复杂难处理金精矿提取及综合回收的基础研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,合理、高效、环保地开发利用难处理金矿资源己成为世界各产金国面对的主要技术问题,本文针对高铜含碳及含砷两种主要难处理金精矿,重点开展了高铜含碳金精矿添加助浸药剂强化浸出、氰尾浮选综合回收、生物氧化砷黄铁矿电化学、细菌氧化浸矿动力学及含碳高砷金精矿的预氧化提金等方面的试验研究,并在试验研究的基础上实施推广和工程化实践。
     高铜含碳金精矿的直接氰化浸出研究,研究了磨矿细度、浸出时间、氰化纳浓度、矿浆中溶解氧浓度和氧化铅用量等影响因素对金的浸出率和氰化钠消耗的影响,对常规浸出72h,金的浸出率和氰化钠单耗分别为89.48%和15.58kg/t的金精矿(含Cu2.28%),采用20mg/L氧溶解浓度和4kg/t氧化铅用量强化浸出48h,即可获得98.08%的金浸出率和5.60kg/t的氰化钠单耗指标,试验表明:富氧添加氧化铅强化处理高铜含碳金精矿,能有效抑制铜的浸出溶解和减少或消除碳对已浸出金的吸附,降低氰化钠的消耗量,可以显著强化氰化浸金效果。
     对多金属含硫金精矿直接氰化的浸渣,在考虑实施生产废水零排放的基础上,采用优先混浮分离后再分别进行铜铅分离和铅锌分离的技术路线综合回收铜铅锌等有价组分,试验表明:在利用贫液调浆的氰渣浮选综合回收中,游离氰根浓度和游离氧化钙浓度降低很快,保持二者浓度稳定有利于浮选分离,同时要充分考虑氰化体系中各重金属离子及其络合物对浮选的影响,依据要回收目的矿物选取合适的药剂制度和流程,在铜铅或者铅锌分离中,优先浮铅工艺更容易实现。
     通过考察TCJ混合菌种生长所需的适宜温度、pH值及有害离子耐受能力,研究其生长习性表明:该浸矿菌种可在33~45℃和pH值为0.8-1.8的范围内生长,最佳生长温度和pH值为40℃和1.5,对有害离子Cu2+Cl-及As3+的耐受极限浓度为10g/L、5g/L和3g/L,按照逐级放大的原则,重点对其耐氯能力和耐砷能力进行驯化,在金精矿氧化矿浆中TCJ菌耐受C1-浓度的临界值是2.7g/L,耐受矿浆中液相砷浓度的最高值为15g/L,可以处理含砷量在12%以下的金精矿,较好地提高了其活性和抗毒性能,为含砷难处理金精矿生物预氧化生产实践提供性能优良的浸矿复合型工程菌。
     利用线性扫描电化学测试技术,对砷黄铁矿在无菌和有菌的酸性介质中的氧化机理、电化学动力学及浸矿动力学进行研究,研究表明细菌的存在强化了阴极作用和砷黄铁矿与其它硫化矿物间的原电池效应,加速分解砷黄铁矿氧化过程产生的中间相,促进砷黄铁矿的氧化;在有菌9K培养基体系中,随着温度的升高,砷黄铁矿的腐蚀电位、阳极斜率、阴极斜率和极化电阻均降低,腐蚀电流密度增加,砷黄铁矿在温度高的体系中更容易被氧化腐蚀溶解;pH值在1.5-2.0区间变化时,砷黄铁矿电化学动力学参数变化不大,有利于细菌的生长繁殖和砷黄铁矿的稳定氧化,通过控制适宜的pH值,可以减少氧化体系中砷铁酸盐、铁的氢氧化物及单质硫的形成,提高砷黄铁矿氧化效果;电化学动力学和浸矿动力学研究表明,细菌的间接氧化机理在砷黄铁矿的氧化过程中发挥主导作用,含砷金精矿细菌氧化浸出动力学过程受固体产物层内扩散控制。
     通过对含碳高砷难处理金精矿细菌预氧化-氰化提金条件试验研究,优化氧化预处理和氰化浸出的工艺条件参数。对含碳高砷金精矿氧化预处理9d后,砷、铁及硫的脱除率分别达到95.77%、95.25%和86.64%,试样失重率为26.48%,氧化渣氰化浸出36h后,金和银的浸出率分别达到了95.68%和75.64%,比未经氧化预处理的金精矿常规氰化浸出72h的金、银浸出率分别提高了78.14%和24.71%,因此细菌氧化预处理不仅可以显著提高含碳高砷难处理金精矿的氰化浸出指标,而且还会大大缩短氰化浸出周期。
     采用富氧添加氧化铅氰化处理高铜含碳金精矿的工业化生产实践中,金的浸出率由常规氰化的88.56%提高到97.53%,氰化钠单耗由常规氰化的19.86kg/t降到11.68kg/t,在提高技术经济指标的前提下,有效生产能力由常规氰化的53.19t/d提高至72.8t/d,证明该工艺能有效提高金的浸出率,降低氰化钠单耗,缩短浸出时间,扩大生产能力。
     氰渣浮选综合回收生产实践表明,利用浮选的方法综合回收氰渣中铜铅锌是可行的,适宜的作业条件下能够生产出合格的精矿产品,但必须根据氰渣的特性及成分组成,充分考虑各组分受氰化物抑制程度的差异,选择适合的浮选工艺,原则上采用优先浮铅工艺,同时须密切关注和控制产品中元素互含超标的问题,否则会因为杂质超标降低品级销售而大大影响产品质量和企业的效益。
     含砷金精矿细菌预氧化提金工程化实践表明,TCJ菌可以用来直接氧化处理含砷量高达8%的难处理金精矿,对于含砷高达21.89%的难处理金精矿,通过配入一定比例的低砷碳酸盐型金精矿,使给矿铁砷摩尔比在4.6~5.2之间,高砷金精矿的铁、砷氧化脱除率分别由6.14%和7.38%提高到89.90%和93.60%,金、银浸出率分别由64.18%和35.93%提高到97.78%和88.83%,改善细菌氧化和浸出效果显著。
     本论文的研究为高铜含碳和含砷难处理金精矿的直接氰化浸出和生物预氧化—氰化浸出提供了理论和技术上的指导。
Recently rational, efficient and environment friendly exploitation and utilization of the refractory gold mineral resource have become the main challenge faced by every gold-producing country in the world. In this dissertation, researches on treatment of two kinds of refractory gold concentrates, high copper carbon-bearing and arsenic-bearing gold concentrates, were performed, including strengthening leaching of high copper carbon-bearing gold concentrate with leaching-aid reagent, comprehensive flotation recovery of cyanidation tailing, electrochemical study of biooxidation of arsenopyrite, leaching kinetic study of biooxidation of arsenic-bearing gold concentration and biooxidation-cyanidation of high carbon arsenic-bearing gold concentrate, and the technology extension and industrialization practice were conducted on the base of the fundamental researches.
