用户名: 密码: 验证码:
基于46-二氯嘧啶-5-醛的多样性导向合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分四章,开发了以4,6-二氯嘧啶-5-醛为起始原料的多样性导向合成(DOS),共合成了三类结构新颖的嘧啶并环化合物,并在此基础上构建了结构多样的化合物库。
     第一章介绍了多样性导向合成以及选题背景。多样性导向合成在设计合成结构复杂多样的小分子化合物库方面发挥着重要的指导作用,其与化学遗传学的结合使用可以高效地解决生物学问题。嘧啶并环化合物具有多种的药理活性,设计开发新的合成路线,合成结构新颖、多样的嘧啶并环化合物对于发现优化先导化合物,创制新药具有重要意义。
     第二章中,最初设计用嘧啶醛与二级胺生成亚甲胺叶立德然后与烯烃发生分子内[3+2]环加成反应,合成一类新型嘧啶并环分子。但是产物经1H NMR判断不是预期产物,经单晶衍射表征确定为四氢嘧啶并[4,5-d]嘧啶分子。我们对这一新发现进行了系统的研究。以4,6-二氯嘧啶-5-醛为起始原料,经一级胺和苯硫酚连续两次亲核取代反应合成了四种反应前体4-胺基-6-苯硫基嘧啶-5-醛,然后与十种二级胺在二甲苯回流的条件下发生关环反应,以10-78%的适中产率合成了17个四氢嘧啶并[4,5-d]嘧啶化合物。该反应具有如下特点:(1)嘧啶醛上的取代基团对反应的影响不大,二级胺上的取代基团越大则反应时间越长但是对产率影响不大;(2)由于二级胺取代基团的不同,产物会得到一对区域异构体而且没有明显的区域选择性。根据实验结果,我们提出了以亚胺离子异构化反应为关键关环步骤的反应机理。嘧啶醛与二级胺形成亚胺离子后发生异构化反应形成了不同的亚胺离子,然后再关环进而生成了不同的区域异构体。四氢嘧啶并[4,5-d]嘧啶的5位苯硫基团通过侧链硫氧化为砜然后与胺发生亲核取代反应合成了5位胺基取代的四氢嘧啶并[4,5-d]嘧啶衍生物,表明其5位芳香砜基团具有较高的亲核取代反应活性,推断其也可以被其它亲核试剂(醇类、硫醇等)取代转换成其它基团。以上研究为构建含有多个取代基的四氢嘧啶并[4,5-d]嘧啶衍生物库提供了一条有效的合成策略。
     第三章中,通过对4-烯丙基氨基嘧啶-5-醛与一系列芳胺的亚胺Diels-Alder反应的研究,建立了快速合成六氢苯[b]嘧啶[4,5-h][1,6]萘啶分子骨架的有效方法,并研究了反应的规律。以4,6-二氯嘧啶-5-醛为起始原料,经亲核取代反应合成了七种关键前体4-烯丙基氨基嘧啶-5-醛,然后与十九种芳胺在三氟乙酸催化、乙腈和水的混合溶剂中室温条件下发生关环反应,以49-98%的高产率得到了23个六氢苯[b]嘧啶[4,5-h][1,6]萘啶化合物。该反应具有如下特点:(1)芳胺上连有吸电子基团时反应时间短;(2)芳胺的邻位有取代基时反应时间长,甚至于不反应;(3)芳胺间位取代基的电子效应强(强的吸电子或推电子基团),则反应具有专一的区域选择性;(4)二级芳胺的亚胺DA反应需要在甲苯回流带水的条件下反应,比一级芳胺反应条件剧烈;(5)产物通过单晶衍射以及1H NMR确定为顺式结构,表明该关环反应具有立体专一性。关环产物六氢苯[b]嘧啶[4,5-h][1,6]萘啶通过侧链硫氧化为亚砜,然后与亲核试剂(胺、醇、酚和硫)发生取代反应合成了66位取代的六氢苯[b]嘧啶[4,5-h][1,6]萘啶衍生物,表明其6位芳香亚砜基团具有较高的亲核取代反应活性,可转换成多种取代基团。上述研究为合成六氢苯[b]嘧啶[4,5-h][1,6]萘啶分子库提供了一条有效的合成策略。
     第四章中,通过对4-烯丙基氨基嘧啶-5-醛与一系列一级胺的亚胺Ene反应的研究,建立了快速合成桥亚胺嘧啶并[4,5-b]分子骨架的有效方法,并研究了反应的规律。根据亚胺Ene反应文献总结,得出发生亚胺DA反应的底物(4-烯丙基氨基嘧啶-5-醛)也符合亚胺Ene反应的要求。通过反应条件摸索,我们发现底物与一级胺在对甲苯磺酸催化、甲苯回流带水的条件下可以专一的、高产率的发生亚胺Ene反应。在优化的反应条件下研究了十一种底物与九种一级胺发生亚胺Ene关环反应,结果以44-97%的高产率合成了16个桥亚胺嘧啶[4,5-b]并化合物。该反应具有如下特点:(1)嘧啶醛的电子云密度对反应影响很大,只有当电子云密度足够低时才能发生亚胺Ene反应,且电子云密度越低产率越高;(2)胺上连有推电子基团时反应进行的快,但对产率影响不大;(3)一级芳胺的邻位有取代基团时反应时间增加且产率降低。此外我们还研究了4-烯丙基氨基嘧啶-5-醛自身的羰基Ene反应,建立了快速合成环氧嘧啶并[4,5-b]分子骨架的有效方法。九种底物在二甲苯回流的条件下以72-95%的高产率合成了9个环氧嘧啶并[4,5-b]化合物,结果显示羰基Ene反应比亚胺Ene反应所需的温度高、反应时间长。上述研究为合成桥亚胺嘧啶并[4,5-b]或环氧嘧啶并[4,5-b]分子库提供了一条有效的合成策略。
This four-chapter dissertation focus on the strategy of diversity-oriented synthesis (DOS) and its application in the construction of three different kinds of pyrimidine-fused heterocyclic scaffolds from the same starting material ( 4,6-dichloropyrimidine-5-carbaldehyde).
     In Chapter One, the development of diversity-oriented synthesis is reviewed. As an important and widely applied strategy in the design and syntheses of complex and diversed libraries, DOS can merge with chemical genetics and provide efficient solutions to biological and medical challenges. Developing methodologies for the syntheses of novel diversed pyrimidine-fused heterocycles with potential pharmacological properties is a good practice of DOS, and the resulted compound libraries are the bases for screening against biological targets.
     In Chapter Two, a novel iminium ion isomerization reaction is discussed. To apply the DOS strategy, an initial design of intramolecular azomethine ylide [3+2] cycloaddition reaction with pyrimidine carbaldehyde as starting material was performed and an unexpected new product was acquired. The structure was determined to possess tetrahydro pyrimido[4,5-d]pyrimidine scaffold by X-ray crystallography. Following this, a systematic study of this reaction is discussed. The precursor 4-amino-6-phenylthiopyrimidin-5-carbaldehyde was prepared by amine and subsequent thiophenol substitution of the 4,6-dichloropyrimidine-5-carbaldehyde. The precursor was then reacted with ten selected secondary amines in refluxing xylene and led to tetrahydropyrimido[4,5-d]pyrimidine derivatives with 10-78% yields. The reaction results can be summarized as follow: (1) Reaction of pyrimidine aldehyde containing various N-substitutents proceed well; (2) The reactions are slow when secondary amine contains a large group; (3) The various substitutents of secondary amines led to two regioisomers without significant selectivity. The isolation and characterization of regioisomers supported an iminium ion isomerization mechanism. In addition, the oxidation of 6-phenylthio group to the corresponding sulfone compound results in 70% yields, and the sulfones can be further derivatized via nucleophilic substitution with 67-90% yields. Thus an efficient methodology to access structurally diverse library of tetrahydropyrimido [4,5-d]pyrimidines was developed.
