P2Y_1受体对星形胶质化及其对GDNF分泌的影响和相关信号通路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反应性星形胶质化是星形胶质细胞对各种脑损伤后的修复反应,表现为星形胶质细胞的肥大、增生和GFAP含量增加。星形胶质细胞在中枢神经系统受损后的恢复过程中同时存在有益及有害两方面的作用,一方面星形胶质化可以限制炎症及有害物质扩散,分泌神经营养因子,修复受损组织;同时过度胶质化也会妨碍轴突再生,影响神经功能恢复。因此,实现胶质化的可控性,减少胶质化的负面影响甚有必要。星形胶质细胞分泌的营养因子包括胶质细胞源性神经营养因子(GDNF),GDNF在中枢神经损害中的治疗作用引人关注。
     多年来细胞外ATP及其衍生物被认为是一类神经递质。1978年,Burnstock提出嘌呤能受体概念并将其分为P1和P2两类。后来进一步证实并克隆出多种相关受体,其中P2Y_1受体分布广泛,并且发现其在神经系统分布密度较高,P2Y_1受体在神经系统的作用越来越受到重视。
     已有报道,星形胶质细胞的P2受体可以促进STAT3磷酸化,STAT3活化在星形胶质化中可能起关键作用。P2受体激动剂可以诱导星形胶质化,P2受体拮抗剂可以减轻损伤所致的胶质增生,并发现P2Y(P2Y_1或P2Y_(12))受体参与了星形胶质细胞的胶质化过程。
     星形胶质细胞中ERK可以使CREB磷酸化,从而导致其分泌GDNF。GDNF对多种神经元细胞都有营养作用,其在神经损伤后的治疗价值引起了临床医学界的广泛关注。
     在缺血性脑损伤时,针对P2Y_1受体在星形胶质化及其对GDNF分泌中的作用;这两种过程的相关信号通路以及RAS/ERK途径与这些信号通路之间的关系未见报道。
     本实验应用大鼠大脑中动脉栓塞后再灌注和原代培养胚鼠脑组织无氧、无营养处理后再恢复正常培养作为短时性缺血的体内、外模型,观察P2Y_1受体在短时性缺血后星形胶质化、及其对GDNF分泌中的作用;进一步探讨了短时性缺血时P2Y_1受体在星形胶质化、GDNF分泌中的相关信号传导途径。
     研究结果表明阻断P2Y_1受体能够抑制星形胶质细胞合成GFAP,但能促进该细胞分泌GDNF。进一步研究表明星形胶质细胞表面的P2Y_1受体通过JAK/STAT3途径影响GFAP合成,通过AKT/CREB途径影响GDNF分泌。RAS/ERK通路的某些信号分子(如MEK1/2或其下游某些分子ERK1/2等)为这两种途径共同的上游信号分子,说明P2Y_1受体影响合成GFAP和GDFN的分泌具有负相关性,两条信号通路存在串话(crosstalk)。
     本研究对实现可控性反应性星形胶质化和脑缺血后的功能恢复提供了新思路和手段。
     第一部分P2Y_1受体对大鼠短时性脑缺血后星形胶质化及其对GDNF分泌的影响
     目的研究短时性脑缺血后P2Y_1受体对大鼠脑星形胶质化及其对GDNF分泌的影响
     方法分别以大鼠大脑中动脉栓塞再灌注及对原代培养胚鼠脑组织进行无氧、无营养处理作为短时性脑缺血体内、体外模型;以GFAP表达作为星形胶质化的生物学标志;以MRS2179作为P2Y_1拮抗剂;采用免疫荧光双标记检测P2Y_1及GDNF的分布;采用Western blotting和Real time RT-PCR分别从蛋白和核酸水平检测GFAP的表达变化;采用Elisa检测脑组织总蛋白及培养细胞上清中GDNF的含量。
     结果在短时性缺血时,阻断P2Y_1受体能抑制星形胶质细胞分泌GFAP(P<0.05);阻断P2Y_1受体能促进星形胶质细胞分泌GDNF(P<0.05)。
     结论阻断P2Y_1受体能抑制短时性缺血时星形胶质化;阻断P2Y_1受体能促进短时性缺血时星形胶质细胞分泌GDNF。
     第二部分P2Y_1受体在短时性缺血时星形胶质化及其分泌GDNF的信号传导途径
     目的研究P2Y_1受体在短时性缺血时星形胶质化及其分泌GDNF的信号传导途径
     方法采用Western blotting检测P2Y_1受体阻断后,原代培养星形胶质细胞在缺氧、无营养后信号传导途径PI3-K/AKT/CREB及JAK2/STAT3中的活化信号分子的表达变化情况。
     结果阻断P2Y_1受体,缺氧、无营养后pAKT、pCREB升高,pSTAT3降低;应用AG490抑制STAT3的上游分子JAK2后,pSTAT3及GFAP均降低;应用LY294002抑制PI3-K后,pAKT、pCREB的表达均降低;应用MEK1/2抑制剂U0126后,pAKT、pCREB、pJAK2、pSTAT3的表达均降低。
     结论短时性缺血时,阻断P2Y_1受体可以阻碍星形胶质化过程,其阻碍胶质化过程通过JAK2/STAT3途径。阻断P2Y_1受体可以促进短时性缺血时星形胶质细胞GDNF分泌;其促进分泌过程可能通过AKT/CREB途径。RAS/ERK途径对这两种信号传导途径都有影响。
