857-863.
    [26] Coppola, G., Yan, Y., Hantzopoulos, P., Segura, E., Stroh, J. G., Calhoun, D. H. Characterization of glycosylated and catalytically active recombinant humanα-galactosidase A using a baculovirus vector. Gene, 1994, 144: 197-203.
    [27] Critchley, P. Commercial aspects pf biocatalysis in low-water systems. In: Laane, C., Tramper, J. and Lilly, M. D. (Eds.). Biocatalysis in Organic Media. Amsterdam: Elsevier Science Publishers B.V. 1987, 173-183.
    [28] Dagnall, B. H., Paulsen, I. T., Saier, M. H. The DAG family of glycosyl hydrolases combines two previously identified protein families. Biochemical Journal, 1995, 311: 349-350.
    [29] de Vries, R. P., van den Broeck, H. C, Deckers, E., Manzanares, P., de Graaff, L. H., Visser, J. Differential expression of three alpha-galactosidase genes and a single beta-galactosidase gene from Aspergillus niger. Applied and Environmental Microbiology, 1999, 65: 2453-2460.
    [30] Del Compillo, E., Shannon, L. M., Hankins, C. N. Molecular properties of the enzymic phytohemagglutinin of mung bean. The Journal of Bacteriology, 1981, 256, 7177-7180.
    [31] den Herder, I. F., Mateo Rosell, A. M., van Zuilen, C. M, Punt, P. J., van den Hondel, C, A. Cloning and expression of a member of the Aspergillusniger gene family encodingα-galactosidase. Molecular and General Genetics, 1992, 233: 404-410.
    [32] Dey, P. M., Pridham, J. B. Biochemistry ofα-galactosidases. Advances in Enzymology and Related Areas of Molecular Biology, 1972, 36: 91-130.
    [33] Dey, P.M., Campillo, E. D. Biochemistry of the multiple forms of glycosidases in plants. Advancesin Enzymology and Related Areas of Molecular Biology, 1984, 56: 141-249.
    [34] Dey, P. M., Patel, S., Brownleader, M. D. Induction ofα-galactosidase in Penicillium ochrochloron by guar (Cyamopsis tetragonobola) gum. Biotechnology and Applied Biochemistry, 1993, 17: 361-371.
    [35] Duffaud, G. D., McCutchen, C. M., Leduc, P., Parker, K.N., Kelly, R.M. Purification and characterization of extremely thermostableβ-mannanase,β-mannosidase, andα-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Applied and Environmental Microbiology, 1997, 63: 169-177.
    [36] Falkoski, D. L., Guimar?es, V. M., Callegari, C. M., Reis, A. P., Barros, E. G., Rezende, S. T. Processing of soybean products by semipurified plant and microbialα-galactosidase. Journal of Agricultural and Food Chemistry, 2006, 54: 10184-10190.
    [37] Feurtado, J. A., Banik, M., Bewley, J. D. The cloning and characterization of alpha-galactosidase present during and following germination of tomato (Lycopersicon esculentum Mill.) seed. Journal of Experimental Botany, 2001, 52: 1239-1249.
    [38] Foda, M. S., Elshafei, A. M., Aboul-Enein, A., Afify, A. S., Ali, N. H. Physiological studies on the formation of alpha-galactosidase by fungi. Chemie, Mikrobiologie, Technologie der Lebensmittel, 1995, 17: 25-32.
    [39] Foda, M. S., Mohammed, S., Hussain, L. Production of lactase from Kluyveromyces lactis propagated in media with different sodium chloride concentrations. ZblMickrobiol, 1988, 143: 583–590.
    [40] Fridjonsson, O., Watzlawick, H., Gehweiler, A., Rohrhirsch, T., Mattes, R. Cloning of the Gene Encoding a Novel Thermostable alpha-Galactosidase from Thermus brockianus ITI360. Applied Microbiology and Biotechnology, 1999, 65: 3955-3963.