     The effects of grinding size, leaching time, concentration of sodium cyanide, dissolved oxygen concentration and amount of lead oxide on the gold leaching and consumption of sodium cyanide were investigated in the study of direct cyanidation of the high copper carbon-bearing gold concentrate (Cu2.28%). For the conventional leaching,89.48%gold leached and15.58kg/t sodium cyanide consumed in72h. However for the strengthening leaching,98.08%gold leached and5.60kg/t sodium cyanide consumed in48h with20mg/L dissolved oxygen and4kg/t PbO. The results showed that when the high copper carbon-bearing gold concentrate was leached with addition of enriched oxygen and PbO, the dissolution of copper and the adsorption of carbon to the leached gold were inhibited, the consumption of sodium cyanide consumption was reduced and the gold leaching was enhanced.
     with the consideration of zero waste water diacharge, the polymetallic sulfide cyanidation tailing was treated by the technical route of bulk flotation-separation of copper and lead-separation of lead and zinc, the copper, lead and zinc were recovered comprehensively. The results showed that the cyanide and the calcium oxide concentration decreased rapidly in the flotation of cyanidation tailing with barren solution, keeping the steady concentration of these two reagents was good for the flotation of the metal sulfide minerals. According to the effect of every heavy metal ions and their complexes on the flotation of desired minerals, the proper reagent system and process flow were adopted, and the selective flotation of lead was easily achieved in the separation of copper and lead or lead and zinc.
     The optimal growth temperature, pH value and the toxic ions resistance of the TCJ mixed culture were investigated, the results indicated the culture could grow under the temperature from33to45℃and pH value from0.8to1.8, with the optimal temperature40℃and pH1.5, and could resist the toxic ions, Cu, Cl-and As3+up to10g/L,5g/L and3g/L respectively. The TCJ culture was adapted to the high concentrations of chloride and arsenic ions by gradually increasing the concentrations of these two ions in the slurry. The critical concentrations of chloride and arsenic ions for efficient biooxidation of gold concentrate were2.7g/L and15g/L respectively. After adaption, the culture could efficiently treat arsenic-bearing gold concentrate containing arsenic no more than12%, its activity and toxicity resistance of the culture were improved, and was suitable for the industrialization practice of biooxidation of arsenic-bearing gold concentrates.
     The oxidation mechanism and the electrochemical kinetic of arsenopyrite with or without bacteria and leaching kinetic were investigated by linear scanning electrochemical measurement technology. The research showed that the bacteria enhanced the cathodic process and the galvanic effect between arsenopyrite and other sulfide minerals, accelerated the dissolution of intermediate products and the oxidation of arsenopyrite. In the9K medium with bacteria, the corrosion potential, the anodic slope, the cathodic slope and the polarization resistance decreased, and the corrosion current density increased with the temperature rising, this result indicated the arsenopyrite was more easily dissolution by oxidation corrosion. The electrochemical kinetic parameters changed slightly between the pH1.5and2.0, which was beneficial to the bacterial growth and the steady oxidation of arsenopyrite. The formation of ferric arsenate, iron hydroxide and elemental sulfur could be reduced by controlling the pH of slurry and the oxidation effect of arsenopyrite could be improved. The electrochemical kinetic and leaching kinetic researches indicated the indirect oxidation mechanism in the biooxidaiton of arsenopyrite was predominant, the leaching kinetic process of arsenic-bearing gold concentrates was controlled by the solid product layer diffusion.
     The technical parameters of biooxidation and cyanidation of the high arsenic carbon-bearing gold concentrate were optimized by the conditional experiments. After9days' biooxidation,95.77%arsenic,95.25%iron and86.64%sulfur were removed, the sample weight loss rate was26.48%. After36hours' cyanidation, the extraction rates of gold and silver reached95.68%and75.64%respectively, which were78.14%and24.71%higher than that of72hour's conventional cyanidation of untreated gold concentration. Therefore, the biooxidation not only remarkably enhance the cyanide leaching of gold, but also reduced the cyanide leaching time.
     In the industrialization practice of cyanidation of high copper carbon-bearing gold concentrates with addition of enriched oxygen and PbO, the gold extraction rate increased from88.56%for conventional cyanidation to9753%, the sodium cyanide consumption decreased from19.86kg/t for conventional cyanidation to11.68kg/t. On the premise of improving technical economical indexes, the actual capacity increased from53.19t/d for conventional cyanidation to72.8t/d, these results indicated the technology could effectively improve the gold extraction, lower the sodium cyanide consumption, reduce the leaching time and extend the productivity.
     The industrialization practice of comprehensive recovery of cyanidation tailing by flotation indicated the flotation of copper, lead and zinc from cyanidation tailing was feasible. Qualified concentrates could be produced under proper operating condition, however the discrepancies of degree of inhibition by cyanide of different components and the composition of cyanidation must be took into account when choosing the flotation technology, in principle, the selective flotation of lead technology was adopted. The problem of excessive impurities must be considered and controlled, otherwise the efficiency of enterprises would be impacted remarkably by the decreasing of products quality for the excessive impurities.
     The industrialization practice of biooxidation of arsenic-bearing gold concentrates showed that the TCJ culture was suitable to pretreat the refractory gold concentrate containing8%arsenic. For the refractory gold concentrate containing21.89%arsenic, after blending with low arsenic carbonate gold concentrate, the mole ratio of iron and arsenic was controlled between4.6%and5.2%, the biooxidation and the cyanidation of the high arsenic concentrate were remarkably improved:the removal rate of iron and arsenic by biooxidaton were enhanced from6.14%and7.38%to89.90%and93.60%respectively, the gold and silver extraction were increased from64.18%and35.93%to97.78%and88.83%respectively.
     The researches in this dissertation provide theoretical and technical guidance for the direct cyanidation of high copper carbon-beatring gold concentrates and biooxidation-cyanidation of arsenic-bearing refractory gold concentrates.