     研究结果表明阻断P2Y_1受体能够抑制星形胶质细胞合成GFAP,但能促进该细胞分泌GDNF。进一步研究表明星形胶质细胞表面的P2Y_1受体通过JAK/STAT3途径影响GFAP合成,通过AKT/CREB途径影响GDNF分泌。RAS/ERK通路的某些信号分子(如MEK1/2或其下游某些分子ERK1/2等)为这两种途径共同的上游信号分子,说明P2Y_1受体影响合成GFAP和GDFN的分泌具有负相关性,两条信号通路存在串话(crosstalk)。
     本研究对实现可控性反应性星形胶质化和脑缺血后的功能恢复提供了新思路和手段。
Reactive astrogliosis is a repair process after various insults to Central Nervous System.Astrogliosis manifests hypertrophy with increase of its GFAP contents as well as hyperplasia of astrocyte.The relevance of astrogliosis remains controversial,especially with respect to the beneficial or detrimental influence of reactive astrocytes on CNS recovery. The reactive astrocytes can secret neurotrophic factors and confine the spread of inflamation and toxic chemicals.At the same time,The formation of a glial scar may interfere with neuronal repair or axonal regeneration in the CNS.Therefore controllable astrogliosis might be an admirable goal:to enhance its beneficial effects of gliosis and to avoid its detrimental effects.
     Extracellular ATP and its derivants have been considered as transmitters for years. "Purinergic" receptors were first formally recognized and classified as P1 and P2 subtypes by Bumstock in 1978.The widespread and abundant distribution of the P2Y1 receptor within the brain arouses much interests.
     P2 receptors can activate STAT3 serine 727 phosphorylation in astrocytes and activation of STAT3 maybe play a key role in astrogliosis.Extracellular signal-regulated kinase(ERK) attributes to CREB phosphorylation that leads to GDNF production in cultured astrocytes.The roles of P2Y1 receptor in astrogliosis, STAT3 phosphorylation and GDNF secretion and the related signal pathways under ischemic brain injury remain elucidation.
     Our study is targeting on the roles of P2Y1 receptor during the process of astrogliosis and GDNF secretion with the temporal right middle cerebral artery occlusion (MCAO) in vivo,and Oxygen-nurturer deprivation of cultured astrocytes in vitro as the model of temporal ischemic injury.The related signal pathways would be investigated.We hope our work will help us to deepen our understanding of related pathophysiological processes and might arouse new therapeutic approach.