    [41] Galas, E., Miszkiewicz, H. Purification and some properties ofα-galactosidase from Mortierella vinacea IBT-3. Acta Microbiolgica Polonica, 1996, 45: 143-154.
    [42] Ganter, C., Bock, A., Buckel, P., Mattes, R. Production of thermostable, recombinantα-galactosidase suitable for raffinose elimination from sugar beet syrup. Journal of Biotechnology, 1988, 8: 301-310.
    [43] Gao, Z., Schaffer, A. A. A. Novel Alkaline alpha-Galactosidase from Melon Fruit with a Substrate Preference for Raffinose. Plant Physiology, 1999, 119: 979-988.
    [44] Garman, J., Coolbear, T., Smart, J. The effect of cations on the hydrolysis of lactose and the transferase reactions catalysed byβ-galactosidase from six strains of lactic acid bacteria. Applied Microbiology and Biotechnology, 1996, 46: 22-37.
    [45] Gaudreault, P. R., Webb, J. A. Alkaline a-galactosidase in leaves of Cucurbita pepo. Plant Science Letters, 1982, 24: 281-288.
    [46] Gherardini, F., Babcock, M., Salyers, A. A. Purification and characterization of two alpha-galactosidases associated with catabolism of guar gum and other alpha-galactosides by Bacteroides ovatus. The Journal of Bacteriology, 1985, 161: 500-506. 57
    [47] Gonzalez, R. R., Monsan, P. Purification and some characteristics ofβ-galactosidase from Aspergillus fonsecaeus. Enzyme and Microbial Technology, 1991, 13: 349-352.
    [48] Gonzalez-Siso, M. I.β-Galactosidase production by Kluyveromyces lactis on milk whey: batch versus fed-batch cultures. Process Biochemistry, 1994, 29: 565-568.
    [49] Gote, M. M., Khan, M. I., Gokhale, D. V., Bastawde, K. B., Khire, J. M. Purification, characterization and substrate specificity of thermostable alpha-galactosidase from Bacillus stearothermophilus (NCIM-5146). Process Biochemistry, 2006, 41: 1311-1317.
    [50] Goulas, T., Goulas, A., Tzortzis, G., Gibson, G. A novelα-galactosidase fromΒifidobacterium bifidum with transgalactosylating properties: gene molecular cloning and heterologous expression. Applied Microbiology and Biotechnology, 2009, 82: 471-477.
    [51] Greenberg, N. A., Mahoney, R. R. Production and Characterization ofβ-galactosidase from Streptococcus thermophilus. Journal of Food Science, 1982, 47: 1824-1828.
    [52] Guimar?es, V. M., Rezende, S. T., Moreira, M. A., Barros, E. B., Felix, C. R. Characterization ofα-galactosidases from germinating soybean seed and their use for hydrolysis of oligosaccharides. Phytochemistry, 2001. 58: 63-67.
    [53] Hashimoto, H., Goto, M., Katayama, C., Kitahata, S. Purification and some properties of α-galactosidase from Pseudomonas fluorescens H-601. Agricultural Biology and Chemistry, 1991, 55: 2831-2838.
    [54] Hashimoto, H., Katayama, C., Goto, M., Kitahata, S. Purification and some properties ofα-galactosidase from Candida guilliermondii H-404. Bioscience Biotechnology and Biochemistry, 1993, 57: 372-378.
    [55] Hashimoto, H., Katayama, C., Goto, M., Okinaga, T., Kitahata, S. Enzymatic synthesis ofα-linked galactooligosaccharides using the reverse reaction of a cell-boundα-galactosidase from Candida guilliermondii H-404. Bioscience Biotechnology and Biochemistry, 1995a, 59: 179-183.
    [56] Hashimoto, H., Katayama, C., Goto, M., Okinaga, T., Kitahata, S. Transgalactosylation catalyzed byα-galactosidase from Candida guilliermondii H-404. Bioscience Biotechnology and Biochemistry, 1995b, 59: 619-623.