     In Chapter Three, the discussed DOS method focused on imino Diels-Alder reaction to develop novel hexahydrobenzo[b]pyrimido[4,5-h][1,6]naphthyridine scaffold. The key step of this method can be considered as a tandem reaction, imines formed in situ from allylaminopyrimidinealdehydes and anilines, followed by the intramolecular inverse electron demand hetero Diels-Alder reaction. Seven key precursors 4-allylaminopyrimidine-5-carbaldehydes were prepared via the nucleophilic substitution of various allylamines to 4,6-dichloropyrimidine-5- carbaldehyde. The desired hexahydrobenzo[b]pyrimido[4,5-h][1,6]naphthyridine derivatives were obtained by this one-pot reaction under the catalysis of trifluoroacetic acid with 49-98% yields. The reaction results can be summarized as follow: (1) The reactions with aromatic amines containing electron-withdrawing groups were faster than those with electron-donating groups; (2) When the anilines had an ortho substituent, the reactions were either slow or resulted no desired product; (3) When the anilines had a strong electro-effect substituent, the reactions were extremely regioselective; (4) The reaction of secondary aryl amines could yield the desired products in refluxing toluene with p-toluenesufonic acid using a Dean-Stark apparatus; (5) All the products were determined to be cis-con gured by comparison of 1H NMR spectra with the X-ray confirmed compound. In addition, the oxidation of 6-phenylthio group to the corresponding sulfoxide compound results in 75% yields, and the sulfoxides can be further derivatized to the corresponding 6-substituted hexahydrobenzo[b] pyrimido[4,5-h][1,6] naphthyridines via nucleophilic substitutions with 55-98% yields. Thus an efficient methodology to access structurally diverse library of hexahydrobenzo[b]pyrimido[4,5-h][1,6]naphthyridine was developed.
     In Chapter Four, another strategy using ene reaction to access epiminopyrimido[4,5-b]azepine scaffold was developed. The key intermediate for this synthetic route was same as the hetero Diels-Alder reaction discussed in Chapter Three. Under the catalysis of p-toluenesufonic acid, the reactions were heated in refluxing toluene with a Dean-Stark apparatus. The titled compounds were acquired via an intramolecular imine Ene reaction following the in situ imine formation of allylaminopyrimidinealdehydes and primary amines. Sixteen epiminopyrimido[4,5-b] azepine derivatives were synthesized with 44-97% yields. The reaction results can be summarized as follow: (1) The electron density of pyrimidine aldehyde has great influence on the reaction outcome. When the electron density is lower, the reaction yield is higher; (2) The reactions with primary amines containing electron-donating groups are faster than those with electron-withdrawing groups; (3) When the primary anilines had an ortho substituent, the reactions were slow and low yielding. Besides, the key precursors were treated in refluxing xylene, and epoxypyrimido[4,5-b]azepine derivatives were isolated with 72-95% yields via carbonyl Ene reaction. Carbonyl Ene reaction demands higher reaction temperature. Another DOS method was developed utilizing Imine-Ene reaction and Carbonyl-Ene reaction.
引文
[1]张健,张启虹,王晓晨, et al.药物合成策略的近期发展[J].药学进展, 2008, 32(20): 433-40.
    [2] BURKE M D, SCHREIBER S L. A planning strategy for diversity-oriented synthesis [J]. Angew Chem Int Edit, 2004, 43(1): 46-58.
    [3] SPRING D R. Diversity-oriented synthesis; a challenge for synthetic chemists [J]. Org Biomol Chem, 2003, 1(22): 3867-70.
    [4] COREY E J. CHENG X-M. The Logic of Chemical Synthesis[M]; John Wiley & Sons: New York, 1989.
    [5] COREY E J, WIPKE W T. Computer-Assisted Design of Complex Organic Syntheses [J]. Science, 1969, 166(3902): 178-92.
    [6] COREY E J. The Logic of Chemical Synthesis: Multistep Synthesis of Complex Carbogenic Molecules (Nobel Lecture) [J]. Angewandte Chemie International Edition in English, 1991, 30(5): 455-65.
    [7] BANSAL R, COOPER G F, COREY E J. Stereoselective Synthesis of an Important Prostaglandin Synthetic Intermediate [J]. J Org Chem, 1991, 56(3): 1329-32.
    [8] NICOLAOU K C, YANG Z, LIU J J, et al. Total Synthesis of Taxol [J]. Nature, 1994, 367(6464): 630-4.
    [9] NICOLAOU K C, NANTERMET P G, UENO H, et al. Total Synthesis of Taxol .1. Retrosynthesis, Degradation, and Reconstitution [J]. J Am Chem Soc, 1995, 117(2): 624-33.
    [10] NICOLAOU K C, LIU J J, YANG Z, et al. Total Synthesis of Taxol .2. Construction of a-Ring and C-Ring Intermediates and Initial Attempts to Construct the Abc Ring-System [J]. J Am Chem Soc, 1995, 117(2): 634-44.
    [11] NICOLAOU K C, YANG Z, LIU J J, et al. Total Synthesis of Taxol .3. Formation of Taxols Abc Ring Skeleton [J]. J Am Chem Soc, 1995, 117(2): 645-52.
    [12] NICOLAOU K C, UENO H, LIU J J, et al. Total Synthesis of Taxol .4. The Final Stages and Completion of the Synthesis [J]. J Am Chem Soc, 1995, 117(2): 653-9.
    [13] COREY E J, LI W D Z. Total synthesis and biological activity of lactacystin, omuralide and analogs [J]. Chem Pharm Bull, 1999, 47(1): 1-10.
    [14] BARAN P S, GUERRERO C A, COREY E J. Short, enantioselective total synthesis of okaramine N [J]. J Am Chem Soc, 2003, 125(19): 5628-9.
    [15] MARTINEZ E J, COREY E J. A new, more efficient, and effective process for the synthesis of a key pentacyclic intermediate for production of ecteinascidin and phthalascidin antitumor agents [J]. Org Lett, 2000, 2(7): 993-6.
    [16] MARTINEZ E J, COREY E J. Enantioselective synthesis of saframycin A and evaluation of antitumor activity relative to ecteinascidin/saframycin hybrids [J]. Org Lett, 1999, 1(1): 75-7.
    [17] MARTINEZ E J, OWA T, SCHREIBER S L, et al. Phthalascidin, a synthetic antitumor agent with potency and mode of action comparable to ecteinascidin 743 [J]. P Natl Acad Sci USA, 1999, 96(7): 3496-501.
    [18] COREY E J, GIN D Y. A convergent enantioselective synthesis of the tetrahydroisoquinoline unit in the spiro ring of ecteinascidin 743 [J]. Tetrahedron Lett, 1996, 37(40): 7163-6.
    [19] COREY E J, GIN D Y, KANIA R S. Enantioselective total synthesis of ecteinascidin 743 [J]. J Am Chem Soc, 1996, 118(38): 9202-3.
    [20]冯高峰. 3,4-二氢-3-氧代-2H-1,4-苯并噁嗪类化合物以及24-Demethyl bafilomycin C<,1>中C3-C12片断的合成[D].杭州:浙江大学化学系,2008.
    [21]邢兴龙.微波辅助多组分及成环反应在杂环化合物合成中的应用[D].杭州:浙江大学化学系,2006.
    [22] SCHREIBER S L. Target-oriented and diversity-oriented organic synthesis in drug discovery [J]. Science, 2000, 287(5460): 1964-9.
    [23] BURKE M D, BERGER E M, SCHREIBER S L. Generating diverse skeletons of small molecules combinatorially [J]. Science, 2003, 302(5645): 613-8.
    [24] MESSER R, FUHRER C A, HANER R. Natural product-like libraries based on non-aromatic, polycyclic motifs [J]. Curr Opin Chem Biol, 2005, 9(3): 259-65.
    [25] MAYER T U, KAPOOR T M, HAGGARTY S J, et al. Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen [J]. Science, 1999, 286(5441): 971-4.
    [26]刘钢,李裕林,南发俊.多样性导向的“类天然产物”化合物库合成[J].化学进展, 2006, 18(6): 734-42.
    [27]聂爱华,肖军海,李松.药物发现中的定向多样性合成[J].中国药物化学杂志, 2004, 14(2): 114-21.
    [28]王星海,谢琼,叶德泳.多样性合成与向前合成分析在药物发现中的应用[J].药学进展, 2005, 29(7): 326-2.
    [29] GANEM B. Strategies for Innovation in Multicomponent Reaction Design [J]. Accounts Chem Res, 2009, 42(3): 463-72.