     Part One The effect of P2Y1 receptor on gliosis and GDNF secretion of rat brain astrocytes after temporal ischemia
     Objective:The study was aimed to investigate the effects of P2Y1 receptor on the gliosis and GDNF secretion of astrocytes after temporal ischemia in vivo and in vitro
     Methods:MCAO in vivo and Oxygen-nurturer deprivation in vitro were used as the model of brain temporal ischemic injury.The expression of GFAP as the biomarker of astrogliosis.MRS2179 was used as selective P2Y1 receptor antagonist. The location of P2Y1 receptor and GDNF was observed by double immunofluorescence labeling.Real time RT-PCR and Western blotting were used to measure the mRNA and protein levels of GFAP.Elisa was used to measure the GDNF expression of damaged tissue and the supernate of cultured cells.
     Results:Inhibition of P2Y1 receptor could reduce the production of GFAP (P<0.05) and increase the GDNF secretion of astrocytes after the temporal ischemic injury.
     Summary:Inhibition of P2Y1 receptor could interfere in the astrogliosis and increase the GDNF secretion of astrocytes after the temporal ischemic injury.
     Part Two The signaling pathways during astrogliosis and GDNF secretion of astrocytes after temporal ischemic injury in vitro
     Objectives:The purpose is to investigate the signaling pathways during astrogliosis and GDNF secretion of astrocytes after temporal ischemic injury
     Methods:Measuring of the level of phosphorylation of signaling molecules involving PI3-K/AKT/CREB and JAK2/STAT3 pathways in the cultured cells after inhibition of the P2Y1 receptor and temporal Oxygen-nurturer deprivation.
     Summary:Under ischemic injury and blocking the P2Y1 receptor the phosphorylation of AKT and CREB was increased and the phosphorylation of STAT3 was decreased.AG490 could reduce the expression of pSTAT3 and GFAP.LY294002 could reduce the expression of pAKT and pCREB.U0126 could reduce the expression of pAKT,pCREB,pJAK2,and pSTAT3.
     Conclussions:The study showed that blockage of P2Y1 receptor might decrease the contents of GFAP,while increase the secretion of GDNF of astrocyte.It indicated that synthesis of GFAP and GDNF,influenced by P2Y1 receptor,showed negative correlation.P2Y1 receptor on astrocytic membrane affected GFAP synthesis through JAK2/STAT3 pathway,and influenced GDNF secretion via PI3-K/AKT/CREB pathway respectively.Some molecules,such as MEK1/2 and ERK1/2 in RAS/ERK pathway might be upstream signal molecules of JAK2/STAT3 and PI3-K/AKT/CREB.Crosstalk existed between signal pathways of JAK/STAT3 and PI3-K/AKT/CREB.
引文
[1] Norenberg MD: Astrocyte responses to CNS injury. J Neuropathol Exp Neurol, 1994,53:213-20.
    [2] Airaksinen MS, Saarma M. The GDNF family: signaling, biological functions and therapeutic value. Nat Rev Neurosci, 2002, 3: 383-394.
    [3] Moore D, Chambers J, Waldvogel H, et al. Regional and cellular distribution of the P2Y_1 purinergic receptor in the human brain: striking neuronal localization. J Comp Neurobiol, 2000,421: 374-384.
    [4] Washburn KB and Neary JT. P2 purinergic receptors signal to stat3 in astrocytes: difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience, 2006, 142: 411-423.
    [5] Sriram K, Benkovic SA, Hebert MA, et al.Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration. J Biol Chem, 2004, 279: 19936-47.
    [6] Franke H, Kriigel U, Schmidt R, et al. P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol, 2001, 134: 1180-1189.
    [7] Koyama Y, Egawa H, Osakada M, et al. Increased by FK960, a novel cognitive enhancer, in glial cell line-derived neurotrophic factor production in cultured rat astrocytes. Biochem Pharmacol, 2004, 68: 275-282.