    [57] Henrissat, B., Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 1993, 293: 781-788.
    [58] Henrissat, B., Bairoch, A. Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 1996, 316: 695-696.
    [59] Hidaka, M., Fushinobu, S., Ohtsu, N., Motoshima, H., Matsuzawa, H., Shoun, H., Wakagi, T. Trimeric crystal structure of the glycoside hydrolase family 42 beta-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. Journal of Molecular Biology, 2002, 322: 79-91.
    [60] Hinz, S. W. A., Van Den Broek, L. A. M., Beldman, G., Vincken J. P., Voragen A. G. J. beta-Galactosidase from Bifidobacterium adolescentis DSM20083 prefersβ-(1,4)-galactosides over lactose. Applied microbiology and biotechnology, 2004, 66: 276-284.
    [61] Hoyoux, A., Jennes, I., Dubois, P., Genicot, S., Dubail, F., Francois, J. M., Baise, E., Feller, G., Gerday, C. Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Applied and Environmental Microbiology, 2001, 67: 1529-1535.
    [62] Imanaka, T., Kaieda, T., Sato, K., Taguchi, H. Optimization ofα-galactosidase production by mold: (I)α-Galactosidase production in batch and continuous culture and a kinetic model for enzyme production. Journal of Fermentation Technology, 1972, 50: 633-646.
    [63] Ito. Y., Sasaki, T., Kitamoto, K., Kumagai, C., Takahashi, K., Gomi, K., Tamura, G. Cloning, nucleotide sequencing, and expression of the beta-galactosidase-encoding gene (lacA) from Aspergillus oryzae. The Journal of General and Applied Microbiology, 2002, 48: 135-142.
    [64] Jacobson, R. H., Zhang, X-J., DuBose, R. F., Matthews, B. W. Three–dimensional structure ofβ-galactosidase from E. coli. Nature, 1994, 369: 761-766.
    [65] Jr, D. E. K. Stereochemistry and the mechanism of enzymatic reactions. Biological Reviews, 28 1953, 28: 416-436.
    [66] Kachurin, A. M., Golubev, A. M., Geisow, M. M., Veselkina, O.S., Isaeva-Ivanova, L.S., Neustroev, K.N. Role of methionine in the active site ofα-galactosidase from Trichoderma reesei. Biochemical Journal, 1995, 308: 955-964.
    [67] Kaneko, R., Kusakabe, I., Ida, E., Murakami, K. Substrate Specificity ofα-Galactosidase from Aspergillm niger 5-16. Agricultural and biological chemistry, 1991, 55: 109-115.
    [68] Kaneko, R., Kusakabe, I., Sakai, Y., Murakami, K. Substrate specificity ofα-galactosidase from Mortierella vinacea. Agricultural Biology and Chemistry, 1990, 54: 237-238.
    [69] Kim, W-D., Kobayashi, O., Kaneko, S., Sakakibara, Y., Park, G-G., Kusakabe, I., Tanaka, H., Kobayashi, H. a-Galactosidase from cultured rice (Oryza sativa L. var. Nipponbare) cells. Phytochemistry, 2002, 61: 621-630.
    [70] Kotwal, S. M., Khan, M. I., Khire, J. M. Production of thermostableα-galactosidase from thermophilic fungus Humicola sp. Journal of Industrial Microbiology and Biotechnology, 1995, 15: 116-120.
    [71] Kreft, M. E., Jelen, P. Stability and activity ofβ-galactosidase in sonicated cultures of Lactobacillus delbrueckii ssp.bBulgaricus 11842 as affected by temperature and ionic enviroments. Journal of Food Science, 2000, 65.
    [72] Li, Y., Wang, H., Lu, L., Li, Z., Xu, X., Xiao, M. Purification and Characterization of a Novel beta-Galactosidase with Transglycosylation Activity from Bacillus megaterium 2-37-4-1. Applied Biochemistry Biotechnology, 2009, 158: 192-199.