    [30] TEJEDOR D, SANTOS-EXPOSITO A, GARCIA-TELLADO F. A substrate-based folding process incorporating chemodifferentiating ABB three- component reactions of terminal alkynoates and 1,2-dicarbonyl compounds: A skeletal-diversity-oriented synthetic manifold [J]. Chem-Eur J, 2007, 13(4): 1201-9.
    [31] LEE D S, SELLO J K, SCHREIBER S L. Pairwise use of complexity-generating reactions in diversity-oriented organic synthesis [J]. Org Lett, 2000, 2(5): 709-12.
    [32] ULACZYK-LESANKO A, HALL D G. Wanted: New multicomponent reactions for generating libraries of polycyclic natural products [J]. Curr Opin Chem Biol, 2005, 9(3): 266-76.
    [33]郭长彬,郭宗儒.多组分反应及其在新药研究中的应用[J].中国药物化学杂志, 2003, 13(4): 234-40.
    [34] KISELYOV A S, ARMSTRONG R W. Solid Support Synthesis of Tetrahydroquinolines via the Grieco Three Component Condensation [J]. Tetrahedron Lett, 1997, 38(35): 6163-6.
    [35]李雄武,汪朝阳,郑绿荫.串联反应的有机合成应用新进展[J].有机化学, 2006, 26(8): 1144-9.
    [36]万红敬,黄红军,李志广, et al.串联反应在合成环状化合物中的应用[J].大学化学, 2008, 23(3): 28-35.
    [37] DENMARK S E, THORARENSEN A. Tandem [4+2]/[3+2] Cycloadditions of Nitroalkenes [J]. Chem Rev, 1996, 96(1): 137-66
    [38] FESSNER W-D, GRUND C, PRINZBACH H. Domino and pincer cycloadditions with syn-o,o'-dibenzenes scope and [pi]-facial stereoselectivity [J]. Tetrahedron Lett, 1989, 30(24): 3133-6.
    [39] PAQUETTE L A, WYVRATT M J, BERK H C, et al. Domino Diels-Alder reactions. 6. Domino Diels-Alder cycloadditions to 9,10-dihydrofulvalene and 11,12-dihydrosesquifulvalene. A synthetic tool for the elaboration of polycondensed alicyclic systems [J]. J Am Chem Soc, 1978, 100 (18): 5845-55.
    [40] MARCHAND A P. CHOU T-C. J. Chem. Soc.`, Perkin Trans. 1 1973`, 1948.
    [41] DANISHEFSKY S, SCHUDA P F, KITAHARA T, et al. The total synthesis of dl-vernolepin and dl-vernomenin [J]. J Am Chem Soc, 1977, 99(18): 6066-75.
    [42]项金宝.N-吡咯取代嘧啶及类似体系中串联亚胺关环-Smile重排反应的研究[D].长春:吉林大学化学学院,2008.
    [43] HEERDING D A, TAKATA D T, KWON C, et al. Combinatorial chemistry. Use of an intramolecular ruthenium catalyzed olefin/alkyne metathesis reaction in tandem with a Diels-Alder cycloaddition reaction to construct functionalized hexahydroisoindoles. [J]. Tetrahedron Lett, 1998, 39(38): 6815-8.
    [44] SCHIRMER H, DUETSCH M, STEIN F, et al. Highly substituted spiro[4.4]nonatrienes from a beta-amino-substituted alpha,beta-unsaturated Fischer carbene complex and three molecules of an arylalkyne [J]. Angew Chem Int Edit, 1999, 38(9): 1285-7.
    [45] TAN D S, FOLEY M A, STOCKWELL B R, et al. Synthesis and preliminary evaluation of a library of polycyclic small molecules for use in chemical genetic assays [J]. J Am Chem Soc, 1999, 121(39): 9073-87.
    [46] TOSHIMA K, MUKAIYAMA S, YOSHIDA T, et al. Application of Efficient Glycosylation of 2,6-Anhydro-2-Thio Sugar to the Total Synthesis of Erythromycin-A [J]. Tetrahedron Lett, 1991, 32(43): 6155-8.
    [47] MARTIN S F, YAMASHITA M. Novel Macrolactonization Strategy for the Synthesis of Erythromycin Antibiotics [J]. J Am Chem Soc, 1991, 113(14): 5478-80.
    [48] HUNT E, TYLER J W. C-2 Epimerization in an Erythromycin Derivative - Preparation and Nmr Spectroscopic Studies on (2s)-(E)-9-Deoxo-9-Methoxyiminoery thromycin-A [J]. J Chem Soc Perk T 2, 1990, 12): 2157-62.
    [49] WOODWARD R B, LOGUSCH E, NAMBIAR K P, et al. Asymmetric total synthesis of erythromcin. 1. Synthesis of an erythronolide A secoacid derivative via asymmetric induction [J]. J Am Chem Soc, 1981, 103(11): 3210-3.
    [50] WOODWARD R B, AU-YEUNG B W, BALARAM P, et al. Asymmetric total synthesis of erythromycin. 2. Synthesis of an erythronolide A lactone system [J]. J Am Chem Soc, 1981, 103(11): 3213-5.
    [51] WOODWARD R B, LOGUSCH E, NAMBIAR K P, et al. Asymmetric total synthesis of erythromycin. 3. Total synthesis of erythromycin [J]. J Am Chem Soc, 1981, 103(11): 3215-7.
    [52] DAVYDOV R, MACDONALD I D G, MAKRIS T M, et al. EPR and ENDOR of Catalytic Intermediates in Cryoreduced Native and Mutant Oxy-Cytochromes P450cam:? Mutation-Induced Changes in the Proton Delivery System [J]. J Am Chem Soc, 1999, 121(45): 10654-5.
    [53] PELISH H E, WESTWOOD N J, FENG Y, et al. Use of biomimetic diversity-oriented synthesis to discover galanthamine-like molecules with biological properties beyond those of the natural product [J]. J Am Chem Soc, 2001, 123(27): 6740-1.
    [54]侯仲轲,刘智凌,陈灿, et al.不对称催化反应在手性药物合成中的应用[J]. 2005年全国药物化学会议论文集, 2005, 80-90.
    [55] MICALIZIO G C, SCHREIBER S L. A boronic ester annulation strategy for diversity-oriented organic synthesis [J]. Angew Chem Int Edit, 2002, 41(1): 152-4.
    [56] GADEMANN K, CHAVEZ D E, JACOBSEN E N. Highly enantioselective inverse-electron-demand hetero-Diels-Alder reactions of alpha,beta-unsaturated aldehydes [J]. Angew Chem Int Edit, 2002, 41(16): 3059-61.
    [57] JOLY G D, JACOBSEN E N. Catalyst-controlled diastereoselective hetero-Diels-Alder reactions [J]. Org Lett, 2002, 4(10): 1795-8.
    [58] CHAVEZ D E, JACOBSEN E N. Catalyst-controlled inverse-electron-demand hetero-Diels-Alder reactions in the enantio- and diastereloselective synthesis of iridoid natural products [J]. Org Lett, 2003, 5(14): 2563-5.
    [59] SPIEGEL D A, SCHROEDER F C, DUVALL J R, et al. An Oligomer-Based Approach to Skeletal Diversity in Small-Molecule Synthesis [J]. J Am Chem Soc, 2006, 128(46): 14766-7
    [60] BURKE M D, BERGER E M, SCHREIBER S L. A synthesis strategy yielding skeletally diverse small molecules combinatorially [J]. J Am Chem Soc, 2004, 126(43): 14095-104.
    [61] (a) YANG C F, XU Y M, LIAO L X, et al. Asymmetric total synthesis of (+)-desoxoprosophylline [J]. Tetrahedron Lett, 1998, 39(50): 9227-8. (b) BALDWIN J E`, BULGER P G`, MARQUEZ R. Fast and efficient synthesis of novel fumagillin analogues [J]. Tetrahedron, 2002, 58(27): 5441-52. (c) TAKEUCHI M, TANIGUCHI T, OGASAWARA K. Back to the sugars: A new enantio and diastereocontrolled route to hexoses from furfural [J]. Synthesis-Stuttgart`, 1999, 2): 341-54.
    [62]信息来源于丁香通:药学频道http://pharma.dxy.cn/news/66/22/23/15268.htm
    [63]赵鹏,张礼和.化学遗传学和多样性合成[J].大学化学, 2004, 19(2): 1-7.