    [8] Burnstock G. A basis for distinguishing two types of purinergic receptor. Cell Membrane Receptors for Drugs and Hormones. (Eds: Bolis L and Straub RW), Raven Press, New York. 1978, 107-118.
    [9] Burnstock G and Kennedy C. Is there a basis for distinguishing two types of purinoceptor? Gen Pharmacol, 1985,16: 433-440.
    [10] Abbracchio MP, Burnstock G, Boeynaems JM, et al. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol rev, 2006, 58: 281-341.
    [11] Justicia C, Gabriel C, Planas AM. Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia, 2000, 30: 253-270.
    [12] Iannotti C, Zhang YP, Shields CB, Han YC, Burke DA, Xu XM. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Exp Neurol, 2004, 189: 317-332.
    [13] Iwase T, Jung CG, Bae H, Zhang M and Soliven B. Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. J Neurochem, 2005, 94: 1488-1499.
    [14] Yu AC, Liu RY, Zhang Y, Sun HR, Qin LY, Lau LT, Wu BY, Hui HK, Heung MY, and Han JS. Glial cell line-derived neurotrophic factor protects astrocytes from staurosporine- and ischemia-induced apoptosis. J Neurosci Res, 2007, 85: 3457-3464.
    [15] Longa EZ, Weinstein PR, Carlson S and Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20: 84-91.
    [16] Liu Y, Lu JB and Ye ZR. Permeability of injured blood brain barrier for exogenous bFGF and protection mechanism of bFGF in rat brain ischemia. Neuropathology, 2006, 26: 257-266.
    [17] Liu Y, Lu JB, Chen Q, Ye ZR. Involvement of MAPK/ERK kinase-ERK pathway in exogenous bFGF induced Egr-1 binding activity enhancement in anoxia-reoxygenation injured astrocytes. Neurosci Bull, 2007, 23: 221-228.
    [18] Eddleston M, Mucke L: Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Nuroscience, 1993, 54:15-36.
    [19] Lin CH, Cheng FC, Lu YZ, Chu LF, Wang CH, Hsueh CM. Protection of ischemic brain cells is dependent on astrocyte-derived growth factors and their receptors. Exp Neurol, 2006, 201: 225-233.
    [20] McKeon RJ, Jurynec MJ, and Buck CR: The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci, 1999,19: 10778-10788.
    [21] Ralvich G., Bohatschek M, Kloss CU, et al. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev, 1999, 30: 77-105.
    [22] Franke H, Krugel U, Grosche J, Heine C, Hartig W, Allgaier C and Illes P. P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience, 2004,127: 431-441.
    [23] Sellers LA, Simon J, Lundahl TS, et al. Adenosine nucleotides acting at the human P2Y_1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J Biol Chem, 2001, 276: 16379-16390.
    [24] Hwang IK, Yoo KY, Kim DW, et al. Ischemia-related changes of glial-derived neurotrophic factor and phosphatidylinositol 3-kinase in the hippocampus: Their possible correlation in astrocytes. Brain Res, 2006,1072: 215-223.
    [25] Movaghar VR, Yan HQ, Li Y, Ma X, Akbarian F and Dixon CE. Increased expression of glial cell line-derived neurotrophic factor in rat brain after traumatic brain injury. Acta Medica iranica, 2005, 43: 7-10.
    [26] Miyazaki H, Nagashima K, Okuma Y, Nomura Y. Expression of glial cell line-derived neurotrophic factor induced by transient forebrain ischemia in rats. Brain Res, 2001, 922: 165-172.
    [27] Neary JT, Kang Y, Willoughby KA, and Ellis EF. Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci, 2003, 23: 2348-2356.
    [28] Czajkowski R, Banachewicz W, Ilnytska O, Drobot LB, and Baranska J. Differential effects of P2Y_1 and P2Y_(12) nucleotide receptors on ERK1/ERK2 and phosphatidylinositol 3-kinase signalling and cell proliferation in serum-deprived and nonstarved glioma C6 cells. Br J Pharmacol, 2004, 141: 497-507.