    [73] Luo, H., Wang, Y., Wang, H., Yang, J., Yang, Y., Huang, H., Yang, P., Bai, Y., Shi, P., Fan, Y., Yao, B. A novel highly acidic beta-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Applied microbiology and biotechnology, 2009, 82: 453-61.
    [74] Luonteri, E., Alatalo, E., Siika-Aho, M., Penttila, M., Tenkanen, M. alpha-Galactosidases of Penicillium simplicissimum: production, purification and characterization of the gene encodingAGLI. Biotechnology and Applied Biochemistry, 1998, 28: 179-88.
    [75] MacPherson, J. M., Khachatourians, G. G. Partial purification and characterization ofβ-galactosidase produced by Beauveria bassiana. Biotechnology and Applied Biochemistry, 1991, 13: 217-230.
    [76] Manzanares, P., de Graff, L. H., Visser, J. Characterization of galactosidases from Aspergillus niger: purification of a novelα-galactosidase activity. Enzyme and Microbial Technology, 1998, 22: 383-390.
    [77] Margolles-Clark, E., Tenkanen, M., Luonteri, E., Penttil?, M. Threeα-galactosidase genes of Trichoderma reesei cloned by expression in yeast. European of journal Biochemistry, 1996, 240: 104-111.
    [78] Marraccini, P., Rogers, W. J., Caillet, V., Deshayes, A., Granato, D., Lausanne, F., Lechat, S., Pridmore, D., Pétiard, V. Biochemical and molecular characterization ofα-D-galactosidase from coffee beans. Plant Physiology and Biochemistry, 2005, 43: 909-920.
    [79] Mathew, C. D., Balasubramaniam, K. Chemical modification ofα-galactosidase from coconut, Phytochemistry, 1986, 25, 2439-2443.
    [80] Mbuyi-Kalala, A., Schnek, A.G., Leonis, J. Separation and characterization of four enzyme forms ofβ-galactosidase from Saccharomyces lactis. European Journal of Biochemistry, 1988, 178: 437-443.
    [81] McCarter, J. D., Withers, S. G. Mechanism of enzymatic glycoside hydrolysis. Current Opinion in Structure Biology, 1994, 4: 885-892.
    [82] McCutchen, C. M., Duffaud, G. D., Leduc, P., Petersen, A. R. H., Tayal, A., Khan, S. A., Kelly, R. M. Characterization of extremely thermostable enzymic breakers (α-1,6-galactosidase andβ-1,4-mannanase) from the hyperthermophilic bacterium Thermotoga neapolitana 5068 for hydrolysis of guar gum. Biotechnology and Bioengineering, 1996, 52: 332-339.
    [83] Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 1959, 31: 426-428.
    [84] Monsan, P., Paul, F., Remaud, M., Lopez, A. Novel enzymatic synthesis of oligosaccharides. Food Biotechnol, 1989, 3: 11-29.
    [85] Moracci, M., La Volpe, A., Pulitzer, J. F., Rossi, M., Ciaramella, M. Expression of the thermostable beta-galactosidase gene from the archaebacterium Sulfolobus solfataricus in Saccharomyces cerevisiae and characterization of a new inducible promoter for heterologous expression. The Journal of Bacteriology, 1992, 174: 873-882.
    [86] Mulimani, V. H., Ramalingam. Enzymic hydrolysis of raffinose and stachyose in soymilk by alpha-galactosidase from Gibberella fujikuroi. Biochemistry and Molecular Biology International, 1995, 36: 897-905.
    [87] Müller, G., K?hler, A.α-Galactosdiasen (EC 3.2.1.22.) Charakterisierung, Vorkommen bei Organismen, Gewinnung und praktische Anwendungsm?glichkeiten. Biol. Rdsch, 1985, 23: 345-366.