引文
[1]崔永霞,沈艳.难处理金矿石提炼技术研究进展[J].黄金科学技术,2007,15(3):53-58
    [2]陈聪,姚香.难处理金矿石预处理方法简述[J].黄金科学技术,2004,12(4):27-30
    [3]李俊萌.难处理金矿石预处理方法研究现状及其发展趋势[J].稀有金属,2003,(5):478-481
    [4]苏大雄,张秋利,周军,等.难处理金矿的预处理[J].有色金属,2002,54(7):137-141
    [5]杨振兴.难处理金矿石选冶技术现状及发展方向[J].黄金,2002,23(7):31-34
    [6]张泽彪,张正勇,彭金辉,等.难处理金精矿半工业化提金试验研究[J].有色金属(冶炼部分),2008,(6):24-26
    [7]李俊萌.难处理金矿石预处理工艺现状与发展[J].湿法冶金,2003,22(1):1-8
    [8]宋鑫.中国难处理金矿资源及其开发利用技术[J].黄金,2009,30(7):46-49
    [9]张永涛.中国黄金矿产资源开发及矿产品供需形势分析[J].中国矿业,2009,18(2):8-11
    [10]康增奎.我国难处理金矿资源开发的现状与问题研究[J].资源与产业,2009,11(6):59-63
    [11]李俊萌.难处理金矿石预处理工艺及其选择[J].有色金属(选矿部分),2002,(5):16-23
    [12]周一康.难处理金矿石预处理方法研究进展[J].湿法冶金,1998,(3):19-23
    [13]李俊萌.难处理金矿石预处理工艺研究与应用现状[J].有色矿山,2002,31(5):21-29
    [14]聂树人,索有瑞.难选冶金矿石浸金[M].北京:地质出版社,1997.8
    [15]威廉斯RA.难选矿石的处理[J].国外金属矿选矿,1995,(7):9-14
    [16]李卫,谭凯旋.我国难处理金矿的研究现状与开发前景[J].湖南地质,1999,18(2):201-205
    [17]冯其明,陈云,张国范,等.我国几种难处理矿石加工利用现状[J].金属矿山,2006,(8):27-30
    [18]黄金生产工艺指南编委会.黄金生产工艺指南[M].北京:地质出版社,2000:188
    [19]帕恩格姆L S.难处理金矿石的加压氯化物浸出[J].国外金属矿选矿,1997,(8):15-20
    [20]Vaughan J P.The process mineralogy of gold:The classification of ore types[J]. Journal of the Minerals,2004,56(7):46-48
    [21]胡春融,杨凤,杨廻春.黄金选冶技术现状及发展趋势[J].黄金,2006,27(7):29-36
    [22]刘汉钊.难处理金矿石难浸的原因及预处理方法[J].黄金,1997,18(9):44-47
    [23]王力军,刘春谦.难处理金矿石预处理技术综述[J].黄金,2000,21(1):38-45
    [24]刘汉钊.国内外难处理金矿焙烧氧化现状和前景[J].国外金属矿选矿,2005,(7):5-10
    [25]闵国暐,罗中兴.论难处理金矿提金工艺[J].矿冶工程,1996,16(1):49-53
    [26]魏明安.难处理金矿石选冶工艺研究[J].矿冶,1995,4(3):44-48
    [27]李岭值.从难处理金矿中回收金的工艺研究[J].湿法冶金,1994,(3):23-26
    [28]IglesiasN.含金难处理矿石处理方法的评述和生物工艺技术的最新进展[J].湿法冶金,1994,(3):33-38
    [29]闵小波,柴立元,钟海云,等.难处理金矿预处理技术工业应用评述[J].矿产保护与利用,1998,(6):45-48
    [30]马尚文,马得民,孟庆芳.难浸金矿石提金研究现状[J].河南大学学报(自然科学版),1996,(2):63-65
    [31]周丽,文书明,李华伟.难浸金矿预处理技术及其应用[J].国外金属矿选矿2004,(3):11-14
    [32]黄孔宣.国外难处理金矿石处理工艺评述[J].国外黄金参考,1992,(3):1-7
    [33]吴荣庆,张燕如,张安宁.我国黄金矿产资源特点及循环经济发展现状与趋势(Ⅰ)[J].中国金属通报,2008,(12):32-34
    [34]吴荣庆,张燕如,张安宁.我国黄金矿产资源特点及循环经济发展现状与趋势(Ⅱ)[J].中国金属通报,2008,(13):29-31
    [35]任炽刚,周世俊.用扫描质子微探针研究包裹金和微细粒金的赋存状态[J].核技术,1993,16(8):479-482
    [36]郑存江,熊英,胡建平.微细粒包裹型金矿中金的赋存状态扫描电镜分析[J].理化检验·物理分册,2006,(4):184-186
    [37]邱兆明,穰玫,邱隆伟.黄铁矿及毒砂中负氧化数金的发现及判定[J].长春科技大学学报,1994,24(2):169-175
    [38]张振儒,杨思学.某些矿物中次显微金及品格金的研究[J].地质找矿论丛,1987,2(4):70-76
    [39]吴敏杰,白春根.碳质金矿中碳质物的物质组成及其与金的相互作用[J].黄金,1994,15(6):70-76
    [40]盛艳玲,陈丽红,张强,等.某含碳难处理金矿石焙烧-氰化试验研究[J].黄金,2007,(1):32-34
    [41]方兆珩.碳质金矿的矿物特征和提金工艺[J].黄金科学技术,2003,11(6):28-35
    [42]赵俊蔚,郑晔,邢志军,等.微波处理碳质金矿石技术研究[J].黄金,2008,29(3):35-38
    [43]刘建军,梁经冬,王忠梅.某含多金属硫化物金梢矿浸金工艺研究[J].黄金,1992,13(11):28-31
    [44]闫军宁.某高砷高硫微细粒多金属难处理金矿浮选试验研究[J].矿产综合利用,2006,3(3):10-12
    [45]龙仲胜.多金属矿的可选性研究[J].矿业研究与开发,2002,22(1):31-33
    [46]黄宗良.难浸金矿预氧化工艺的研究和应用[J].湿法冶金,1994,(2):5-8
    [47]李锋.难处理金精矿加压氧化-氰化提金工艺研究[J].湿法冶金,2003,22(4):183-187
    [48]朱军,刘苏宁.难处理金矿浸出技术的现状与研究[J].矿业工程,2010,8(1):35-36
    [49]孟宇群,王隆保,代淑娟.一种难处理金矿预处理新方法[J].有色矿冶,2001,17(5):11-14
    [50]高起鹏.难浸金矿氰化预处理工艺的进展[J].有色矿冶,2004,20(4):26-29
    [51]姜涛.提金化学[M].湖南,长沙:湖南科学技术出版社,1998
    [52]郑晔.难处理金矿石预处理技术及应用现状[J].黄金,2009,30(1):36-41
    [53]Dodson Chris, Lakshmanan V I. TORBEDTM reactor-potential opportunities to treat refractory gold ores[C]. Randol Gold & Silver Forum'98. Denver, Colorado,1998,235-238
    [54]Weeks T, McGaffin I, Loah J. Operational aspect of whole ore treatment at PT Newmont Minahasa Rasa[C]. Randol Gold & Silver Forum'98. Denver Colorado,1998,227-234
    [55]汤桂花,赵增泰,郑冲.硫酸[M].北京:化学工业出版社,1999.5
    [56]Frser K S,Whlton R H, Wells J A. Processing of refractory gold ores[J]. Minerals Engineering,1991,4(7-11):1029-1041
    [57]肖松文,梁经冬.难浸金矿焙烧处理的新进展[J].黄金,1993,4(6):8-9
    [58]Demopoulos G P, Papangelakis V G. Recent Advances in Refractory Gold Processing[J]. CIM Bulletin,1989,82(931):85-91
    [59]袁朝新,汤集刚.含砷金精矿的焙烧和氰化浸出试验及焙砂和浸渣的矿物学研究[J].有色金属(冶炼部分),2006,(5):28-30
    [60]王云.难处理金精矿焙烧技术的发展及展望[J].有色金属(冶炼部分),2002,(4):29-33
    [61]姚香,臧忠江.紫金矿业低品位与难处理选冶矿产资源的开发利用[J].采矿技术,2006,(3):179-181
    [62]Haque K E.黄金冶金[M].北京:原子能出版社,1988:438-447
    [63]孙宣宜,黄智校.微波炉加热预处理难浸金精矿[J].国外黄金参考,1998,(3-4):36-41
    [64]Kazi E H. Microwave energy for mineral treatment processes-a brief review[J]. International Journal of Mineral Processing,1999,57(1):1-24
    [65]马少键,乔红光.广西贵港高砷浮选金精矿微波预处理试验研究[J].有色矿冶,2005,21(7):2-4
    [66]魏明安,张锐敏.微波处理难浸微细粒包裹金的试验研究[J].矿冶,2001,10(1):74-77
    [67]罗文杰,马少键,周显文.含砷难处理金矿的预处理工艺[J].中国非金属矿工业导刊,2007,(增刊):39-41
    [68]殷书岩,杨洪英.难处理金矿加压氧化预处理技术与发展[J].贵金属,2008,29(1):56-59
    [69]黄怀国.难处理金精矿的酸性热压预氧化研究[J].矿冶工程,2007,27(4):42-45
