苏云金杆菌4.0718新菌株不同生长时期的蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究提取了苏云金芽胞杆菌(Bacillus thuringiensis,Bt)库斯塔克亚种4.0718新菌株营养生长中期(T_1)、芽胞形成前期(T_2)和芽胞后期(T_3)三个时期的细胞总蛋白质,采用1DE-MS/MS,2DE-MS/MS和“shotgun”技术分离和鉴定蛋白质。比较了不同生长时期细胞总蛋白质表达谱之间的差异,并分析了包括杀虫晶体蛋白质(Insecticidal Crystal Proteins,ICPs)在内的功能蛋白质的表达时空特性,获得了与晶体和芽胞形成过程相关的重要蛋白质信息。
     利用Melanie6.0软件分析2DE图谱,发现在T_1、T_2和T_3时期的蛋白质点数目分别为346±18,299±23和343±11。以T_2时期的2DE胶为参照,T_1和T_3时期的2DE胶与之对比,匹配率分别为70%和60%,反应了蛋白质在不同生长时期的表达差异性。切取蛋白质点并进行MALDI-TOF/TOF MS分析和数据库搜寻,鉴定差异表达的蛋白质点。结果发现,在鉴定到的差异蛋白质点中,T_1时期特异性表达的有蛋白酶VCA0223和转酮醇酶等9个蛋白质点;T_2时期特异性表达的3个蛋白质点分别为支链氨基酸转氨酶、嘌呤核苷磷酸化酶和假想蛋白BC1708;T_3时期特异性表达20个蛋白质点,包括bacillolysin、ORF1和SpoIVA等。与T_2时期比较,T_1时期无表达,T_3时期表达上调的蛋白质点为Cry1A(c)3;下调的蛋白质点6个,分别为寡肽接合蛋白OppA、肽酶T和有机耐受蛋白等;无显著变化的蛋白质点为NAD(+)合成酶和果糖二磷酸醛缩酶。与T_1时期比较,T_3时期无表达,T_2时期表达上调的2个蛋白质点分别为免疫因子A(Immune Inhibitor A,InhA)和InhA precursor;下调的4个蛋白质点包括氨甲基转移酶和转录抑制因子CodY等;无显著变化的2个蛋白质点为异柠檬酸脱氢酶和3-ketoacyl-酰基载体蛋白还原酶。在三个时期均有表达,但相对T_1时期,1-吡咯啉-5-羧酸脱氢酶和苹果酸脱氢酶等5个蛋白质点在T_2时期表达显著下调,苏氨酸脱氢酶在T_2时期表达显著上调,腺苷琥珀酸裂解酶在T_3时期表达显著下调。
     采用1DE-MS/MS和shotgun技术分离和鉴定到了2DE-MS/MS未分离得到的重要功能蛋白质Cry2Aa和ORF2,发现Cry2Aa在T_2时期开始形成,ORF2只在T_3时期表达,这是对2DE数据的一个重要补充。
     对差异蛋白质的表达特征进行综合分析,发现T_1时期表达的蛋白质主要为物质代谢和能量代谢过程中的重要酶类,与其它芽胞杆菌生长期细胞的表达谱相似。T_2时期部分柠檬酸循环酶类蛋白质的表达下调,说明细胞代谢速度开始下降,细胞营养受限,为芽胞形成提供了重要条件,芽胞开始形成,ICPs起始高效表达。T_3时期代谢相关蛋白质的表达量进一步降低,ICPs表达量最高,并形成晶体结构,有利于细胞逆境生存的有机溶剂耐受蛋白和PspA的表达在维护细胞完整和晶体形成中发挥作用。这是首次利用蛋白质组技术研究Bt细胞生理活性物质的变化情况,为深入研究Bt细胞的生理代谢过程、各生物活性因子的功能及探讨Bt的杀虫机制奠定了重要基础,也为拓宽Bt杀虫谱,增强杀虫效果提供了科学依据。同时通过对CotJC、ORF2和SpoIVh等蛋白质的表达特征和功能的分析,获得了与晶体和芽胞形成过程相关的重要信息,为研究晶体蛋白的稳定表达及如何构建稳定抗降解的晶体蛋白质结构奠定了基础。
The proteins of whole cells of Bacillus thuringiensis strain 4.0718 at three phases-middle vegetative phase(T_1), early sporulation phase(T_2)and late sporulation phase(T_3) were extracted,followed with separation and identification by 1DE-MS/MS,2DE-MS/MS and proteomic shotgun technologies. The proteomic profiles were compared,and characteristics of functional proteins including insecticidal crystal proteins (ICPs)were analyzed to get information about the construction of crystals and spores.