    [88] Nadkarni, M. A., Nair, C. K. K., Pandey, V. N., Pradhan, D. S. Characterization ofα-galactosidase from Corynebacterium murisepticum and mechanism of its induction. The Journal of General and Applied Microbiology, 1992, 38: 23-34.
    [89] Nagy, Z., Kiss, T., Szentirmai, A., Biro, S.β-Galactosidase of Penicillium chrysogenum: production, purification, and characterization of the enzyme. Protein Expression and Purification, 2001, 21: 24-29.
    [90] Nguyen, T. H., Splechtna, B., Steinb?ck, M., Kneifel, W., Lettner H. P., Kulbe K. D., Haltrich, D.. Purification and Characterization of Two Novelβ-Galactosidases from Lactobacillus reuteri. Journal of agricultural and food chemistry, 2006, 54: 4989-4998.
    [91] Nunes, M. F. A., Massaguer. S., Alegra, R. M. Production and properties ofβ-galactosidase of Kluyveromyces fragilis NRRL Y-2415. Rev Farm Bioquim Univ Sao-Paulo, 1993, 29: 25-30.
    [92] Ohshima, T., Murray, G. J., Nagle, J. W., Quirk, J. M., Kraus, M. H., Barton, N. W., Brady, R. O., Kulkarni, A. B. Structural organization and expression of the mouse gene encoding α-galactosidase A. Gene, 1995, 166: 277-280.
    [93] Overbeeke, N., Fellinger, A. J., Toonen, M. Y., Wassenaar, D. van., Verrips, C.T. Cloning and nucleotide sequence of theα-galactosidase cDNA from Cyamopsis tetragonoloba (guar). Plant Molecular Biology, 1989, 13: 541-550.
    [94] Overbeeke, N., Termorshuizen, G. H., Giuseppin, M. L., Underwood, D. R., Verrips, C. T. Secretion of theα-galactosidase from Cyamopsis tetragonoloba (guar) by Bacillus subtilis. Applied and Environmental Microbiology, 1990, 56: 1429-1434.
    [95] McCleary, B. V., Critchley, P., Bulpin, P. V. Processing of polysaccharides. Pat. Appl. EP 0 121 960 A2. 1984.
    [96] Nielsen, R. I., Schülein, M. Pat. Polypeptide product. EP 0 192 401 B1. 1993.
    [97] Penttil?, M., Lehtovaara, P., Nevalainen, H., Bhikhabhai, R., Knowles, J. Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene, 1986, 45: 253-263.
    [98] Pessela, B., Fernandez-Lafuente, R., Torres, R., Mateo, C., Fuentes, M., Guisán, J., Carrascosa, A.V. Production of a Thermoresistant Alpha-galactosidase from Thermus sp. Strain T2 for Food Processing. Food Biotechnology, 2007, 21: 91-103.
    [99] Poutanen, K., Puls, J. The xylanolytic enzyme system of Trichoderma reesei. In: Lewis, N.G. and Paice, M.G. (Eds.) ACS Symp. Ser. 399: Plant Cell Wall Polymers, Biogenesis and Biodegradation. Washington, DC: American Chemical Society, 1989, 630-640.
    [100] Prashanth, S. J., Mulimani, V. H. Soymilk oligosaccharide hydrolysis by Aspergillus oryzae alpha-galactosidase immobilized in calcium alginate. Process Biochemistry, 2005, 40: 1199-1205.
    [101] Qin, Y., Ning, Z. X. Synthesis of Galacto-oligosaccharides with Immobilizedβ-galactosidase. Food and Fermentation Industries, 2001, 27: 12-16.
    [102] Ramirez-Matheus, A. O., Rivas, N. Production and partialcharacterization ofβ-galactosidase from Kluyveromyces lactis grown in deproteinized whey. Arch Latinoam Nutr, 2003, 53: 194–201.