    [64] DING K, LU Y, NIKOLOVSKA-COLESKA Z, et al. Structure-based design of potent non-peptide MDM2 inhibitors [J]. J Am Chem Soc, 2005, 127(29): 10130-1.
    [65] BURDINE L, KODADEK T. Target identification in chemical genetics: The (often) missing link [J]. Chem Biol, 2004, 11(5): 593-7.
    [66] BUR S K, PADWA A. The Pummerer reaction: Methodology and strategy for the synthesis of heterocyclic compounds [J]. Chem Rev, 2004, 104(5): 2401-32.
    [67] GHOSE A K, VISWANADHAN V N, WENDOLOSKI J J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases [J]. J Comb Chem, 1999, 1(1): 55-68.
    [68] XU J, STEVENSON J. Drug-like index: A new approach to measure drug-like compounds and their diversity [J]. J Chem Inf Comp Sci, 2000, 40(5): 1177-87.
    [69] HORTON D A, BOURNE G T, SMYTHE M L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures [J]. Chem Rev, 2003, 103(3): 893-930.
    [70] WANG S M, FOLKES A, CHUCKOWREE I, et al. Studies on pyrrolopyrimidines as selective inhibitors of multidrug-resistance-associated protein in multidrug resistance [J]. J Med Chem, 2004, 47(6): 1329-38.
    [71] PERNER R J, GU Y G, LEE C H, et al. 5,6,7-trisubstituted 4-aminopyrido[2,3-d] pyrimidines as novel inhibitors of adenosine kinase [J]. J Med Chem, 2003, 46(24): 5249-57.
    [72] MCGUIGAN C, PATHIRANA R N, SNOECK R, et al. Discovery of a new family of inhibitors of human cytomegalovirus (HCMV) based upon lipophilic alkyl furano pyrimidine dideoxy nucleosides: Action via a novel non-nucleosidic mechanism [J]. J Med Chem, 2004, 47(7): 1847-51.
    [73] GANGJEE A, ZENG Y B, MCGUIRE J J, et al. Synthesis of classical, three-carbon-bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo [2,3-d]pyrimidine analogues as antifolates [J]. J Med Chem, 2004, 47(27): 6893-901.
    [74] REWCASTLE G W, BRIDGES A J, FRY D W, et al. Tyrosine kinase inhibitors .12. Synthesis and structure-activity relationships for 6-substituted4-(phenylamino)pyrimido[5,4-d]pyrimidines designed as inhibitors of the epidermal growth factor receptor [J]. J Med Chem, 1997, 40(12): 1820-6.
    [75] GRIFFIN R J, FONTANA G, GOLDING B T, et al. Selective benzopyranone and pyrimido[2,1-alpha]isoquinolin-4-one inhibitors of DNA-dependent protein kinase: Synthesis, structure-activity studies, and radiosensitization of a human tumor cell line in vitro [J]. J Med Chem, 2005, 48(2): 569-85.
    [76] CURTIN N J, BARLOW H C, BOWMAN K J, et al. Resistance-modifying agents. 11. Pyrimido[5,4-d]pyrimidine modulators of antitumor drug activity. Synthesis and structure-activity relationships for nucleoside transport inhibition and binding to alpha(1)-acid glycoprotein [J]. J Med Chem, 2004, 47(20): 4905-22.
    [77] HOMMA M, JAYEWARDENE A L, GAMBERTOGLIO J, et al. High-performance liquid chromatographic determination of ribavirin in whole blood to assess disposition in erythrocytes [J]. Antimicrob Agents Ch, 1999, 43(11): 2716-9.
    [78]齐永秀,赵汉平,朱玉云,双嘧达莫的药理作用与临床应用进展[J].泰山医学院学报,2005,26:394-396.
    [79]许春萍,赵景波,黄桂蓉,等市售西咪替丁和双嘧达莫抗森林脑炎病毒作用的研究[J].哈尔滨医科大学学报,2002,36:38-39.
    [80] Reynolds E F. Martindale. The Extra Pharmacopoeia[M]. 28th ed. Pharmaceutical: London, 1982.
    [81]杜春玲.蛋白激酶Cα-胞外调节蛋白激酶1/2与人气道平滑肌细胞中周期蛋白D1及P21cip1表达的关系[J].中华结核和呼吸杂志, 2008, 31(12): 915-20.
    [82]陆梁.黄色素抑制血管平滑肌细胞增殖与3种蛋白激酶的关系[J].药学学报, 2000, 35(3): 169-72.
    [83] FREDHOLM B B, IJZERMAN A P, JACOBSON K A, et al. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors [J]. Pharmacol Rev, 2001, 53(4): 527-52.
    [84] FISHMAN P, MADI L, BAR-YEHUDA S, et al. Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells [J]. Oncogene, 2002, 21(25): 4060-4.
    [85] OKAMURA T, KUROGI Y, HASHIMOTO K, et al. Structure-activity relationships of adenosine A(3) receptor ligands: new potential therapy for the treatment of glaucoma [J]. Bioorg Med Chem Lett, 2004, 14(14): 3775-9.
    [86] SANGHVI Y S, LARSON S B, MATSUMOTO S S, et al. Antitumor and Antiviral Activity of Synthetic Alpha-Ribonucleosides and Beta-Ribonucleosides of Certain Substituted Pyrimido[5,4-d]Pyrimidines- a New Synthetic Strategy for Exocyclic Aminonucleosides [J]. J Med Chem, 1989, 32(3): 629-37.
    [87] BURCH H A, BENJAMIN L E, RUSSELL H E, et al. Nitrofurfuryl heterocycles. 12. 4-Amino-6-(5-nitro-2-furyl)isoxazolo[5,4-d]pyrimidines and 4-amino-2-(5-nitro- 2-furyl)pyrimido[4,5-d]pyrimidines [J]. J Med Chem, 1974, 17(4): 451-3.
    [88] KOMPIS I M, ISLAM K, THEN R L. DNA and RNA synthesis: Antifolates [J]. Chem Rev, 2005, 105(2): 593-620.
    [89] GEBAUER M G, MCKINLAY C, GREADY J E. Synthesis of quaternised 2-aminopyrimido[4,5-d]pyrimidin-4(3H)-ones and their biological activity with dihydrofolate reductase [J]. Eur J Med Chem, 2003, 38(7-8): 719-28.
    [90] ALVES C N, CASTILHO M, MAZO L H, et al. Theoretical calculations on dipyridamole structure allow to explain experimental properties associated to electrochemical oxidation and protonation [J]. Chem Phys Lett, 2001, 349(1-2): 146-52.
    [91] PRAJAPATI D, GOHAIN M, THAKUR A J. Regiospecific one-pot synthesis of pyrimido[4,5-d]pyrimidine derivatives in the solid state under microwave irradiations [J]. Bioorg Med Chem Lett, 2006, 16(13): 3537-40.
    [92] SHARMA P, RANE N, GURRAM V K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine2,5-dione derivatives as potential antimicrobial agents [J]. Bioorg Med Chem Lett, 2004, 14(16): 4185-90.
    [93] MCDERMOTT L A, HIGGINS B, SIMCOX M, et al. Biological evaluation of multi-targeted small molecule inhibitor of tumor-induced angiogenesis [J]. Bioorg Med Chem Lett, 2006, 16(7): 1950-3.
    [94] RANISE A, SPALLAROSSA A, SCHENONE S, et al. Synthesis and antiproliferative activity of basic thioanalogues of merbarone [J]. Bioorgan Med Chem, 2003, 11(12): 2575-89.
    [95] WEI Z L, ZHENG L Y, DANG Q, et al. An Efficient Method to Prepare 4-Aminoquinazolines: Potential Application to Conformation-Restricted Bleomycin Analogs [J]. J Heterocyclic Chem, 2009, 46(6): 1425-9.
    [96] XIANG J B, ZHENG L Y, XIE H X, et al. Pyrrolo-dihydropteridines via a cascade reaction consisting of iminium cyclization and O-N Smiles rearrangement [J]. Tetrahedron, 2008, 64(38): 9101-7.
    [97] CHE X, ZHENG L Y, DANG Q, et al. Synthesis of novel pyrimidine fused 8-membered heterocycles via iminium ion cyclization reactions [J]. J Org Chem, 2008, 73(3): 1147-9.