     In this study,2DE maps were analyzed using Melanie6.0 software.Analysis results showed that the number of spots in 2DE gels of protein samples of cells at T_1,T_2 and T_3 was 346±18,299±23 and 343±11,respectively.The matching ratio of 2DE gels of protein samples of T_1 and T_3,to 2DE gel of the protein sample of T_2,which was set as reference gel,was 70%and 60%, respecticely.The comparison suggested the characteristics of protein expression at different phases.Protein spots were cut out and analyzed by MALDI-TOF/TOF MS and database search,to identify the proteins with expression change at different phases.The results showed that 9 specifically expressed proteins were identified at T_1,including protease VCA0223 and transketolase;3 at T_2,such as purine nucleoside phosphorylase, hypothetical protein BC1708 and branched-chain amino acid aminotransferase;and 20 at T-3 including bacillolysin,ORF1 and SpoIVA and so on.9 proteins began their expression at T_2,in which,CryiA(c)3 was upregulated at T_3;6 proteins including OppA,peptidase T and organic tolerance protein were downregulated,and 2 proteins-NAD(+)synthase and fructose-bisphosphate aldolase were not regulated significant at T_3.Compared with the expression at T_1,immune inhibitor A (InhA)and InhA precursor were upregulated at T_2,while 4 proteins including CodY protein and aminomethyltransferase were downregulated,and isocitrate dehydrogenase and 3-ketoacyl-(acyl-carrier-protein)reductase were not regulated at T_2.The 8 proteins described above were not found at T_3.The proteins mentioned below were all identified at three phases.Compared with the expression at T_1,5 proteins were downregulated at T_2,for example,1-pyrroline-5-carboxylate dehydrogenase and malate dehydrogenase.And adenylosuccinate synthetase was downregulated at T_3,while threonine synthase was upregulated at T_2.
     By use of IDE-MS/MS and shotgun technologies,Cry2Aa and ORF2 with important function were identified,as important supplementary to 2DE data.Cry2Aa began to express at T_2,while ORF2 specifically expressed at T_3.
     Analysis on expression characteristics of differentially expressed proteins showed that the main proteins were enzymes participating in metabolism pathways at T_1,similar to expression profile of growing cells of other Bacillus.Parts of proteins involved in citric acid cycle were downregulated at T_2,suggesting nutrition limited state of cells,which provided an important prerequisite for the formation of spores. At the same time,ICPs started to express efficiently and spores began to form.The expression amount of proteins related to metabolism further reduced at T_3;ICPs reached the highest expression,and formed into crystal structure,The expression of organic tolerance protein and PspA protein at T_3 could maintain the integrity of cells and the formation of crystals. This is the first use of proteomic technologies to research life process of B.thuringiensis and detect bioactive factors.It laid an important foundation for the study of its physiological process,the function of bioactive factors and the insecticide mechanisms in depth,and provided scientific basis for studying how to broaden the insecticide spectrum,and to enhance the killing effect of B.thuringiensis.Meanwhile,through analysis on expression change and function of proteins such as CotJC,ORF2 and SpoIVA,important informations about the formation of crystals and spores were got,providing a basis for further exploring the stable expression of ICPs and the formation of crystals resistant to degredation.
引文
[1]Hofle H,Whiteley HR.Insecticidal crystal proteins of Bacillus thuringiensis [J].Microbiol Rev,1989,53:242-255.
    [2]喻子牛.苏云金芽胞杆菌[M].北京:科学出版社,1990.
    [3]Hannay CL.Crystalline inclusions in aerobic spore-forming bacteria[J].Nature,1953,172:1004.
    [4]Hannay CL and Fitz-James P.The protein crystals of Bacillus thuringiensis Berliner[J].Can J Microbiol,1955,1(8):674-710.
    [5]Meadows M P.Bacillus thuringiensis in the environment:ecology and risk assessment.In:Entwhistle P F,Croy J S,Bailey M J and Higgs S.(eds).Bacillus thuringiensis an Environmental Biopestitcide:Theory and Practice.New York:John Wiley,Sons[M],1993,195-220.