    [29] Wang Y, Smith SB, Ogilvie JM, McCool DJ, Sarthy V. Ciliary neurotrophic factor induces glial fibrillary acidic protein in retinal Miiller cells through the JAK/STAT signal transduction pathway. Curr Eye Res, 2002, 24: 305-312.
    [30] Na YJ, Jin JK, Kim JI, Choi EK, Carp RI, Kim YS. JAK-STAT signaling pathway mediates astrogliosis in brains of scrapie-infected mice. J Neurochem, 2007, 103: 637-649.
    [31] Yu H, Oh-Hashi K, Tanaka T, Sai A, Inoue M, Hirata Y, Kiuchi K. Rehmannia glutinosa induces glial cell line-derived neurotrophic factor gene expression in astroglial cells via cPKC and ERK1/2 pathways independently. Pharmacol Res, 2006, 54: 39-45.
    [32] Hayashi H, Ichihara M, Iwashita T, et al.Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene, 2000,19:4469-4475.
    [33] Rudolphi KA and Schubert P: Adenosine and brain ischemia. In: Adenosine and Adenine Nucleotides: from Molecular Biology to Integrative Physiology. (Eds: Belardinelli L and Pelleg A), Kluwer, Norwell.1995, 391-397.
    [34] Yamagata K, Hakata K, Maeda A, Mochizuki C, Matsufuji H, Chino M, Yamori Y. Adenosine induces expression of glial cell line-derived neurotrophic factor(GDNF) in primary rat astrocytes. Neurosci Res, 2007, 59: 467-474.
    [35] Lammer A. Gunther A. Beck A, et al. Neuroprotective effects of the P2 receptor antagonist PPADS on focal cerebral ischaemia-induced injury in rats. Eur J Neurosci, 2006, 23:2824-2828.
    [1]Drury AN,Szent-Gyorgyi A.The physiological activity of adenine compounds with special reference to their action upon the mammalian heart.J Physiol,(Lond) 1929,68:213-237.
    [2]Bumstock G.Purinergic nerves.Pharmacol Rev,1972,24:509-581.
    [3]Burnstock G.Do some nerve cells release more than one transmitter?Neuroscience,1976,1:239-248.
    [4]Burnstock C.A basis for distinguishing two types of purinergic receptor.Cell Membrane Receptors for Drugs and Hormones. (Eds: Bolis L and Straub RW), Raven Press, New York. 1978,107-118.
    [5] Burnstock G and Kennedy C. Is there a basis for distinguishing two types of purinoceptor? Gen Pharmacol, 1985, 16: 433-440.
    [6] Ralevic V and Burnstock G Receptors for purines and pyrimidines. Pharmacol Rev, 1998,50:413-492.
    [7] North A. Molecular physiology of P2X receptors. Physiol Rev, 2002, 82: 1013-1067.
    [8] Abbracchio MP, Burnstock G, Boeynaems JM, et al. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol rev, 2006, 58: 281-341.
    [9] Ayyanathan K, Webbs TE, Sandhu AK, et al. Cloning and chromosomal localization of the human P2Y_1 purinoceptor. Biochem Biophys Res Commun, 1996,218:783-788.
    [10] Webb TE, Simon J, Krishek BJ, et al. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett, 1993, 324: 219-225.
    [11] Houston D, Ohno M, Nicholas RA , et al. [32P] 2-iodo-N6-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate([3 2P] MRS2500), a novel radioligand for quantification of a native P2Y1 receptors. Br J Pharmacol, 2006,147: 459-67.
    [12] Hechler B, Vigne P, Leon C, et al. ATP derivatives are antagonists of the P2Y_1 receptor: similarities to the platelet ADP receptor. Mol Phaarmacol, 1998, 53: 727-733.