    [103] Rojas, A. L., Nagem, R. A., Neustroev, K. N., Arand, M., Adamska, M., Eneyskaya, E. V., Kulminskaya, A. A., Garratt, R. C., Golubev, A. M., Polikarpov, I. Crystal structures of beta-galactosidase from Penicillium sp. and its complex with galactose. Journal of Molecular Biology, 2004, 343: 1281-1292.
    [104] Savel'ev, A. N., Ibatyllin, F. M., Eneyskaya, E. V., Kachurin, A. M., Neustroev, K. N. Enzymatic properties ofα-D-galactosidase from Trichoderma reesei. Carbohydrate Research, 1996, 296: 261-273.
    [105] Sezgintürk, M. K., Din?kaya, E. beta-Galactosidase monitoring by a biosensor based on Clark electrode: Its optimization, characterization and application. Biosensors and Bioelectronics, 2008, 23: 1799-1804.
    [106] Shaikh, F. A., Mullegger, J., He, S., Withers, S. G. Identification of the catalytic nucleophile in family 42 beta-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis. FEBS Letters, 2007, 581: 2441-2446.
    [107] Shaikh, S. A., Khire, J. M., Khan, M. I. Characterization of a thermostable extracellularβ-galactosidase from a thermophilic fungus Rhizomucor sp. Biochimica et Biophysica Acta, 1999, 1472: 314-322.
    [108] Sheridan, P. P., Brenchley, J. E. Characterization of a salt-tolerant family 42 beta-galactosidase from a psychrophilic antarctic Planococcus isolate. Applied and Environmental Microbiology, 2000, 66: 2438-2444.
    [109] Shibuya, H., Kobayashi, H., Park, G. G., Komatsu, Y., Sato, T., Kaneko, R., Nagasaki, H., Yoshida, S., Kasamo, K., Kusakabe, I. Purification and some properties ofα-galactosidase from Penicillium purpurogenum. Bioscience Biotechnology and Biochemistry, 1995, 59: 2333-2335.
    [110] Shibuya, H., Kobayashi, H., Sato, T., Kim, W-S., Yoshida, S., Kaneko, S., Kasamo, K., Kusakabe, I. Purification, characterization, and cDNA cloning of a novelα-galactosidase from Mortierella vinacea. Bioscience Biotechnology and Biochemistry, 1997, 61: 592-598.
    [111] Shibuya, H., Nagasaki, H., Kaneko, S., Yoshida, S., Park, G. G., Kusakabe, I., Kobayashi, H. Cloning and High-Level Expression of alpha-Galactosidase cDNA from Penicillium purpurogenum. Applied and Environmental Microbiology, 1998, 64: 4489-4494.
    [112] Simersk, P., Monti, D., Cechov, I., Pelantov, H., Mackov, M., Bezouska, K., Riva, S., Kren, V. Induction and characterization of an unusual alpha-D-galactosidase from Talaromyces flavus. Journal of Biotechnology, 2007, 128: 61-71.
    [113] Somiari, R. I., Balogh, E. Properties of an extracellular glycosidase of Aspergillus niger suitable for removal of oligosaccharides from cowpea meal. Enzyme and Microbial Technology, 1995, 17: 311-316.
    [114] Srinivas, M. R. S., Chad, N., Lonsane, B. K. Use of Plackett-Burman design for rapid screening of several nitrogen sources, growth/product promotors, minerals and enzyme inducers for the production of alpha-galactosidase by Aspergillus niger MRSS 234 in solid state fermentation system. Bioprocess Engineering, 1994, 10: 139-144.
    [115] Sugimoto, H., van Buren, J. P. Removal of oligosaccharides from soy milk by an enzyme from Aspergillus saitoi. Journal of Food Science, 1970, 35: 655-660.
    [116] Suzuki, H., Li, S-C., Li, Y-T.α-Galactosidase from Mortierella vinacea. Crystallization and properties. The Journal of Biological Chemistry, 1970, 245: 781-786.
    [117] Svensson, B., S?gaard, M. Mutational analysis of glycosylase function. Journal of Biotechnology, 1993, 29: 1-37.