    [6]C.Hofmann,H.Litht,R.Hutter,V.Pliska.Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly(Pieris brussicae)[J].Eur J Biochem,1988,173:85-91.
    [7]Schnepf E,Crickmore N,Van Rie J,Dean DH,et al.Bacillus thuringiensis and its pesticidal crystal proteins[J].Microbiol Mol Biol Rev,1998,62(3):775-806.
    [8]Feng TY,Fchak K,Smith RA,et al.Bacillus thuringiensis Biotechnology and environmental benefits.Taipei:Hua Shiang Yuan Publishing Co[M],1995,1.
    [9]张宏宇.转苏云金芽胞杆菌杀虫晶体蛋白基因抗虫植物的研究与商品化.生物技术通报,1997,(3):13-15.
    [10]Mcgaughey WH.Insect resistance to the biological insecticide Bacillus thuringiensis[J].Science,1985,229(1):193-195.
    [11]Tabashnik B,et al.Field development of resistant to Bacillus thuringiensis in diamondback moth(Leppidotera:Plutellidae)[J].J Econ Entomol,1990,82(7):1671-1676.
    [12]Tabashnik BE,Gassmann AJ,Crowder DW,Carriére Y.Insect resistance to Bt crops:evidence versus theory[J].Nat Biotechnol.2008,26(2):199-202.
    [13]Haider MZ,Knowles B,Ellar DJ.Specificty of Bacillus thuringiensis Var.colmeri insecticidal delta-endotoxin by differenial processing of the protoxin by larval gut proteases[J].Eur J Biochem,1986,156:531-540.
    [14]洪华珠,杨红.杀虫微生物学纲要[M].武汉:华中师范大学出版社,1998.
    [15]Yue C,Sun M,Yu Z.Improved production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crylC gene in its chromosome[J].Biotechnol Bioeng,2005,92(1):1-7.
    [16]Turner JT,Lampel JS,Anderson JJ,et al.Stability of the delta-endotoxin gene from Bacillus thuringiensis subsp,kurstaki in a recombinant strain of Clavibacter xyli subsp.Cynodontis[J].Appl Environ Microbiol,1991,57(12):3522-3528.
    [17]邵宗泽,喻子牛.苏云金芽胞杆菌辅助蛋白的研究进展[J].微生物学通报,2001,28(1):77-81.
    [18]蔡启良,喻子牛.苏云金芽胞杆菌生物活性成分研究进展[J].应用与环境生物学报,2003,9(2):207-212.
    [19]Coolbangh JC,Williams RE Productiong and characterization of two hemolysin of Bacillus cereus[J].Can J Microbiol,1978,24:1289-1295.
    [20]Winder WR,Whiteley HR.Two highly related insecticidal crystal proteins of Bacillus thuringiensis subspecies kurstaki possess different host range specificities[J].J Bacterial,1989,171:965-974.
    [21]鲁松清,孙明,喻子牛.Classtification of insecticidal crystal protein gene from Bacillus thuringiensis[J].生物工程学报,1998,18:57-62.
    [22]Etienne D,Poncet S,Klier A,Rapoport G.Transcriptional Regulation of the CryⅣ D israelensis[J].J Bacterial,1995:2283-291.
    [24]Cdckmore N,ZeiglerD R,Feitelson J,et al.Revision of the nomenclature for
    [23]黄大防,林敏.农业微生物基因工程[M].北京:中国科技出版社,2000.41724851. the Bacillus thuringiensis pesticidal crystal proteins [J]. Microbiol Mol Biol Rev, 1998, 62: 807-813.
    [25] Kumar PA, Sharma RP, Malik VS. The insecticidal proteins of Bacillus thuringiensis [J]. Adv Appl Microbiol, 1996,42:1-43.
    [26] Peter J, Knight K, Crickmore N. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Mandtuca sexta is aminopeptidase N [J]. Molcular Microbio, 1994, 11: 429-436.
    [27] Aronson A, Shai Y. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action [J]. FEMS Microbio Lett, 2001,195:1-8.
    [28] Smedley DP, Ellar DJ. Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity,receptor recognition and possibly membrane insertion [J]. Microbiology, 1996, 142: 1617-1624.