    [70]孙全庆.难处理金矿石的碱法加压氧化预处理[J].湿法冶金,1999,(2):14-18
    [71]杨洪英,佟琳琳,殷书岩.湖南某难处理金矿的加压预氧化-氰化浸金试验研究[J].东北大学学报(自然科学版),2007,28(9):1305-1208
    [72]Thomas K G. Alkaline and Acidic autoclaving of refractory gold ores[J]. Journal of Metals,1991,43(2):16-19
    [73]Papangelakis Y G, Demopoulos G P. Acid Pressure oxidation of arsenopyrite: part 1, Reaction chemistry[J]. Canadian Metallurgical Quarterly,1990,29(1): 1-12
    [74]林燕.难处理金矿的热压氧化预处理[J].世界有色金属,2009,(7):26-29
    [75]刘汉钊.国内外难处理金矿压力氧化现状和前景(第一部分)[J].国外金属矿选矿,2006,(8):6-11
    [76]Demopulos G P, Papangelakis V G. Acid pressure oxidation of refractory gold mineral carriers[C]. Proceedings of the international symposium on gold metallurgy. Winnipeg, Canada,1987,341-357
    [77]周绍銮,孙全庆,张晓泓,等.难处理金矿石的加压浸出技术[J].铀矿冶,1997,16(4):237-244
    [78]Lehmanna M N, O'Learyb S, Dunn J G. An evaluation of pretreatments to increase gold recovery from a refractory ore containing arsenopyrite and pyrrhotite[J]. Minerals Engineering,2000,13(1):1-18
    [79]Berezowsky R M G S, Collins M J, Kerfoot D G E,et al. The commercial status of pressure leaching technology [J]. Journal of Metals,1991,43(2):9-15
    [80]刘汉钊.国内外难处理金矿压力氧化现状和前景(第二部分)[J].国外金属矿选矿,2006,(9):4-9
    [81]托马斯KG加压氧化法处理难选矿石的实践[J].国外金属矿选矿1998,(3):30-32
    [82]郭长阁.含砷难浸金矿的处理综述[J].国外金属矿选矿,1995,(3):1-7
    [83]夏光样,石伟,昊林荣.碱性催化氧化含砷难处理金矿石的理论及工艺研究[J].黄金,1996,17(2):27-33
    [84]李学强,翁占斌,路良山,等.含砷难处理金银精矿催化氧化酸浸湿法的研究及应用[J].现代矿业,2009,(1):36-40
    [85]尚殿英.含砷难处理金矿石的处理工艺[J].矿产保护与利用,1991,(6):27-30
    [86]郑存江.含砷难浸金矿的研究及应用[J].陕西地质,2003,21(1):88-98
    [87]张兴仁,傅文章.世界提金工艺的革新技术与新进展[J].国外金属矿选矿1996,(3):6-11
    [88]张秀华.难选冶金矿石预处理工艺现状[J].湿法冶金,1998,(3):15-18
    [89]王菊香.浅谈含砷金矿提金前的预处理工艺及合理选择[J].冶金矿山设计与建设,1997,29(6):23-26
    [90]周一康.难处理金矿石预处理方法研究进展及对策建议[J].有色金属(冶炼部分),1996,(3):33-37
    [91]张培根.金精矿稀硝酸常压氧化渣脱硫试验研究[J].云南冶金,2003,(5):21-23
    [92]简椿林.黄金冶炼技术综述[J].湿法冶金,2008,27(1):1-6
    [93]崔礼生,韩跃新.难以氰化金矿石的预处理现状[J].金属矿山,2005,(8):164-168
    [94]陈红轶,姚国成.难浸金矿预处理技术的现状及发展方向[J].金属矿山, 2009,(9):81-84
    [95]Linge H G. Electrolytic process for refractory arsenopyritic gold ores[J]. Minerals Engineering,1995,8(11):1327-1331
    [96]Linge H G, Welham N J. Gold recovery from a refractory arsenopyrite (FeAsS) concentrate by in-situ slurry oxidation [J]. Minerals Engineering,1997,10(6): 557-566
    [97]Arslana F, Dubyb P F. Electro-oxidation of pyrite in sodium chloride solutions[J]. Hydrometallurgy,1997,46(1-2):157-169
    [98]罗崇文.高铜含金氧化矿氰化浸金研究[J].云锡科技,1999,(1):33-35
    [99]鲍利军,吴国元.高砷硫金矿的预处理[J].贵金属,2003,24(3):61-66
    [100]夏光祥,石伟,涂桃枝,等.氨浸法预处理含砷难浸金矿石的应用研究[J].黄金,1996,25(10):28-33
    [101]莫伟,马少健,乔红光.广西含砷难浸金精矿碱浸预处理试验研究[J].有色矿冶,2005,21(7):37-38
    [102]Meng yuqun. Pretreatment and thiosulfate leaching of refractory gold-bearing arsenosulfide concentrates [J]. Journal of University of Science and Technology Beijing,2005,12(5):385-389
    [103]Meng yuqun. A new extraction process of carbonaceous refractory gold concentrate [J]. Transactions of Nonferrous Metals Society of China,2005, 15(5):1178-1184
    [104]孟宇群,代淑娟,宿少玲.某含砷难浸金矿石提高回收率研究[J].黄金,2005,26(1):34-36
    [105]孟宇群,代淑娟,刘德军,高付清.某金矿石浸渣浮选精矿预氧化及氰化提金研究[J].有色金属(冶炼部分),2007,(1):17-19
    [106]孟宇群,吴敏杰,宿少玲,王隆保.某含砷难浸金精矿常温常压强化碱浸预处理试验研究[J].有色金属,2002,23(6):25-30
    [107]孟宇群,吴敏杰,宿少玲,王隆保.难浸含砷金精矿的碱性常温、常压强化预氧化工艺工业化研究[J].黄金,2004,25(2):26-71
    [108]孟宇群.难浸砷金精矿的碱性常温常压预氧化[J].贵金属,2004,25(3):1-5
    [109]代淑娟,韩跃新,尹文新,孟宇群.某难浸浮选金精矿碱式预处理-氰化提金工艺[J].有色金属,2006,58(4):44-47
    [110]温建康.生物冶金的现状与发展[J].中国有色金属,2008,(10):74-76
    [111]高金昌.生物冶金在黄金工业生产中的应用现状及发展趋势[J].黄金,2008,29(10):36-40
    [112]Climo M, Watling H R, Bronswijk W V. Biooxidation as pre-treatment for a telluride-rich refractory gold concentrate [J]. Minerals Engineering,2000, 13(12):1219-1229
    [113]朱长亮,杨洪英,汤兴光,等.含砷难处理金矿的细菌氧化预处理研究现状[J].贵金属,2010,31(1):48-52
    [114]Tributsch H. Direct versus indirect bioleaching[J]. Hydrometallurgy,2001, 59(2-3):177-185
    [115]Sand W, Gehrke T, Jozsa P G, et al. (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching[J]. Hydrometallurgy,2001,59(2-3):159-175
    [116]杨洪英,杨立,魏绪钧.氧化亚铁硫杆菌(SH-T)氧化毒砂的机理[J].中国有色金属学报,2001,11(2):323-327
    [117]方兆珩.硫化矿细菌氧化浸出机理[J].黄金科学技术,2002,10(5):26-31
    [118]柳建设,邱冠周,王淀佐.硫化矿物细菌浸出机理探讨[J].湿法冶金,1997,(3):1-3
    [119]Spender P A. Influence of bacterial culture selection on the operation of a plant treating refractory gold ore[J], International Journal of Mineral Processing. 2001,62(1-4):217-229
    [120]杨洪英,杨立.细菌冶金学[M].北京:化学工业出版社,2006:17-18
    [121]李宏煦,王淀佐.生物冶金中微生物及其作用[J].有色金属,2003,55(2):58-63.