    [13] Palmer RK, Boyer JL, Schachter JB, et al. Agonist action of adenosine triphosphates at the human P2Y_1 receptor. Mol Pharmacol, 1998, 54: 1118-1123.
    [14] Filippov A, Brown DA, and Barnard EA. The P2Y_1 receptor closes the N-type Ca2+ channel in neurons, with both adenosine triphosphates and diphosphates as potent agonists. Br J Pharmacol, 2000,129: 1063-1066.
    [15] Maurice DH, Waldo GL, Morris AJ, et al. Identification of Gα_(11) as the phospholipase C-activating G-protein of turkey erythrocytes. Biochem J, 1993, 290: 765-770.
    [16] Offermanns S, Toombs CF, Hu YH, et al. Defective platelet activation in G_(α_q)-deficient mice. Nature, 1997,389: 183-186.
    [17] Leon C, Vial C, Cazenave JP, et al. Cloning and sequencing of a human cDNA encoding endothelial P2Y_1 purinoceptor. Gene, 1996, 171: 295-297.
    [18] Ayyanathan K, Naylor SL, and Kunapuli SP. Structural characterization and fine chromosomal mapping of the human P2Y_1 purinergic receptor gene(P2R Y_1). Somat Cell Mol Genet, 1996, 22: 419-424.
    [19] Van Rhee AM, Fischer B, Van Galen PJM, et al. Modelling the P2Y purinoceptor using rhodopsin as template. Drug Des Discov, 1995, 13: 133-154.
    [20] Jiang Q, Guo D, Lee BX, et al. A mutational analysis of residues essential for ligand recognition at the human P2Y_1 receptor. Mol Pharmacol, 1997, 52: 499-507.
    [21] Moro S, Guo D, Camaioni E, et al. Human P2Y1 receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites. J Med Chem, 1998,41: 1456-1466.
    [22] Ding Z, Tuluc F, Bandivadekar, KR, et al. Arg333 and Arg334 in the COOH terminus of the human P2Y_1 receptor are crucial for Gq coupling. Am J Physiol Cell Physiol, 2005,288: C559-67.
    [23] Tokuyama Y, Hara M, Jones EMC, et al. Cloning of rat and mouse P2Y purinoceptors. Biochem Biophys Res Commun, 1995, 211: 211-218.
    [24] Greig AV, Linge C, Terenqhi G, et al. Purinergic receptors are part of a functional signaling system for proliferation and differentiation of human epidermal keratinocytes. J Invest Dermatol, 2003, 120: 1007-1015.
    [25] Coutinho-Silva R, Parsons M, Robson T, et al. P2X and P2Y purinoceptor expression in pancreas from streptozotocin-diabetic rats. Mol Cell Endocrinol, 2003,204: 141-154.
    [26] Kataoka S, Toyono T, Seta Y, et al. Expression of P2Y_1 receptors in rat taste buds. Histochem Cell Biol, 2004,121: 419-426.
    [27] He ML, Gonzalez-Iglesias AE, and Stojilkovic SS. Role of nucleotide P2 receptors in calcium signaling and prolactin release in pituitary lactotrophs. J Biol Chem, 2003,278: 46270-46277.
    [28] Fries JE, Wheeler-Schilling TH, Guenther E, et al. Expression of P2Y_1, P2Y_2, P2Y_4, and P2Y_6 receptor subtypes in the rat retina. Invest Ophthalmol Vis Sci, 2004,45:3410-3417.
    [29] Moore D, Chambers J, Waldvogel H, et al. Regional and cellular distribution of the P2Y_1 purinergic receptor in the human brain: striking neuronal localization. J Comp Neurobiol, 2000, 421: 374-384.
    [30] Cheung KK, Ryten M, and Burnstock G Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev dyn, 2003, 228: 254-266.
    [31] Spray DC, Vink MJ, Scemes E, et al. Characteristics of coupling in cardiac myocytes and CNS astrocytes cultured from wild-type and Cx43-null mice. Gap junctions. Werner R ed, pp. 281-285, 1998. IOS press, Amsterdam.