    [29] Knowles BH, Blatt MR, Tester M. Acytolytic d-endotoxin from Bacillus thuringiensis var. israelensis forms cation selective channels in planarlipidbilayers [J]. FEBS Lett, 1989, 2: 259-265.
    [30] Dalhammar G, Steiner H. Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects [J]. Eur J Biochem, 1984,139: 247-252.
    
    [31] Lovgren A, Zhang M, Engstrom A, et al. Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis [J]. Mol Microbiol, 1990,4(12): 2137-2146.
    [32] Ogierman MA, Fallarino A, Riess T, et al. Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region[J]. J Bacteriol, 1997,179: 7072-7080.
    [33] Miyoshi SI, Shinoda S. Microbial metalloprotease and pathogenesis [J]. Microbes Infect, 2000, 2: 91-98.
    [34] Clairmont FR, Milne RE, Pham VT, Carriere MB, Kaplan H. Role of DNA in the activation of the crylA insecticidal crystal protein from Bacillus thuringiensis[J].J Biol Chem,1998,273:9292-9296.
    [35]Wasinger VC,Cordwell SJ,Cerpa-Poljak A,et al.Progress with gene-product mapping of the mollicutes:mycoplasma genitalium[J].Electrophoresis,1995,16(7):1090-1094.
    [36]钱小红,贺福初.蛋白质组学理论与方法[M].北京:科学出版社,2003.
    [37]O'Farrell P H.High resolution two-dimensional electrophoresis of proteins[J].Biol Chem,1975,250:4007-4021.
    [38]Klose J.Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues.A novel approach to testing for induced point mutations in mammals[J].Humangenetik,1975,26:231-243.
    [39]Scheele GA.Two-dimensional gel analysis of soluble proteins[J].J Biol Chem,1975,250:5375-5385.
    [40]Gorg A.The current state of two-dimensional electrophoresis with immobilized pH gradients[J].Electrophoresis,1988,9:531-546.
    [41]Tang W,Harrata AK,Lee CS.Two-dimensional analysis of recombinant E.coli proteins using capillary isoelectric focusing electrospray ionization mass spectrometry[J].Anal Chem,1997,69:3177-3182.
    [42]Link A J,Eng L,Schieltz DM,et al.Direct analysis of protein complexes using mass spectrometry[J].Nat Biotech,1999,17:676-682.
    [43]Pinto DM,Ning Y,Figeys D.An enhanced microfluidic chip coupled to an electrospray Qstar mass spectrometry for protein identification[J].Electrophoresis,2000,21:181-190.
    [44]Tang J,Gao M,Deng C,Zhang X.Recent development of multi-dimensional chromatography strategies in proteome research[J].JChromatogr B Analyt Technol Biomed Life Sci,2008 Feb 2.
    [45]He P,He HZ,Dai J,Wang Y,Sheng QH,et al.The human plasma proteome:analysis of Chinese serum using shotgun strategy[J].Proteomics,2005,5(13):3442-3453.
    [46]Park YM,Kim JY,Kwon KH,Lee SK.Profiling human brain proteome by multi-dimensional separations coupled with MS[J].Proteomics,2006,6(18):4978-4986.
    [47]Karas M,Hillenkamp F.Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons[J].Anal Chem,1988,60:2299-2301.
    [48]Fenn JB,Mann M,Meng CK,et al.Electrospray ionization for mass spectrometry of large biomolecules[J].Science,1989,246:64-71.
    [49]Loo JA.Bioanalytical mass spectrometry:many flavors to choose[J].Bioconjugate Chem,1995,6:644-650.
    [50]Loo JA.Studying noncovalent protein complexs by electrospray ionization mass spectrometry[J].Mass spectrum Rev,1997,16:1-23.
    [51]Wool TD,Chorush RA,Wampler FM3rd,et al.Gas-phase folding and unfolding of cytochrome cation[J].Proc Natl Acad Sci U S A,1995,92(7):2451-2454.
    [52]Young MM,Tang N,Hempel JC,et al.High throughput protein fold identification by using experimental constraints derived from intra molecular cross-links and mass spectrometry[J].Proc Natl Acad Sci U S A,2000,97:5802-5804.
    [53]Rappsilber J,Siniossoglon S,Hunt EC,et al.generic strategy to analyze the spatial organization of multi-protein complexs by cross-linking and mass spectrometry[J].Anal Chem,2000,72:267-275.
    [54]夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].北京:科学出版社,2004.