    [122]Brierley J A, Brierley C L. Present and future commercial application of biohydrometallurgy[J]. Hydrometallurgy,2001,59(2-3):233-239
    [123]Brierley C L. Bacterial succession in bioheap leaching[J]. Hydrometallurgy, 2001,59(2-3):249-255
    [124]Schrenk M O, Edwards K J, Goodman R M, et al. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:Implications for Generation of Acid Mine Drainage[J]. Science,1998,279(5356):1519-1522
    [125]Sandstrom A, Petersson S. Bioleaching of a complex sulphide ore with moderate thermophilic and extreme thermophilic microorganisms[J]. Hydrometallurgy,1997,46(1-2):181-190
    [126]Henry L E. Past,present and future of biohydrometallurgy[J]. Hydrometallurgy, 2001,59(2):127-134
    [127]姚国成,阮仁满,温建康.难处理金矿的生物预氧化技术及工业应用[J].矿产综合利用,2003,(1):33-39
    [128]李雅芹,夏伟,钟慧芳.用中度嗜热菌氧化预处理含砷难浸金精矿回收的 研究[J].微生物学报,1996,36(1):42
    [129]王金祥.我国难浸金矿细菌氧化技术开发研究现状[J].湿法冶金,1997,(1):1-6
    [130]Hubert W A, Ferroni G D, Leduc L G. Temperature-dependent survival of isolates of Thiobacillus ferrooxidans[J]. Current Microbiology,1994,28(3): 179-183
    [131]Hubert W A, Leduc L G, Ferroni G D. Heat and cold shock responses in different strains of thiobacillus ferrooxidans[J]. Current Microbiology,1995, 31(1):10-14
    [132]Berthelot D, Leduc L G, Ferroni G D.Temperature studies of iron-oxidizing autotrophs and acidophilic heterotrophs isolated from uranium mines [J]. Canadian Journal of Microbiology,1993,39(4):384-388
    [133]李廷梁.俄罗斯难浸金矿的生物也进技术[J].贵金属,1998,19(1):54-56
    [134]Deng T L, Liao M X, Wang M H, et al. Investigations of accelerating parameters for the biooxidation of low-grade refractory gold ores[J]. Minerals Engineering,2000,13(14-15):1543-1553
    [135]Deng T L, Liao M X. Gold recovery enhancement from a refractory flotation concentrate by sequential bioleaching and thiourea leach [J]. Hydrometallurgy, 2002,63(3):249-255
    [136]张在海,王淀佐,邱冠周,等.细菌浸矿的细菌学原理[J].湿法冶金,2000,19(3):16-21
    [137]吕重安,安娟.生物氧化预处理提金新工艺研究[J].湖南有色金属,2010,26(1):28-30
    [138]周洪波,邱冠周,邬长斌,等.嗜酸微生物生态学与矿物生物浸出技术[J].应用与环境生物学报2005,11(6):784-788
    [139]杨少华,杨凤丽,余新阳.难处理金矿石的细菌氧化机理既影响因素[J].湿法冶金,2006,25(2):57-60
    [140]童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社,1997:118
    [141]Rawlings D E, Dew D, Plessis C D. Biomineralization of metal-containing ores and concentrates[J]. Trends in Biotechnology,2003,21(1):38-44
    [142]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2008
    [143]方兆珩.生物氧化浸矿反应器的研究进展[J].黄金科学技术,2002,10(6):1-7
    [144]Merchuk J C, Siegel M H. Air-lift reactors in chemical and biological technology[J]. Journal of Chemical Technology and Biotechnology,1988,41(2): 105-120
    [145]Chisti Y. Pneumatically Agitated Bioreactors in Industrial and Environmental Bioprocessing:Hydrodynamics, Hydraulics, and Transport Phenomena[J]. Applied Mechanics Reviews,1998,51(1):33-112
    [146]Contreras A, Garcia F, Molinaa E, et al. Influence of sparger on energy dissipation, shear rate, and mass transfer to sea water in a concentric-tube airlift bioreactor[J]. Enzyme and Microbial Technology,1999,25(10):820-830
    [147]Ruitenberg R, Schultz C E, Buisman C J N. Bio-oxidation of minerals in air-lift loop bioreactors[J]. International Journal of Mineral Processing,2001,62(1-4): 271-278
    [148]Siegel M H, Robinson C W. Application of airlift gas-liquid-solid reactors in biotechnology [J]. Chemical Engineering Science,1992,47(13-14):3215-3229
    [149]Chisti Y, Encyclopedia of Industrial Biotechnology:Bioprocess, Bioseparation, and Cell Technology[M]. New York:John Wiley & Sons Inc,2009
    [150]Loi G, Mura A, Trois P, et al. Bioreactor performance versus solids concentration in coal biodepyritization[J]. Fuel Processing Technology,1994, 40(2-3):251-260
    [151]Mcfarlane C M, Zhao X M, Nienow A W. Studies of High Solidity Ratio Hydrofoil Impellers for Aerated Bioreactors.2. Air-Water Studies[J]. Biotechnology Progress,1995,11(6):608-618
    [152]Bailey A D, Handford G S. Oxygen mass transfer limitation of batch bio-oxidation at high solids concentration[J]. Minerals Engineering,1994, 7(2-3):293-303