    [98] XIANG J B, ZHENG L Y, CHEN F, et al. A cascade reaction consisting of Pictet-Spengler-type cyclization and Smiles rearrangement: Application to the synthesis of novel pyrrole-fused dihydropteridines [J]. Org Lett, 2007, 9(5): 765-7.
    [99] FU R Z, XU X X, DANG Q, et al. Rapid access to pyrimido[5,4-c]isoquinolines via a sulfur monoxide extrusion reaction [J]. Org Lett, 2007, 9(4): 571-4.
    [100] ZHENG L Y, XIANG J B, DANG Q, et al. Design and synthesis of a tetracyclic pyrimidine-fused benzodiazepine library [J]. J Comb Chem, 2006, 8(3): 381-7.
    [101] LIU J L, DANG Q, WEI Z L, et al. An efficient and regiospecific strategy to N-7-substituted purines and its application to a library of trisubstituted purines [J]. J Comb Chem, 2006, 8(3): 410-6.
    [102] FU R Z, XU X X, DANG Q, et al. Synthesis of novel tricyclic pyrimido[4,5-b][1,4]benzothiazepines via Bischler-Napieralski-type reactions [J]. J Org Chem, 2005, 70(26): 10810-6.
    [103] ZHENG L Y, XIANG J B, DANG Q, et al. Novel heterocyclic scaffold consisting of indole-fused pteridines [J]. J Comb Chem, 2005, 7(6): 813-5.
    [104] YANG J X, DANG Q, LIU J L, et al. Preparation of a fully substituted purine library [J]. J Comb Chem, 2005, 7(3): 474-82.
    [105] YANG J X, CHE X, DANG Q, et al. Synthesis of tricyclic 4-chloro-pyrimido[4,5-b][1,4]benzodiazepines [J]. Org Lett, 2005, 7(8): 1541-3.
    [106] LIU J L, DANG Q, WEI Z L, et al. Parallel solution-phase synthesis of a 2,6,8,9-tetrasubstituted purine library via a sulfur intermediate [J]. J Comb Chem, 2005, 7(4): 627-36.
    [107] CHE X, ZHENG L Y, DANG Q, et al. Synthesis of novel tricyclic pyrimidine-fused 5,6-dihydrobenzodiazepines via a Pictet-Spengler-like cyclization [J]. Tetrahedron, 2006, 62(11): 2563-8.
    [108] CHE X, ZHENG L Y, DANG Q, et al. Synthesis of 7,8,9-trisubstituted dihydropurine derivatives via a 'tert-Amino Effect' cyclization [J]. Synlett, 2008, 15): 2373-5.
    [109] CLARK J, PARVIZI B, SOUTHON I W. Heterocyclic Studies. Part XXXVII. Ready Ring Cleavage and Decarbonylation of Pyrimidine-5-carbaldehydes [J]. J Chem Soc, Perkin Trans 1, 1976, 125-30.
    [110] CIKOTIENE I, KAIRYS V, BUKSNAITIENE R, et al. Study on the cyclization of 6-arylethynylpyrimidine-5-carbaldehydes with tert-butylamine: microwave versus thermal preparation of pyrido[4,3-d]pyrimidines [J]. Tetrahedron Lett, 2009, 65(29): 5752-9.
    [111] HUGHES T V, XU G, WETTER S K, et al. A novel 5-[1,3,4-oxadiazol-2-yl]-N-aryl-4,6-pyrimidine diamine having dual EGFR/HER2 kinase activity: Design, synthesis, and biological activity [J]. Bioorg Med Chem Lett, 2008, 18(17): 4896-9.
    [112] MAUREL J L, AUTIN J-M, FUNES P, et al. High-Efficacy 5-HT1A Agonists for Antidepressant Treatment: A Renewed Opportunity [J]. J Med Chem, 2007, 50(20): 5024-33.
    [113] SINGH S, KUMAR S, CHIMNI S S. Chemoenzymatic synthesis of optically active heterocyclic homoallylic and homopropargylic alcohols [J]. Tetrahedron: Asymmetry, 2002, 13(24): 2679-87.
    [114] ORTIZ A, INSUASTY B, TORRES M R, et al. Aminopyrimidine-based donor-acceptor chromophores: push-pull versus aromatic behavior [J]. Eur J Org Chem, 2008, 1): 99-108.
    [115] RALBOVSKY J L, BECKETT R P. Bridged phenanthridine derivatives as cannabinoid 2 receptors agonists or inverse agonists and their preparation, pharmaceutical compositions and use in the treatment of diseases [J]. US Pat, 2008, 25.
    [116] GOMTSYAN A, DIDOMENICO S, LEE C H, et al. Design, synthesis, and structure-activity relationship of 6-alkynylpyrimidines as potent adenosine kinase inhibitors [J]. J Med Chem, 2002, 45(17): 3639-48.
    [117] VERHEIJEN J C, RICHARD D J, CURRAN K, et al. Discovery of 4-Morpholino-6-aryl-1H-pyrazolo[3,4-d]pyrimidines as Highly Potent and Selective ATP-Competitive Inhibitors of the Mammalian Target of Rapamycin (mTOR): Optimization of the 6-Aryl Substituent [J]. J Med Chem, 2009, 52(24): 8010-24.
    [118] TUMKEVICIUS S, DAILIDE M. Synthesis of N-aryl-2-amino-4-oxo-3,4- dihydrothieno[2,3-d]pyrimidine-6-carboxamides [J]. J Heterocyclic Chem, 2005, 42(7): 1305-10.
    [119] MITCHELL M L, SON J C, GUO H, et al. N1-Alkyl pyrimidinediones as non-nucleoside inhibitors of HIV-1 reverse transcriptase [J]. Bioorg Med Chem Lett, 2010, 20(5): 1589-92.
    [120] TUMKEVICIUS S, KAMINSKAS A, BUCINSKAITE V, et al. Synthesis of 4,6-disubstituted thieno[2,3-d]pyrimidines from 4,6-dichloro-2-methylthiopyrimidine -5-carbaldehyde [J]. Heterocyclic Communications, 2003, 9(1): 89-94.
    [121] HAAS A, LIEB M. Preparation and properties of [(trifluoromethyl)thio] pyrimidines [J]. J Heterocyclic Chem, 1986, 23(4): 1079-84.
    [122] TUMKEVICIUS S, DODONOVA J, BASKIROVA I, et al. Palladium- catalyzed cross-coupling reaction of 2- and/or 5-substituted 4,6-dichloropyrimidines with arylboronic acids [J]. J Heterocyclic Chem, 2009, 46(5): 960-4.
    [123] ANGIOLINI M, BASSINI D F, GUDE M, et al. Solid-phase synthesis of pyrido[2,3-d]pyrimidin-7-ones [J]. Tetrahedron Lett, 2005, 46(50): 8749-52.
    [124] QUIROGA J, TRILLERAS J, INSUASTY B, et al. A straightforward synthesis of pyrimido[4,5-b]quinoline derivatives assisted by microwave irradiation [J]. Tetrahedron Lett, 2010, 51(1107-9.
    [125] BEINGESSNER R L, DENG B-L, FANWICK P E, et al. A Regioselective Approach to Trisubstituted 2(or 6)-Arylaminopyrimidine-5-carbaldehydes and Their Application in the Synthesis of Structurally and Electronically Unique G-C Base Precursors [J]. J Org Chem, 2008, 73(3): 931-9.
    [126] NAGASHIMA S, HONDO T, NAGATA H, et al. Novel 7H-pyrrolo[2,3-d] pyrimidine derivatives as potent and orally active STAT6 inhibitors [J]. Bioorgan Med Chem, 2009, 17(19): 6926-36.
    [127] GILBERT A M, NOWAK P, BROOIJMANS N, et al. Novel purine and pyrazolo[3,4-d]pyrimidine inhibitors of PI3 kinase-alpha: Hit to lead studies [J]. Bioorg Med Chem Lett, 2010, 20(2): 636-9.
    [128] MELZIG L, METZGER A, KNOCHEL P. Room temperature cross-coupling of highly functionalized organozinc reagents with thiomethylated N-heterocycles by nickel catalysis [J]. J Org Chem, 2010, 75(6): 2131-3.
    [129] SAMB I, PELLEGRINI-MOISE N, LAMANDE-LANGLE S, et al. Efficient functionalization of a pyranosido-pyrimidine scaffold [J]. Tetrahedron Lett, 2009, 65(4): 896-902.