    [55]李蓉,梁恒.生物质谱—蛋白质组研究的关键技术[J].化学通报,2002,11:748-757.
    [56]Yost RA,Enke CG.Ttiple quadrupole mass spectrometry for direct mixture analysis and elucidation[J].Anal Chem,1979,51:1251A-1261A.
    [57]Loo JA,Edmonds CG,Smith RD.Primary sequence information from intact proteins by electrospray ionization tandem mass spectrometry[J].Science,1990,248:201-204.
    [58]Schwartz JC,Jardine.Quadrupole ion trap mass spectrometry[J].Methods Enzymol,1996,270:552-586.
    [59] Jonscher KR, Yates JR 3rd. The quadrupole ion trap mass spectrometry-a small solution to a big challenge [J]. Anal Biochem, 1997, 244:1-15.
    [60] Qin J, Chait BT. Identification and characterization of post translation modification of proteins by MALDI ion trap [J]. Anal Chem, 1997, 69: 4002-4009.
    [61] Qin J, Fenyo D, Zhao Y, et al. A strategy for rapid, high-confidengce protein identification [J]. Anal Chem, 1997, 69: 3995-4001.
    [62] Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclontron resonance mass spectrometry: a primer [J]. Mass Spectrum Rev, 1998, 17: 1-35.
    [63] Wood TD, Guan Z, Border CL, et al. Creatine kinase: essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry [J]. Proc Natl Acad Sci U S A, 1998, 95(7): 3362-3365.
    [64] Morris HR, Paxton T, Dell A, et al. High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer [J]. Rapid Commum Mass Spectrom, 1996,10: 889-896.
    [65] Borchers C, Parker CE, Deteiding LJ, et al. Preliminary comparison of precursor scans and lipuid chromatography-tandem mass spectrometry on a hybrid quadrupole time-of-flight mass spectrometer [J]. J Chromatogr A, 1999, 854:119-130.
    [66] Borcher C, Peter JF, Hall MC et al. Identification of in-gel degested proteins by complementary peptide mass fingerprinting and tandem mass spectrometry data obtained on an electrospray ionization quadrupole time-of-flight mass spectrometer [J]. Anal Chem, 2000, 72:1163-1168.
    [67] Spengler SJ. Bioinformatics in the information age [J]. Science, 2000, 287(18): 1221-1223.
    [68] Ranasinghe C, Akhurst RJ. Matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) for detecting novel Bt toxins [J]. J Invertebr Pathol, 2002, 79(1): 51-58.
    [69] Lee KY, Kang EY, Park S, Ahn SK, Yoo KH, Kim JY, Lee HH. Mass spectrometric sequencing of endotoxin proteins of Bacillus thuringiensis ssp. konkukian extracted from polyacrylamide gels [J]. Proteomics, 2006, 6(5): 1512-1517.
    [70] Quesada-Moraga E, Vey A. Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana [J]. Mycol Res, 2004, 108: 441-452.
    [71] Hsiao YM, Ko JL. Determination of destruxins, cyclic peptide toxins, produced by different strains of Metarhizium anisopliae and their mutants induced by ethyl methane sulfonate and ultraviolet using HPLC method [J]. Toxicon, 2001, 39: 837-841.
    [72] Deng F, Wang R, Fang M, Jiang Y, et al. Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100 [J]. J Virol, 2007, 81(17): 9377-9385.
    [73] Murad AM, Laumann RA, Lima Tde A, Sarmento RB, et al. Screening of entomopathogenic Metarhizium anisopliae isolates and proteomic analysis of secretion synthesized in response to cowpea weevil (Callosobruchus maculatus) exoskeleton [J]. Comp Biochem Physiol C Toxicol Pharmacol, 2006,142: 365-370.
    [74] Sharma S, Sundaram CS, Luthra PM, Singh Y, Sirdeshmukh R, Gade WN. Role of proteins in resistance mechanism of Pseudomonas fluorescens against heavy metal induced stress with proteomics approach [J]. J Biotechnol, 2006, 126(3): 374-382.
    [75] Chen FC, Shen LF, Tsai MC, Chak KF. The IspA protease's involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis [J]. Biochem Biophys Res Commun, 2003, 312(3): 708-715.