    [153]柳建设,王铧泰,闫颖,等.气升式反应器中细菌氧化预处理难浸金精矿的浸出参数优化[J].矿冶工程,2008,28(5):35-39
    [154]廖梦霞,汪模辉,邓天龙.难处理硫化矿生物湿法冶金研究进展Ⅱ氧化机制、强化细菌浸出与生物反应器设计[J].稀有金属,2004,28(5):931-935
    [155]Nakamura K, Noike T, Matsumoto J. Effect of operation conditions on biological Fe2+ oxidation with rotating biological contactors[J].Water Research, 1986,20(1):73-77
    [156]Gomez J M, Cantero D. Soporte para la inmovilizacion de un biocatalizador[J]. Ingenieria Quimica,1999,31(354):171-175
    [157]Garcia M J, Palencia I, Carranza F. Biological ferrous iron oxidation in packed-bed columns with low-grade sulphide mineral as support[J]. Process biochemistry,1989,24(3):84-87
    [158]Mazuelos A, Romero R, Palencia I,et al.Continuous ferrous iron biooxidation in flooded packed bed reactors[J]. Minerals Engineering,1999,12(5):559-564
    [159]Iglesias N, Carranza F. Treatment of a gold bearing arsenopyrite concentrate by ferric sulphate leaching[J]. Minerals Engineering,1996,9(3):317-330
    [160]Mazuelos A, Carranza F, Palencia I, et al. High efficiency reactor for the biooxidation of ferrous iron[J]. Hydrometallurgy,2000,58(3):269-275
    [161]Yang X J, Zhang X X, Fan Y L,et al. The leaching of pentlandite by Acidithiobacillus ferrooxidans with a biological-chemical process [J].Biochemi-cal Engineering Journal,2008,42(2):166-171
    [162]范艳利,张晓雪,李红玉.生物-化学两级循环反应器预处理坪定难处理金矿石[J].黄金,2009,30(7):41-45
    [163]吴国元.高砷金精矿真空脱砷的工艺及动力学的研究[D].昆明:昆明贵金属研究所硕士论文,1990:8
    [164]李叙谦.金在硫化锑精矿中的综合回收[J].有色金属(冶炼部分),1983,(3):11-14
    [165]赵国权,周洪斌.关于硫化铜精矿离析工艺的若干问题[J].有色金属(冶炼部分),1982,(3):50-53
    [166]赵天从,龙炳清.湿法常压催化分解毒砂和黄铁矿的研究[J].黄金,1987,(2):37-40
    [167]王亚林.我国生物技术发展的历史、现状与未来[J].武汉工业学院学报,2001,(3):49-52
    [168]Slabbert W, Dew D, Godfrey M, et al. Commissioning of a BIOX(?) module at Sao Bento, Mineracao[C], Randol gold forum, Vancouver, Canada, March 1992, 447-452
    [169]Dew D W, Lawson E N, Broadhurst J L. The BIOX(?) process for biooxidation of gold-bearing ores or concentrates[M]//Rawlings D E, eds. Biomining:theory, microbes and industrial processes. New York:Springer,1997:45-80
    [170]Rawlings D E, Johnson D B. The microbiology of biomining development and optimization of mineral-oxidizing microbial consortia[J]. Microbiology,2007, 153(2):315-324
    [171]Van Aswegen P C, Van Niekerk J, Olivier W. The BIOXTM process for the treatment of refractory gold concentrates[M]//Rawlings D E, Johnson D B, eds. Biomining. Berlin Heidelberg:Springer Verlag,2007:1-33
    [172]周爱东,杨红晓.金的生物冶金发展[J].有色矿冶,2005,21(3):25-27
    [173]Poulin R, Lawrence R W. Economic and environmental niches of biohydrometallurgy[J]. Minerals Engineering,1996,9(8):799-810
    [174]Ubaldinia S, Veglio F, Toro L, et al. Biooxidation of arsenopyrite to improve gold cyanidation:study of some parameters and comparison with grinding[J]. International Journal of Mineral Processing,1997,52(1):65-80
    [175]Breed A W, Glatz A, Hansford G S, et al. The effect of As(Ⅲ) and As(Ⅴ) on the batch bioleaching of a pyrite-arsenopyrite concentrate [J]. Minerals Engineering, 1996,9(12):1235-1252
    [176]Wei Y, Zhang K, Adamov E V, et al. Semi-continuous biooxidation of the Chongyang refractory gold ore[J]. Minerals Engineering,1997,10(6):577-583
    [177]Brierley J A, Luinstra L. Biooxidation-Heap Concept for Pretreatment of Refractory Gold Ore[C]//Torma A E, Wey J E, Laksmanan V I. International biohydrometallurgy symposium:Biohydrometallurgical Technologies. Vol. Ⅰ: Bioleaching Processes. Wyoming, United States:The Minerals, Metals and Materials Society,1993:437-448
    [178]Whitlock J L. Biooxidation of refractory gold ores(The Geobiotics Process)[M]//Rawlings D E, eds. Biomining:theory, microbes, and industrial processes. New York:Springer,1997:117-127
    [179]刘政,杨绍斌,宋小美,等.生物氧化难浸金矿的研究现状[J].湿法冶金,2010,29(1):9-11
    [180]秦育红,张晨鼎,张通.难浸硫化金矿的细菌氧化预处理[J].太原理工大学学报,2003,34(5):618-620
    [181]李丽洁.难处理金矿细菌预氧化浸出工艺研究现状及进展[J].矿产保护与利用,1999,(3):41-44
    [182]地矿部西安综合岩矿测试中心.高砷难浸金精矿细菌氧化半工业试验研究报告[R].1997