    [1] COLDHAM I, HUFTON R. Intramolecular dipolar cycloaddition reactions of azomethine ylides [J]. Chem Rev, 2005, 105(7): 2765-809.
    [2] STANLEY L M, SIBI M P. Enantioselective copper-catalyzed 1,3-dipolar cycloadditions [J]. Chem Rev, 2008, 108(8): 2887-902.
    [3] GOTHELF K V, JORGENSEN K A. Transition-Metal-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition Reactions between Alkenes and Nitrones [J]. J Org Chem, 1994, 59(19): 5687-91.
    [4] PANDEY G, BANERJEE P, GADRE S R. Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides [J]. Chem Rev, 2006, 106(11): 4484-517.
    [5] YANG J X, CHE X, DANG Q, et al. Synthesis of tricyclic 4-chloro-pyrimido [4,5-b][1,4]benzodiazepines [J]. Org Lett, 2005, 7(8): 1541-3.
    [6] RAM V J, GOEL A, SARKHEL S, et al. A Convenient Synthesis and Hepatoprotective Activity of Imidazo[1,2-c]pyrimido[5,4-e]pyrimidine, Tetraazaacenaphthene and Tetraazaphenalene from Cyclic Ketene Aminals Through Tandem Addition-Cyclization Reactions [J]. Bioorgan Med Chem, 2002, 10(5): 1275-80.
    [7] CURTIN N J, BARLOW H C, BOWMAN K J, et al. Resistance-Modifying Agents. 11.1 Pyrimido[5,4-d]pyrimidine Modulators of Antitumor Drug Activity. Synthesis and Structure?Activity Relationships for Nucleoside Transport Inhibition and Binding toα1-Acid Glycoprotein [J]. J Med Chem, 2004, 47(20): 4905-22.
    [8] SANGHVI Y S, LARSON S B, MATSUMOTO S S, et al. Antitumor and antiviral activity of synthetic .alpha.- and .beta.-ribonucleosides of certain substituted pyrimido[5,4-d]pyrimidines: a new synthetic strategy for exocyclic aminonucleosides [J]. J Med Chem, 1989, 32(3): 629-37.
    [9] GEBAUER M G, MCKINLAY C, GREADY J E. Synthesis of quaternised 2-aminopyrimido[4,5-d]pyrimidin-4(3H)-ones and their biological activity with dihydrofolate reductase [J]. Eur J Med Chem, 38(7-8): 719-28.
    [10] DABIRI M, ARVIN-NEZHAD H, KHAVASI H R, et al. A novel and efficient synthesis of pyrimido[4,5-d]pyrimidine-2,4,7-trione and pyrido[2,3-d:6,5-d] dipyrimidine-2,4,6,8-tetrone derivatives [J]. Tetrahedron, 2007, 63(8): 1770-4.
    [11] PRAJAPATI D, GOHAIN M, THAKUR A J. Regiospecific one-pot synthesis of pyrimido[4,5-d]pyrimidine derivatives in the solid state under microwave irradiations [J]. Bioorg Med Chem Lett, 2006, 16(13): 3537-40.
    [12] PRAJAPATI D, THAKUR A J. Studies on 6-[(dimethylamino)methylene] aminouracil: a facile one-pot synthesis of novel pyrimido[4,5-d]pyrimidine derivatives [J]. Tetrahedron Lett, 2005, 46(9): 1433-6.
    [13] DEVI I, BORAH H N, BHUYAN P J. Studies on uracils: a facile one-pot synthesis of oxazino[4,5-d]-, pyrano[2,3-d]-, pyrido[2,3-d]- and pyrimido[4,5-d] pyrimidines using microwave irradiation in the solid state [J]. Tetrahedron Lett, 2004, 45(11): 2405-8.
    [14] SRIVASTAVA S K, HAQ W, CHAUHAN P M S. Solid phase synthesis of structurally diverse pyrimido[4,5-d] pyrimidines for the potential use in combinatorial chemistry [J]. Bioorg Med Chem Lett, 1999, 9(7): 965-6.
    [15] WANG Z, NEIDLEIN R. A novel fused heterocyclic system-synthesis of substituted 9,10-dihydro-1,3,4,6,7,10-hexaazacyclohepta[de]naphthalen-8(7H)-ones [J]. Tetrahedron, 1998, 54(33): 9903-10.
    [16] HARMON R E, PARSONS J L, GUPTA S K. Ring-chain isomerism of tetrahydropyrimido[4,5-d]pyrimidines [J]. J Org Chem, 1969, 34(9): 2760-2.
    [17] CIEPLIK J, PLUTA J, GUBRYNOWICZ O. The synthesis and antibacterial activity of 3-alkyl derivatives of some pyrimido[4,5-d] pyrimidines [J]. Acta Poloniae Pharmaceutica, 2003, 60(6): 487-92.
    [18] CIEPLIK J. Synthesis of pyrimido[4,5-d]pyrimidine derivatives [J]. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA: Chemia, 2003, 58(105-11.
    [19] CIEPLIK J, PLUTA J, GUBRYNOWICZ O. Synthesis and antibacterial activity of 1,3-diarylpyrimido[4,5-d]pyrimidines [J]. Bollettino Chimico Farmaceutico, 2003, 142(4): 146-50.
    [20] CLARK J, PARVIZI B, SOUTHON I W. Heterocyclic Studies. Part XXXVII. Ready Ring Cleavage and Decarbonylation of Pyrimidine-5-carbaldehydes [J]. J Chem Soc, Perkin Trans 1, 1976, 125-30.
    [21] ZHANG C, DE C K, MAL R, et al. alpha-amination of nitrogen heterocycles: Ring-fused aminals [J]. J Am Chem Soc, 2008, 130(2): 416-7.
    [22] RYABUKHIN S V, PLASKON A S, VOLOCHNYUK D M, et al. One-pot synthesis of 2,3-Dihydro-1H-benzimidazoles [J]. J Org Chem, 2007, 72(19): 7417-9.
    [23] FU R, XU X, DANG Q, et al. Synthesis of Novel Tricyclic Pyrimido[4,5-b][1,4] benzothiazepines via Bischler?Napieralski-Type Reactions [J]. The Journal of Organic Chemistry, 2005, 70(26): 10810-6.
    [24] GOMTSYAN A, DIDOMENICO S, LEE C H, et al. Design, synthesis, and structure-activity relationship of 6-alkynylpyrimidines as potent adenosine kinase inhibitors [J]. J Med Chem, 2002, 45(17): 3639-48.
    [1] Diels, O.; Alder, K. Justus. Liebigs. Ann. Chem. 1928, 460, 98-122.
    [2] TAKAO K, MUNAKATA R, TADANO K. Recent advances in natural product synthesis by using intramolecular Diels-Alder reactions [J]. Chem Rev, 2005, 105(12): 4779-807.
    [3] KUMAR A. Salt effects on Diels-Alder reaction kinetics [J]. Chem Rev, 2001, 101(1): 1-19.
    [4] KLUNDER A J H, ZHU J, ZWANENBURG B. The concept of transient chirality in the stereoselective synthesis of functionalized cycloalkenes applying the retro-Diels-Alder methodology [J]. Chem Rev, 1999, 99(5): 1163-90.
    [5] (a) BOGER, D.; WEINREB, S. M. Hetero Diels-Alder Methodology in Organic Synthesis, Academic: San Diego, 1987; Chapter 2, 34-70; Chapter 9, pp 239-299, and references therein. (b) BOGER, D. L.; PATEL, M. In Progress in Heterocyclic Chemistry, Suschitzky, H., Scriven, E. F. V., Eds.; Pergamon: New York, 1989; pp 1-30. (c) KAMETANI, T.; HIBINO, S. Adv. Heterocycl. Chem. 1987, 42, 246-333. (d) WEINREB, S. M. Comprehensive Organic Synthesis, TROST, B. M., FLEMING, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 401-512. (e) TIETZE, L. F.; KETTSCHAU, G. Topics Curr. Chem. 1997, 189, 1-120. (f) KOBAYASHI, S. Eur. J. Org. Chem. 1999, 15-27. (g) PANUNZIO, M.; ZARANTONELLO, P. Org. Process Res. Dev. 1988, 2, 49-59. (h) WALDMANN, H. In Organic Synthesis Highlights II, Waldman, H., Ed.; VCH: New York, 1995; pp 37-47. (i) WALDMANN, H. Synthesis 1994, 535-551. (j) WALDMANN, H.; BRAUN, M. Gazzetta Chim. Italiana 1991, 121, 277-284. (k) WALDMANN, H. Synlett 1995, 133-141. (l) BARLUENGA, J.; JOGLAR, J.; GONZALEZ, F. J.; FU
    STERO, S. Synlett 1990, 129-138. (m) PARKER, D. T. Organic Synthesis in Water, Grieco, P. A., Ed.; Blackie Academic and Professional, 1998; Vol. 2, pp 47-81.