    [118] Talbot, G., Sygusch, J. Purification and characterization of thermostableβ-mannanase andα-galactosidase from Bacillus stearothermophilus. Applied Environmental Microbiology, 1990, 56: 3505-3510.
    [119] Thananunkul, D., Tanaka, M., Chichester, C.O., Lee, T-C. Degradation of raffinose and stachyose in soybean mil byα-galactosidase from Mortierella vinacea. Entrapment ofα-galactosidase within polyacrylamide gel. Journal of Food Science, 1976, 41: 173-175.
    [120] Thigiel, A. A., Deak, T., Selection of strains and extraction procedures for optimum production ofβ-galactosidase from Kluyveromyces strains. Zbl Mikrobiol, 1989, 144: 465-471.
    [121] Turkiewicz, M., Kur, J., Bialkowska, A., Cieslinski, H., Kalinowska, H., Bielecki, S. Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted beta-galactosidase. Biomolecular Engineering, 2003, 20: 317-324.
    [122] Varbanets, L. D., Malanchuk, V. M., Buglova, T. T., Kuhlmann, R. A. Penicillium sp. 23 alpha-galactosidase: purification and substrate specificity. Carbohydrate Polymers, 2001, 44: 357-363.
    [123] Vasiljevic T., Jelen P. Lactose hydrolysis in milk as affected by neutralizers used forthe preparation of crudeβ-galactosidase extracts from Lactobacillus bulgaricus 11842. Innovative Food Science and Emerging Technologies, 2002, 3:175-184.
    [124] Widmer, F., Leuba, J. L.β-Galactosidase from Aspergillus niger, separation and characterization of three multiple forms. European Journal of Biochemistry, 1979, 100: 559–567.
    [125] Wong, H-C., Hu, C-A., Yeh, H-L., Su, W., Lu, H-C. Lin, C-F. Production, purification, and characterization ofα-galactosidase from Monascus pilosus. Applied and Environmental Microbiology, 1986, 52: 1147-1152.
    [126] Wong-Leung, Y. L., Fong, W. F., Lam, W. L. Production ofα-galactosidase by Monascus frown on soybean and sugarcane wastes. World Journal of Microbiology and Biotechnology, 1993, 9: 529-533.
    [127] Yuan, T., Yang, P., Wang, Y., Meng, K., Luo, H., Zhang, W.,Wu, N., Fan, Y.,Yao, B. Heterologous expression of a gene encoding a thermostable beta-galactosidase from Alicyclobacillus acidocaldarius. Biotechnology Letters, 2008, 30: 343-348.
    [128] Zaprometova, O. M., Ulezlo, I. V. Isolation and purification of a moldα-galactosidase. Biotechnology and Applied Biochemistry, 1988, 10: 232-241.
    [129] Zaprometova, O. M., Ulezlo, I.V., Lakhtin, V. M. Structure and properties of a cephalosporium acremonium α-galactosidase. Glycoconjugate Journal, 1990, 7: 287-300.
    [130] Zeilinger, S., Kristufek, D., Arisan-Atac, I., Hodits, R., Kubicek, C. P. Conditions of formation, purification, and characterization of an alpha-galactosidase of Trichoderma reesei RUT C-30. Applied and Environmental Microbiology, 1993, 59: 1347-1353.
    [131] Zhu, A., Goldstein, J. Cloning and functional expression of a cDNA encoding coffee bean α-galactosidase. Gene, 1994, 140: 227-231.
    [132] Zhu, A., Wong, Z.-K., Goldstein, J. Identification of tyrosine 108 in coffee beanα-galactosidase as an essential residue for enzyme activity. Biochim Biophys Acta, 1995, 1247: 260-264.
    [133] Zhu, A., Monatan, C., Wong, Z.-K. Trp-16 is essential for the activity ofα-galactosidase andα-N-acetylgalactosaminidase. Biochim Biophys Acta, 1996, 1297: 99-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700