    [183]郑存江,张辉,冯明伸,等.难浸含砷金精矿生物预氧化生产实践[J].黄金,2000,21(11):31
    [184]朱长亮,杨洪英,王玉峰,等.含砷难处理金矿石的细菌氧化预处理工艺研究现状与进展[J].现代矿业,2009,(6):14-17
    [185]黄海辉.难处理金矿细菌氧化的工业应用及发展方向[J].矿冶,2008,17(2): 63-67
    [186]杨天足.贵金属冶金及产品深加工[M].长沙:中南大学出版社,2005
    [187]李井坤.选提金技术发展分析[J].中小企业管理与科技,2008,(8):72-73
    [188]郭振杰.提金新工艺-氰化法[J].内蒙古科技与经济,2007,(24):75-76
    [189]马巧嘏.黄金回收600问[M].北京:科学技术文献出版社,1992
    [190]黄振泉.黄金提取方法与工艺现状及发展前景展望[J].赣南师范学院学报,1994,(1):54-66
    [191]孙戬.金银冶金[M].北京:冶金工业出版社,2001
    [192]黎鼎鑫,王永录.贵金属提取与精炼[M].长沙:中南大学出版社,2003
    [193]卢宜源,宾万达.贵金属冶金学[M].长沙:中南大学出版社,2004
    [194]黄礼煌.金银提取技术[M].北京:冶金工业出版社,2001
    [195]Kondos P D, Deschenes G, Morrison R M. Process optimization studies in gold cyanidation[J]. Hydrometallurgy,1995,39(1-3):235-250
    [196]Wadsworth M E. Surface processes in silver and gold cyanidation[J]. International Journal of Mineral Processing,2000,58(1-4):351-368
    [197]Wadsworth M E, Zhu X, Thompson J S, et al. Gold dissolution and activation in cyanide solution:kinetics and mechanism[J]. Hydrometallurgy,2000,57(1): 1-11
    [198]王宇,陈景,韦群燕,等.金、银和铜氰化溶解速率及硫离子对其影响的比较[J].中国有色金属学报,2007,17(1):172-178
    [199]李桂春,卢寿慈.非氰提金方法的研究进展[J].矿冶工程,2004,24(8):21-24
    [200]玉涵,胡显智.氰化及非氰化提金方法综述[J].云南冶金,2010,39(3):9-12
    [201]童雄.强化贵金属金的选矿、化学提取、微生物浸出和深加工的新技术与新工艺[J].金属矿山,2005,(4):94-100
    [202]邱廷省,聂光华,张强.难处理含铜金矿石预处理与浸出技术现状及进展[J].黄金,2005,26(8):30-33
    [203]周世杰,仲崇波,张淑敏,等.提高珲春金铜矿含铜金精矿氰化浸出率的试验研究[J].黄金,1999,20(4):38-40
    [204]蔡世军,王玲玲.氨氰浸金技术在老柞山金矿的应用[J].黄金,2001,22(1):45-46
    [205]薛光.从含铜铅金精矿中提取金银的工艺方法[J].黄金地质,2000,6(3):77-79
    [206]黄昆,陈景.加压氰化法提取贵金属的研究进展[J].云南冶金,2005,29(4): 385-390
    [207]郑平.东北寨难浸金矿石电化学-氰化提金研究[J].矿产综合利用,2000,(4):20-22
    [208]马伟,马荣骏,申殿邦.磁场效应对氯化铜浸出硫化砷强化过程研究[J].有色金属,1998,50(3):76-79
    [209]罗仙平,邱廷省,付丽珠.磁场强化硫脲提金技术的热力学研究[J].南方冶金学院学报,1999,20(4):248-251
    [210]邱廷省,熊淑华,夏青.含砷难处理金矿的磁场强化氰化浸出试验研究[J].金属矿山,2004,(12):32-34
    [211]唐俊智.山东恒邦冶炼公司合理回收金矿资源提高尾矿利用率[J].山东国土资源,2000,(4):20-22
    [212]林鸿汉.从铜金精矿中湿法综合回收金银铜硫的工艺研究.矿冶工程[J].2006,26(1):52-54
    [213]薛光,于永江.加压氧化-氰化浸出法从氰化尾渣中回收金[J].矿产综合利用,2004,(6):48-49
    [214]薛光,于永江.从焙烧氰化尾渣中回收金银[J].矿产综合利用,2002,(2):46-48
    [215]李新春.阿希金矿氰化尾矿金的回收及最终尾矿综合利用的思路[J].新疆有色金属,2005,(2)47-49
    [216]杨保成,任淑丽,宋殿举.浮选金精矿氰化尾矿的综合利用[J].黄金,2004,25(3):33-35
    [217]石同吉.氰化尾渣综合回收有价金属的研究与实践[J].金属矿山,2002,(3):39-41
    [218]梁冠杰.河南某氰化尾渣中有价金属的综合回收[J].矿产综合利用,2001,(3):35-37
    [219]郑晔,胡春融,王海东,等.黄金矿山氰化尾矿综合回收研究与实践[J].黄金,2003,24(5):36-38
    [220]崔学奇,吕宪俊,胡术刚,等.某氰化尾矿综合回收铜铅的试验研究[J].矿产综合利用,2006,(4):38-39
    [221]吴向阳,王明勤,孙书平,等.氰化尾渣回收铅锌混合精矿过程清洁生产技术的研究与应用[J].中国科技信息,2005,(17):172
    [222]高俊峰,李晓波.我国氰化尾渣的利用现状[J].矿业工程,2005,3(4):38-39
    [223]许阳芳,曲保忠.新疆某氰化提金厂尾矿综合回收试验研究[J].新疆有色金属2002,(4):15-17
    [224]朱磊,康广凤,李淑芬,等.氰化尾渣多元素资源化回收技术研究[J].环境科技,2010,23(2):5-7
    [225]潘项绒.银洞坡金矿氰渣浮选尾矿的综合回收[J].有色矿山,2000,29(4):27-29
    [226]潘项绒.银铜坡金矿尾矿资源综合回收的研究与应用[J].矿业快报,2000,(12):21-22
    [227]南君芳,李林波,杨志祥.金精矿焙烧预处理冶炼技术[M].北京:冶金工业出版社,2010.1
    [228]杨松荣,邱冠周,胡岳华,等.含砷难处理金矿石生物氧化工艺及其应用[M].北京:冶金工业出版社,2006
    [229]童雄,钱鑫.氧化剂提高金氰化浸出率的热力学判据研究[J].有色金属,1996,48(3):75-78
    [230]李敦钫.氰化浸金过程中铅盐作用[J].黄金,2000,21(4):31-33
    [231]廖元双,鲁顺利,杨大锦.氰化提金及氧化剂强化浸金过程机理研究[J].有色金属(冶炼部分),2010,(2):46-50
    [232]钟平,黄振泉.富氧浸出机理及其在氰化提金中的应用[J].江西有色金属,1996,10(4):28-34
    [233]张平民.工科大学化学[M].长沙:湖南教育出版社,2002.10
    [234]王越.重金属强化氰化浸金的动力学研究[J].甘肃冶金,2007,29(4):49-51
    [235]武钢.优化山东新城金矿浮选金精矿氰化浸出试验与机理研究[D].昆明:昆明理工大学,2002
    [236]Jeffrey M I, Ritchie I M. The leaching of gold in cyanide solutions in the presence of impurities. Ⅰ. The effect of lead[J]. Journal of the Electrochemical Society,2000,147(9):3257-3262
    [237]Jeffrey M I, Ritchie I M. The leaching of gold in cyanide solutions in the presence of impurities. Ⅱ. The effect of silver[J]. Journal of the Electrochemical Society,2000,147(9):3272-3276
    [238]张兴仁.硝酸铅对金矿石氰化过程的影响:机理研究新进展[J].国外黄金参考,2001,(3-4):26-36
    [239]杨永斌,李骞,姜涛,等.重金属强化含金矿石的氰化浸出[J].中国有色金属学报,2005,15(8):1283-1288
    [240]高东曙.氧化铅在氰化浸金中的应用[J].黄金,1993,14(4):52-53
    [241]童雄,钱鑫.氧化剂强化金浸出的机理研究[J].国外金属矿选矿,1997,(10):37-41
    [242]周永诚,童雄,谢贤,等.铅盐在矿物化学处理过程中的应用[J].湿法冶金,2009,28(3):142-145.