    [76] Jaouen T, Coquet L, Marvin-Guy L, Orange N, Chevalier S, De E. Functional characterization of Pseudomonas fluorescens OprE and OprQ membrane proteins[J].Biochem Biophys Res Commun.2006,346(3):1048-1052.
    [77]Gohar M,Gilois N,Graveline R,Garreau C,Sanchis V,Lereclus D.A comparative study of Bacillus cereus,Bacillus thuringiensis and Bacillus anthracis extracellular proteomes[J].Proteomics,2005,5(14):3696-3711.
    [78]Delvecchio VG,Connolly JP,Alefantis TG,et al.Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis,Bacillus cereus,and Bacillus thuringiensis[J].Appl Environ Microbiol,2006,72(9):6355-6363.
    [79]宋晟,夏立秋.苏云金芽胞杆菌4.0718菌株杀虫晶体蛋白的双向电泳-飞行时间质谱分析[J].微生物学报,2005,45:467-471.
    [80]宋晟.苏云金芽胞杆菌4.0718新菌株与库斯塔克亚种HD-1菌株杀虫晶体蛋白的蛋白质组研究:[硕士学位论文].湖南师范大学图书馆,湖南师范大学,2005年.
    [81]Warscheid B,Fenselau C.A targeted proteomics approach to the rapid identification of bacterial cell mixtures by matrix-assisted laser desorption/ionization mass spectrometry[J].Proteomics,2004,4(10):2877-2892.
    [82]Dickinson DN,La Duc MT,Haskins WE,Gornushkin I,Winefordner JD,Powell DH,Venkateswaran K.Species differentiation of a diverse suite of Bacillus spores by mass spectrometry-based protein profiling[J].Appl Environ Microbiol,2004,70(1):475-482.
    [83]邹先琼,夏立秋.苏云金芽胞杆菌4.0718菌株杀虫晶体性质的研究[J].生命科学研究,2001,5(3):242-245.
    [84]丁学知,刘全兰,夏立秋.苏云金芽胞杆菌4.0718菌株的杀虫晶体蛋白基因分析[J].微生物学报,2003,43(3):413-417.
    [85]夏立秋,张何,刘全兰.苏云金芽胞杆菌4.0718质粒上杀虫晶体蛋白基因的PCR分析[J].生物技术通报,2002,2:35-37.
    [86]黄秀梨,夏立秋.细菌的革兰氏染色[M].微生物学实验指导,1999,19-20.
    [87] Bollag D, Edelstein S. Protein Methods [M]. 2nd. New York: Wiley Liss, Inc, 1996, 50: 50-55.
    [88] Bjellqvist B, Pasquali C, Ravier F, et al. Micropreparative two-dimensional electrophoresis allowing the separation of samples containing millgram amount of proteins [J]. Electrophoresis, 1993,14:1357-1365.
    [89] Fernadez J, Gharahdaghi F, Mische SM. Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) [J]. Electrophoresis, 1998,19:1036-1045.
    [90] Gharahdaghi F, Weinberg CR, Meagher DA. et al. Mass spectrometric of protein from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity [J]. Electrophoresis, 1999, 20: 601-605.
    [91] Grandvalet C, Gominet M, Lereclus D. Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation [J]. Microbiology, 2001,147:1805-1813.
    [92] Yusuke K, Kiyoko T, Hirohiko H, et al. Expression and characterization of cDNAs for cecropin B, an antibacterial peptide from the silkworm Bombyx mori[J]. Insect Biochem Mol Biol, 1993, 23: 285-290.
    [93] Fedhila S, Nel P, Lereclus D. The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route [J]. J Bacteriol, 2002,184(12): 3296-3304.
    [94] Sedlak M, Walter T, Aronson A. Regulation by overlapping promoters of the rate of synthesis and deposition into crystalline inclusions of Bacillus thuringiensis delta-endotoxins [J]. J Bacteriol, 2000,182(3): 734-741.
    [95] Altincicek B, Linder M, Under D, Preissner KT, Vilcinskas A. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the Lepidopteran model host Galleria mellonella [J]. Infect Immun, 2007,75(1): 175-183.
    [96] Chung MC, Popova TG, Millis BA, Mukherjee DV, Zhou W, et al. Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors [J]. J Biol Chem, 2006, 281(42): 31408-31418.
     [97] Fricke B, Buchmann T, Friebe S. Unusual chromatographic behaviour and one-step purification of a novel membrane proteinase from Bacillus cereus [J]. J Chromatogr, 1995, 715: 247-258.