    [32] Dermietzel R, Gao Y, Scemes E, et al. Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Rev, 2000, 32: 45-56.
    [33] Scemes E, Suadicani SO, Spray DC. Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nuleotide receptors in calcium wave propagation. J Neurosci, 2000, 20: 1435-1445.
    [34] Suadicani SO, De Pina-Benabou MH, Urban-Maldonado M, et al. Acute down-regulation of Cx43 alters P2Y receptor expression levels in mouse spinal cord astrocytes. Glia, 2003, 42: 160-171.
    [35] Duval N, Gomes D, Calaora V, et al. Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. J Cell Sci, 2002,115: 3241-3251.
    [36] Scemes E, Duval N, and Meda P. Reduced expression of P2Y_1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci, 2003, 23: 11444-11452.
    [37] Sanches G, de Alencar LS, Ventura ALM. ATP induces proliferation of retinal cells in culture via activation of PKC and extracellular signal-regulated kinase cascade. Int J Devl Neurosci, 2002, 20: 21-27.
    [38] Safiulina, V.F., Fattorini, G, Conti, f., et al. GABAergic signaling at mossy fiber synapses in neonatal rat hippocampus. J Neurosci, 2006, 26: 597-608.
    [39] Safiulina VF, Afzalov R, Khiroug L, et al. Reactive oxygen species mediate the potentiating effects of ATP on GABAergic synaptic transmission in the immature hippocampus. J Biol Chem, 2006, 281: 23464-70.
    [40] Burnstock G. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology, 1997, 36: 1127-1139.
    [41] Fields RD and Stevens B. ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci, 2000, 23: 625-633.
    [42] Jo YH , Role LW. Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci, 2002, 22: 4794-4804.
    [43] Fam SR, Gallagher CJ, Kalia LV, et al. Differential frenquency dependence of P2Y_1- and P2Y_2- mediated Ca~(2+) signaling in astrocytes. J Neurosci, 2003, 23: 4437-4444.
    [44] Pitt SJ, Martinez-Pinna J, Barnard EA, et al. Potentiation of P2Y receptors by physiological elevations of extracellular K+ via a mechanism independent of Ca2+ influx. Mol Pharmacol, 2005, 67: 1705-1713.
    [45] Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science, 1994,263: 1768-1771.
    [46] Newman EA, Zahs KR. Modulation of neuronal activity by glial cells in the retina. J Neurosci, 1998, 18: 4022-4028.
    [47] Bezzi P, Volterra A. A neuron-glia signalling network in the active brain. Curr Opin Neurobiol, 2001, 11: 387-394.
    [48] Gerevich Z, Borvendeg SJ, Schroder W, et al. Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors in a possible mechanism of ADP-induced analgesia. J Neurosci, 2004, 24: 797-807.
    [49] Kawamura M, Gachet C, Inoue K, et al. Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y_1 receptors in the hippocampal slice. J Neurosci, 2004, 24: 10835-10845.
    [50] Flippov AK, Choi RC, Simon J, et al. Activation of P2Y_1 nucleotide receptors induces inhibition of the M-type K~+ current in rat hippocampal pyramidal neurons. J Neurosci, 2006, 26: 9340-8.
    [51] Rodrigues RJ, Almeida T, Richardson PJ, et al. Dual presynaptic control by ATP of glutamate release via facilitatory P2X_1, P2X_(2/3), and P2X_3 and inhibitory P2Y_1, P2Y_2, and/or P2Y_4 receptors in the rat hippocampus. J Neurosci, 2005, 25: 6286-6295.
    [52] Luthardt J, Borvendeg SJ, Sperlagh B, et al. P2Y_1 receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal and parietal cortex. Neurochem Int, 2003,42: 161-172.