    [6]王硕文,汪清民,黄润秋.亚胺的杂Diels-Alder反应在天然产物合成中的应用[J].有机化学, 2003, 23(12): 1331-9.
    [7] KUMARASWAMY G, RAMAKRISHNA G, NARESH P, et al. A Flexible Enantioselective Total Synthesis of Diospongins A and B and Their Enantiomers Using Catalytic Hetero-Diels-Alder/Rh-Catalyed 1,4-Addtion and Asymmetric Transfer Hydrogenation Reactions as Key Steps [J]. J Org Chem, 2009, 74(21): 8468-71.
    [8] TAM N T, CHO C G. Total synthesis of (+/-)-crinine via the regioselective stille coupling and Diels-Alder reaction of 3,5-dibromo-2-pyrone [J]. Org Lett, 2008, 10(4): 601-3.
    [9] GAGNEPAIN J, CASTET F, QUIDEAU S. Total synthesis of (+)-aquaticol by biomimetic phenol dearomatization: Double diastereofacial differentiation in the Diels-Alder dimerization of orthoquinols with a C-2-symmetric transition state [J]. Angew Chem Int Edit, 2007, 46(9): 1533-5.
    [10] HOYE T R, DVORNIKOVS V. Comparative Diels-Alder reactivities within a family of valence bond isomers: A biomimetic total synthesis of (+/-)-UCS1025A [J]. J Am Chem Soc, 2006, 128(8): 2550-1.
    [11] BUONORA P, OLSEN J C, OH T. Recent developments in imino Diels-Alder reactions [J]. Tetrahedron, 2001, 57(29): 6099-138.
    [12] HATTORI K, YAMAMOTO H. Asymmetric Aza-Diels-Alder Reaction - Enantioselective and Diastereoselective Reaction of Imine Mediated by Chiral Lewis Acid [J]. Tetrahedron, 1993, 49(9): 1749-60.
    [13] HATTORI K, YAMAMOTO H. Asymmetric Aza-Diels-Alder Reaction Mediated by Chiral Boron Reagent [J]. J Org Chem, 1992, 57(12): 3264-5.
    [14]ISHIHARA K, YAMAMOTO H. Bronsted Acid Assisted Chiral Lewis-Acid (Bla) Catalyst for Asymmetric Diels-Alder Reaction [J]. J Am Chem Soc, 1994, 116(4): 1561-2.
    [15] VIJN R J, ARTS H J, GREEN R, et al. Synthesis of Alkyl-Substituted and Aryl-Substituted Pyridines from (Alpha,Beta-Unsaturated) Imines or Oximes and Carbonyl-Compounds [J]. Synthesis-Stuttgart, 1994, 6): 573-8.
    [16] KATRITZKY A R, RACHWAL S, RACHWAL B. Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines [J]. Tetrahedron, 1996, 52(48): 15031-70.
    [17] JOHNSON J V, RAUCKMAN B S, BACCANARI D P, et al. 2,4-Diamino-5-Benzylpyrimidines and Analogs as Antibacterial Agents .12. 1,2-Dihydroquinolylmethyl Analogs with High-Activity and Specificity for Bacterial Dihydrofolate-Reductase [J]. J Med Chem, 1989, 32(8): 1942-9.
    [18] PALMA A, ROZO W, STASHENKO E, et al. 4-methyl-3,4-dihydrospiro[cycloheptane-1 ',2(1H)-quinoline] and 4-methyl-3,4- dihydrospiro[cyclooctane-1 ',2(1H)-quinoline]. Synthesis of derivatives and chemical transformations [J]. J Heterocyclic Chem, 1998, 35(1): 183-8.
    [19] KOUZNETSOV V V, DIAZ B, SANABRIA C M, et al. Synthesis and transformations of new spiro-4-piperidines. Acetyl migration in 1-acetyl-1'-benzyl-4- methyl-3,4-dihydrospiro[(1H)quinoline-2,4'-piperidines] under debenzylation conditions [J]. Lett Org Chem, 2005, 2(1): 29-32.
    [20] JOH T, HAGIHARA N. Preparation of quinoline derivatives from schiff base and vinyl ether catalyzed by dicobalt octacarbonyl [J]. Tetrahedron Lett, 1967, 8(42): 4199-200.
    [21] MAKIOKA Y, SHINDO T, TANIGUCHI Y, et al. Ytterbium(Iii) Triflate Catalyzed Synthesis of Quinoline Derivatives from N-Arylaldimines and Vinyl Ethers [J]. Synthesis-Stuttgart, 1995, 7): 801-4.
    [22] KOUZNETSOV V V. Recent synthetic developments in a powerful imino Diels-Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids [J]. Tetrahedron, 2009, 65(14): 2721-50.
    [23] IHARA M, KIRIHARA T, KAWAGUCHI A, et al. A novel synthesis of benzo- and indolo[a]quinolizidines by intramolecular diels-alder reaction of l-azadienes [J]. Tetrahedron Lett, 1984, 25(40): 4541-4.
    [24] IHARA M, TSURUTA M, FUKUMOTO K, et al. A Versatile and Stereocontrolled Synthesis of Quinolizidines and Indolizidines Using Trialkylsilyl Trifluoromethanesulfonate - Total Synthesis of (+/-)-Tylophorine [J]. J Chem Soc Chem Comm, 1985, 17): 1159-61.
    [25] PROVINS L, CHRISTOPHE B, DANHAIVE P, et al. First dual M3 antagonists-PDE4 inhibitors: Synthesis and SAR of 4,6-diaminopyrimidine derivatives [J]. Bioorg Med Chem Lett, 2006, 16(7): 1834-9.
    [26] HUANG H, HUTTA D A, HU H, et al. Design and synthesis of a pyrido[2,3-d]pyrimidin-5-one class of anti-inflammatory FMS inhibitors [J]. Bioorg Med Chem Lett, 2008, 18(7): 2355-61.
    [27] TRUMPP-KALLMEYER S, RUBIN J R, HUMBLET C, et al. Development of a Binding Model to Protein Tyrosine Kinases for Substituted Pyrido[2,3-d]pyrimidine Inhibitors [J]. J Med Chem, 1998, 41(11): 1752-63.
    [28] (a) WOLF M, CHESTERh W, DIEBOLD J. L. US Patent 3,647,800 (1972). (b) WOLF M, CHESTERh W, DIEBOLD J. L. US Patent 3,637,706 (1972). (c) WOLF M`, CHESTERh W, DIEBOLD J. L. US Patent 3,674,790 (1972).
    [29] WILTON J H, CHENEY D C, HOKANSON G C, et al. A new dihydrobenz[a]anthraquinone antitumor antibiotic (PD 116,740) [J]. The Journal of Organic Chemistry, 1985, 50(20): 3936-8.
    [30] KUNZEL E, FAUST B, OELKERS C, et al. Inactivation of the urdGT2 gene, which encodes a glycosyltransferase responsible for the C-glycosyltransfer of activated D-olivose, leads to formation of the novel urdamycins I, J, and K [J]. J Am Chem Soc, 1999, 121(48): 11058-62.
    [31] ROHR J, THIERICKE R. Angucycline group antibiotics [J]. Natural Product Reports, 1992, 9(103-37.
    [32] OHMORI K, MORI K, ISHIKAWA Y, et al. Concise total synthesis and structure assignment of TAN-1085 [J]. Angew Chem Int Edit, 2004, 43(24): 3167-71.
    [33]LARSEN D S, OSHEA M D. Synthetic approaches to the angucycline antibiotics: A concise entry to the ring system of PD 116740 and TAN 1085 [J]. J Org Chem, 1996, 61(16): 5681-3.