    [98] Grass G, Schierhorn A, Sorkau E, Muller H, Rucknagel P, Nies DH, Fricke B. Camelysin is a novel surface metalloproteinase from Bacillus cereus [J]. Infect Immun, 2004, 72(1): 219-228.
    [99] Francis AW, Ruggiero CE, Koppisch AT, Dong J, et al. Proteomic analysis of Bacillus anthracis Sterne vegetative cells [J]. Biochem Biophys Acta, 2005, 1748:191-200.
    [100] Nisnevitch M, Cohen S, Ben-Dov E, et al. Cyt2Ba of Bacillus thuringiensis israelensis: activation by putative endogenous protease [J]. Biochem Biophys Res Commun. 2006, 344(1): 99-105.
    [101] Ge B, Bideshi D, Moar WJ, Federici BA. Differential effects of helper proteins encoded by the cry2A and cry11A operons on the formation of Cry2A inclusions in Bacillus thuringiensis [J]. FEMS Microbiol Lett, 1998, 165(1): 35-41.
    [102] Catalano FA, Meador-Parton J, Popham DL, Driks A. Amino acids in the acillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation [J]. J Bacteriol, 2001,183(5): 1645-1654.
    [103] Henriques AO, Beall BW, Roland K, Moran CP Jr. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores [J]. J Bacteriol, 1995,177(12): 3394-3406.
    [104] Seyler RW Jr, Henriques AO, Ozin AJ, Moran CP Jr. Assembly and interactions of cotJ-encoded proteins, constituents of the inner layers of the Bacillus subtilis spore coat [J]. Mol Microbiol, 1997, 25(5): 955-66.
    [105] Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation [J]. Mol Microbiol, 1991,5(1): 173-185.
    [106] Koide A, Hoch JA. Identification of a second oligopeptide transport system in Bacillus subtilis and determination of its role in sporulation [J]. Mol Microbiol, 1994,13(3): 417-426.
    [107] Gominet M, Slamti L, Gilois N, Rose M, Lereclus D. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence [J]. Mol Microbiol, 2001,40(4): 963-975.
    [108] Hsueh YH, Somers EB, Wong AC. Characterization of the codY gene and its influence on biofilm formation in Bacillus cereus [J]. Arch Microbiol, 2008, 189(6): 557-568.
    [109] Kleerebezem M, Tommassen J. Expression of the pspA gene stimulates efficient protein export in Escherichia coli [J]. Mol Microbiol, 1993, 7(6): 947-956.
    [110] Kobayashi R, Suzuki T, Yoshida M. Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes [J]. Mol Microbiol, 2007, 66(1): 100-109.
    [111] DeLisa MP, Lee P, Palmer T, Georgiou G. Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway [J]. J Bacteriol, 2004,186(2): 366-373.
    [112] Hecker M, Volker U. Towards a comprehensive understanding of Bacillus subtilis cells physiology by physiological proteomics [J]. Proteomics, 2004, 4(12): 3727-3750.
    [113] Eymann C, Dreisbach A, Albrecht D, Bernhardt J, et al. A comprehensive proteome map of growing Bacillus subtilis cells [J]. Proteomics, 2004, 4(10): 2849-2876.
    [114] Wang J, Ying T, Wang H, Shi Z, et al. 2-D reference map of Bacillus anthracis vaccine strain A16R proteins [J]. Proteomics, 2005, 5(17): 4488-4495.
    
    [115] Hoper D, Bernhardt J, Hecker M. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach [J]. Proteomics, 2006, 6(5): 1550-1562.
    
    [116] Luo Y, Vilain S, Voigt B, Albrecht D, Hecker M, Brozel VS. Proteomic analysis of Bacillus cereus growing in liquid soil organic matter [J]. FEMS Microbiol Lett, 2007, 271(1): 40-47.
    [117] Sun CP, Song FP, Zhang J, Huang DF. Deletion of spoIVF operon affects the sporulation and the production of crystal in Bacillus thuringiensis G03 [J]. Wei Sheng Wu Xue Bao. 2007,47(4): 583-587.
    [118] Volker U, Hecker M. From genomics via proteomics to cellular physiology of the Gram-positive model organism Bacillus subtilis [J]. Cell Microbiol, 2005, 7(8): 1077-1085.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700