    [53] Kittner H, Franke H, Fischer W, et al. Stimulation of P2Y_1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y_1 receptor-mediated nitric oxide production. Neuropsychopharmacology, 2003, 28: 435-444.
    [54] Hu HZ, Gao N, Zhu MX, et al. Slow excitatory synaptic transmission mediated by P2Y_1 receptors in the guinea-pig enteric nervous system. J Physiol, 2003, 550: 493-504.
    [55] Monro RL, Bertrand PP, and Bornstein JC. ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum. J Physiol, 2004, 556: 571-584.
    [56] Cooke HJ, Xue J, Yu JG, et al. Mechanical stimulation releases nucleotides that activate P2Y_1 receptors to trigger neural reflex chloride secretion in guinea pig distal colon. J Comp Neurol, 2004,469: 1-15.
    [57] Franke H, Krugel U, Schmidt R, et al. P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol, 2001,134: 1180-1189.
    [58] Franke H, Krugel U, Grosche J, Heine C, Hartig W, Allgaier C and Illes P. P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience, 2004, 127(2): 431-441.
    [59] Shinozaki Y, Koizumi S, Ishida S, et al. Cytoprotection against oxidative stress-induced damage of astrocytes by extracellular ATP via P2Y_1 receptors. Glia, 2005,49: 288-300.
    [60] Sellers LA, Simon J, Lundahl TS, et al. Adenosine nucleotides acting at the human P2Y_1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J Biol Chem, 2001, 276: 16379-16390.
    [61] Washburn KB and Neary JT. P2 purinergic receptors signal to stat3 in astrocytes: difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience, 2006,142: 411-423.
    [62] Neary JT, Kang Y, Willoughby KA, and Ellis EF. Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci, 2003, 23: 2348-2356.
    [63] Czajkowski R, Banachewicz W, Ilnytska O, Drobot LB, and Baranska J. Differential effects of P2Y1 and P2Y12 nucleotide receptors on ERK1/ERK2 and phosphatidylinositol 3-kinase signalling and cell proliferation in serum-deprived and nonstarved glioma C6 cells. Br J Pharmacol, 2004, 141: 497-507.
    [64] Justicia C, Gabriel C, Planas AM. Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jakl and Stat3 in astrocytes. Glia, 2000, 30: 253-270.
    [65] Sriram K, Benkovic SA, Hebert MA, et al.Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration. J Biol Chem, 2004, 279: 19936-47.
    [66] Wang Y, Smith SB, Ogilvie JM, McCool DJ, Sarthy V. Ciliary neurotrophic factor induces glial fibrillary acidic protein in retinal Miiller cells through the JAK/STAT signal transduction pathway. Curr Eye Res, 2002, 24: 305-312.
    [67]Na Y J,Jin JK,Kim JI,Choi EK,Carp RI,Kim YS.JAK-STAT signaling pathway mediates astrogliosis in brains of scrapie-infected mice.J Neurochem,2007,103:637-649.
    [68]Neer EJ.Heterotrimeric G proteins:organizers of transmembrane signals.Cell,1995,80:249-257.
    [69]Stephens LR,Eguinoa A,Erdjument-Bromage H,et al.The Gβγ,sensitivity of a PI3K is dependent upon a tightly associated adaptor,p101.Cell,1997,89:105-114.
    [70]Langhans-Rajasekaran SA,Wan Y,and Huang XY.Activation of Tsk and Btk tyrosine kinases by G protein βγ,subunits.Proc Natl Acad Sci USA,1995,92:8601-8605.
    [71]Simon J,Webb TE,King BF,et al.Characterisation of a recombinant P2Y purinoceptor.Eur J Pharmacol,1995,291:281-289.
    [72]Schachter JB,Li Q,Boyer JL,et al.Second messenger cascade specificity and pharmacological selectivity of the human P2Y1 purinoceptor.Br J Pharmacol,1996,118:167-173.
    [73]Widmann C,Gibson S,Jarpe MB,et al.Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human.Physiol Rev,1999,79:143-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700