    [243]袁明华,李德,普仓凤.低品位硫化铜矿的细菌冶金[M].北京:冶金工业出版社,2008
    [244]李宏煦.硫化铜矿的生物冶金[M].北京:冶金工业出版社,2007
    [245]范有静,杨洪英,訾建威.溶液中离子对浸矿工程菌生长的影响[J].有色矿冶,2004,20(2):17-19
    [246]Rosen B P. Families of arsenic transporters[J]. Trends in Microbiology,1999, 7(5):207-212
    [247]Kaur P, Rosen B P. Plasmid-encoded resistance to arsenic and antimony [J]. Plasmid,1992,27(1):29-40
    [248]肖细元,陈同斌,廖晓勇,等.中国主要含砷矿产资源的区域分布与砷污染问题[J].地理研究,2008,27(1):201-212
    [249]Ordonez E, Letek M, Valbuena N, et al. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032[J]. Applied and Environmental Microbiology,2005,71(10):6206-6215
    [250]Mukhopadhyay R, Rosen B P. The phosphatase C(X)5R motif is required for catalytic activety of Saccharomyces cerevisiae Acr2p arsenate reductase[J]. The Journal of Biological Chemistry,2001,276(37):34738-34742
    [251]Mobley H L, Rosen B P. Energetics of plasmid-mediated arsenate resistance in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America,1982,79(20):6119-6122
    [252]Saltikov C W, Cifuentes A, Venkateswaran K,et al. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3[J]. Applied and Environmental Microbiology,2003,69(5):2800-2809
    [253]Wang L, Chen S, Xiao X,et al. arsRBOCT arsenic resistance system encoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008[J]. Applied and Environmental Microbiology,2006,72(5):3738-3742
    [254]吴学玲.抗性浸矿细菌的选育及抗性机理研究[D].长沙:中南大学,2007
    [255]Butcher B G, Deane S M, Rawlings D E. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli[J]. Appl Environ Microbiol,2000,66(5):1826-1833
    [256]车媛媛.嗜铁钩端螺旋菌抗砷基因簇的生物信息学分析及改造[D].济南:山东大学,2010
    [257]李海波,曹宏斌,张广积,等.细菌氧化浸出含金砷黄铁矿的过程机理及电化学研究进展[J].过程工程学报,2006,6(10):849-856
    [258]胡会利,李宁.电化学测量[M].北京:国防工业出版社,2007.8
    [259]舒余德,陈白珍.冶金电化学研究方法[M].长沙:中南工业大学出版社,1990.4
    [260]闵小波.含砷难处理浸矿细菌浸出基础理论及工艺研究[D].长沙:中南大学,2000
    [261]余景开.氨性溶液中砷黄铁矿阳极氧化过程的电化学研究[D].北京:中国科学院化工冶金研究所,1999:18-42
    [262]Beattie M J V, Poling G W. A study of the surface oxidation of arsenopyrite using cyclic voltammetry[J]. International Journal of Mineral Processing,1987, 20(1-2):87-108
    [263]Sanchez V M, Hiskey J B. Electrochemical behavior of arsenopyrite in alkaline media[J]. Minerals and Metallurgical Processing,1991,8(1):1-6
    [264]Zheng Z M, Lin H K. An electrochemical study of the oxidation of arsenopyrite in acidic media[C]. EPD Congress. The Minerals, Metals and Materials Society. Warrendale, Penn.1995,389-410
    [265]Lazaro I, Cruz R, Gonzalez I, et al. Electrochemical oxidation of arsenopyrite in acidic media[J]. International Journal of Mineral Processing,1997,50(1-2): 63-75
    [266]姚英杰.氧化亚铁硫杆菌分解难处理金矿的研究[D].成都:四川大学,2005
    [267]Smith R W, Misra M. Recent developments in the bioprocessing of minerals [J]. Mineral Processing and Extractive Metallurgy Review,1993,12(1):37-60
    [268]Crundwell F K. How do bacteria interact with minerals?[J]. Hydrometallurgy, 2003,71(1-2):75-81
    [269]Nemati M, Harrison S T L, Hansford G S, et al. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans:a review on the kinetic aspects[J]. Biochemical Engineering Journal,1998,1(3):171-190
    [270]Hansford G S, Vargas T. Chemical and Electrochemical Basis of Bioleaching Processes[J]. Hydrometallurgy,2001,59(2-3):135-145
    [271]Edwards K J, Hu B, Hamers R J, et al. A new look at microbial leaching patterns on sulfide minerals[J]. FEMS Microbiology Ecology,2001,34(3): 197-206
    [272]Min X B, CHAI L Y, CHEN W L, et al. Bioleaching of refractory gold ore (II): Mechanism on bioleaching of arsenopyrite by Thiobacillus ferrooxidans[J]. Transactions of Nonferrous Metals Society of China,2002,12(1):142-146
    [273]Fernandez M G M, Mustin C, Donato P D, et al. Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans[J]. Biotechnology and Bioengineering,1995,46(1):13-21
    [274]莫里森著S R,吴辉煌译.半导体与金属氧化膜的电化学[M].科学技术出版社,1988.
    [275]李荻.电化学原理(第三版)[M].北京:北京航空航天大学出版社,2008.8
    [276]吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社,1998.6
    [277]查全性.电极过程动力学导论(第三版)[M].北京:科学出版社,2002.1
    [278]曹楚南.腐蚀电化学原理(第三版)[M].北京:化学工业出版社,2008.3
    [279]刘缨,林建群,颜望明.浸矿细菌-钩端螺旋菌属菌株研究进展[J].微生物学报,2006,33(2):151-155
    [280]龙中儿,黄运红,蔡昭玲,等.耐低pH的氧化亚铁硫杆菌选育及其氧化硫酸亚铁的初步研究[J].过程工程学报,2002,2(5):415-420.
    [281]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004.9
    [282]Saikia N, Sengupta P, Gogoi P K, et al. Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge[J]. Applied Clay Science, 2002,22(3):93-102
    [283]伍赠玲.高砷微细浸染型难处理金矿细菌预氧化-氰化提金试验研究[J].矿冶工程,2010,30(1):54-57
    [284]Swash P M. A mineralogical investigation of refractory gold ores and their beneficiation, with special reference to arsenical ores[J]. Journal of the South African Institute of Mining and Metallurgy,1988,88(5):173-180
    [285]杨洪英,范金,崔日成,等.难处理高砷金矿的细菌氧化-提金研究[J].贵金属,2009(3):1-3
    [286]Akcil A. Potential bioleaching developments towards commercial reality: Turkish metal mining's future[J]. Minerals Engineering,2004,17(3):477-480
    [287]Cabral T, Ignatiadis I. Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques[J]. International Journal of Mineral Processing,2001,62(1-4):41-64
    [288]Tipre D R, Dave S R. Bioleaching process for Cu-Pb-Zn bulk concentrate at high pulp density[J]. Hydrometallurgy,2004,75(1-4):37-43
    [289]Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review[J]. Hydrometallurgy,2006,84(1-2):81-108
    [290]杨丽丽,杨洪英,范有静,等.难处理金矿石细菌氧化的影响因素研究[J].贵金属,2007(1):58-62
    [291]杨玮,覃文庆,刘瑞强,等.氰化尾渣中铅锌分离试验研究[J].矿冶工程,2010,30(6):30-33
    [292]徐承焱,孙春宝,莫晓兰,等.清洁无废回收利用尾矿集成化技术研究[J].黄金,2008,29(12):51-54
    [293]张俞明,杨奕旗,邬清平.大厂锡石多金属硫化矿浮选分离的实践与探讨[J].矿产保护与利用,1999,(4):31-34
    [294]李仕雄,李学强,张学政,等.从氰化尾渣高效回收铜、铅、锌、硫的新工艺研究[J].湖南有色金属,2009,25(1):13-16
    [295]李正要,王玲.某铅锌多金属矿铅锌分离试验研究[J].金属矿山,2009,(7):53-56
    [296]贺政.氰化尾渣铅锌浮选试验研究[J].有色金属(选矿部分),2002,(6):9-12
    [297]贺政.氰化尾渣中锌浮选的研究[J].矿冶,2002,11(3):30-34
    [298]罗中杰.银洞坡金矿氰化尾矿直接浮选回收铅、金、银的工艺研究和生产实践[J].黄金,1998,(7):44-46
    [299]刘杰,纪军,孙体昌,等.某复杂难选铅锌多金属硫化矿选矿试验研究[J].有色金属(选矿部分),2010,(2):13-16
    [300]胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社,1987
    [301]陈家模.多金属硫化矿浮选分离[M].贵阳:贵州科技出版社,2001
    [302]Quast K, Hobart G. Marmatite depression in galena flotation[J]. Minerals Engineering,2006,19(6-8):860-869
    [303]邓海波,冯其明,许时.硫酸亚铁和氰化钠在铅锌硫化矿分离中的作用[J].矿冶工程,1991,(4):41-44
    [304]韦晶晶.碳酸钠、硫酸锌混合溶液在铅锌分离浮选中的研究与应用[J].南方国土资源,2004,(11):106-107
    [305]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700