    [34] BUONORA P, OLSEN J-C, OH T. Recent developments in imino Diels-Alder reactions [J]. Tetrahedron, 2001, 57(29): 6099-138.
    [35] HARTIKKA A, HOJABRI L, BOSE P P, et al. Synthesis and application of novel imidazole and 1H-tetrazolic acid containing catalysts in enantioselective organocatalyzed Diels-Alder reactions [J]. Tetrahedron: Asymmetry, 2009, 20(16): 1871-6.
    [36] SAVITHA G, PERUMAL P T. An efficient one-pot synthesis of tetrahydroquinoline derivatives via an aza Diels-Alder reaction mediated by CAN in an aqueous medium and oxidation to heteroaryl quinolines [J]. Tetrahedron Lett, 2006, 47(21): 3589-93.
    [37] SABITHA G, VENKATA REDDY E, MARUTHI C, et al. Bismuth(III) chloride-catalyzed intramolecular hetero-Diels-Alder reactions: a novel synthesis of hexahydrodibenzo[b,h][1,6]naphthyridines [J]. Tetrahedron Lett, 2002, 43(8): 1573-5.
    [38] IAFE R G, HOUK K N. Intramolecular hetero-diels-alder reactions of imine and iminium dienophiles: Quantum mechanical exploration of mechanisms and stereoselectivities [J]. J Org Chem, 2008, 73(7): 2679-86.
    [39] TIETZE L F, BRUMBY T, PRETOR M, et al. Intra- and intermolecular hetero-Diels-Alder reactions. 17. Intramolecular hetero-Diels-Alder reaction ofalkylidene- and benzylidenepyrazolones and benzylideneisoxazolones. Investigations toward the conformation of the transition state [J]. The Journal of Organic Chemistry, 1988, 53(4): 810-20
    [40] (a) BOGER, D. L.; WEINRB, S. M. Hetero Diels–Alder Methodology in Organic Synthesis; Academic: Orlando, 1987; Chapters 2 and 9. (b) WEINREB, S. M. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds. Heterodienophile additions to dienes. Pergamon: Oxford, 1991; Vol. 5, Chapter 4.2, p. 401.
    [41] MOTORINA I A, GRIERSON D S. An intramolecular 1-azadiene Diels-Alder approach to the preparation of synthetic equivalents of pyridine [J]. Tetrahedron Lett, 1999, 40(40): 7211-4.
    [42] MOTORINA I A, GRIERSON D S. Lewis acid catalysis of the intramolecular Diels-Alder reaction of 1-azadienes [J]. Tetrahedron Lett, 1999, 40(40): 7215-8.
    [43] (a)梁世懿,高等有机化学结构、反应、合成,中国科技大学出版社,1993年。(b) BEIFUSS, U.; KUNZ, O.; LEDDERHOSE, S.; TARASCHEWSKI, M.; TONKO, C. Cationic 2-Azabutadienes fromα-Arylaminosulfones andα-Arylaminonitriles:Intermolecular Polar [4π+2π]-Cycloadditions for the Regio- and Diastereoselective Synthesis of 1`,2`,3`,4-Tetrahydroquinolines, Synlett, 1996, 34-36.
    [44] MUHUHI J, SPALLER M R. Expanding the synthetic method and structural diversity potential for the intramolecular aza Diels-Alder cyclization [J]. J Org Chem, 2006, 71(15): 5515-26.
    [45] JONES W, KISELYOV A S. Intramolecular cyclization of aromatic imines: an approach to tetrahydrochromano[4,3-b]quinolines [J]. Tetrahedron Lett, 2000, 41(14): 2309-12.
    [46] SOENEN D R, ZIMPLEMAN J M, BOGER D L. Synthesis and inverse electron demand Diels-Alder reactions of 3,6-bis(3,4-dimethoxybenzoyl)-1,2,4,5-tetrazine [J]. J Org Chem, 2003, 68(9): 3593-8.
    [1] (a) ALDER K Ber 1943, 76, 27. (b) TABER, D. F.; In Intramolecular Diels-Alder and Alder-Ene Reaction; Springer-Verlag; Berlin, 1984; p 61.
    [2] JOHNSON J S, EVANS D A. Chiral bis(oxazoline) copper(II) complexes: Versatile catalysts for enantioselective cycloaddition, aldol, Michael, and carbonyl ene reactions [J]. Accounts Chem Res, 2000, 33(6): 325-35.
    [3] ADAM W, KREBS O. The nitroso ene reaction: A regioselective and stereoselective allylic nitrogen functionalization of mechanistic delight and synthetic potential [J]. Chem Rev, 2003, 103(10): 4131-46.
    [4] KANG S K, HONG Y T, LEE J H, et al. Silylative carbocyclization of allenyl-carbonyl units with Et3SiH catalyzed by rhodium: Cis-stereoselective synthesis of homoallylic cycloalkanols [J]. Org Lett, 2003, 5(16): 2813-6.
    [5] YU Z X, HOUK K N. Intramolecular 1,3-dipolar ene reactions of nitrile oxides occur by stepwise 1,1-cycloaddition/retro-ene mechanisms [J]. J Am Chem Soc, 2003, 125(45): 13825-30.
    [6] GRIESBECK A G, BARTOSCHEK A, NEUDORFL J, et al. Stereoselectivity in ene reactions with O-1(2): Matrix effects in polymer supports, photo-oxygenation of organic salts and asymmetric synthesis [J]. Photochem Photobiol, 2006, 82(5): 1233-40.
    [7] TROST B M, MULLER T J J. Butenolide Synthesis Based Upon a Contra-Electronic Addition in a Ruthenium-Catalyzed Alder Ene Reaction - Synthesis and Absolute-Configuration of (+)-Ancepsenolide [J]. J Am Chem Soc, 1994, 116(11): 4985-6.
    [8] OPPOLZER W, SNIECKUS V. Intramolecular Ene Reactions in Organic Synthesis [J]. Angewandte Chemie International Edition in English, 1978, 17(7): 476–86.
    [9] ZHOU W-S, XU X-X. Total Synthesis of the Antimalarial Sesquiterpene Peroxide Qinghaosu and Yingzhaosu A [J]. Accounts Chem Res, 1994, 27(7): 211-6.
    [10] BARAN P S, GUERRERO C A, COREY E J. Short, enantioselective total synthesis of okaramine N [J]. J Am Chem Soc, 2003, 125(19): 5628-9.
    [11] KUROKI Y, AKAO R, INAZUMI T, et al. Thermal Ene Reaction of 4-(2-Alkenylamino)-3-Formyl-2(2h)-Chromenones [J]. Tetrahedron, 1994, 50(4): 1063-72.
    [12] NOGUCHI M, MIZUKOSHI T, KAKEHI A. A facile and stereoselective azepine-ring formation at the periphery of pyridone and pyrido[1,2-a] pyrimidone systems via intramolecular imine and carbonyl ene reactions [J]. Tetrahedron, 1996, 52(41): 13081-96.
    [13] NOGUCHI M, MIZUKOSHI T, UCHIDA T, et al. Mechanistic considerations on the azepine-ring formation through the ene reactions at the periphery of heterocyclic systems [J]. Tetrahedron, 1996, 52(41): 13097-110.
    [14] NOGUCHI M, MIZUKOSHI T, NAKAGAWA S, et al. An asymmetry induced azepine-ring formation through the ene reactions at the periphery of heterocyclic systems [J]. Tetrahedron, 1996, 52(41): 13111-20.
    [15] NOGUCHI M, YAMADA H, TAKAMURA S, et al. Stereoselective azepine-ring formation through ene reactions of 3-(alk-2-enyl)amino-2- cyanoacrolein derivatives [J]. Eur J Org Chem, 2000, 8): 1489-96.
    [16] NOGUCHI M, YAMADA H, TAKAMURA S, et al. Thermal ene reactions of 3-(alk-2-enyl)benzylamino-2-(methoxycarbonyl)acrolein derivatives leading to 4,5-dihydro-1H-azepines [J]. Tetrahedron, 2000, 56(10): 1299-307.
    [17] ZHENG L Y, YANG F Z, DANG Q, et al. A cascade reaction with iminium ion isomerization as the key step leading to tetrahydropyrimido[4,5-d] pyrimidines [J]. Org Lett, 2008, 10(5): 889-92.
    [18] READ M W, RAY P S. Synthesis of a 1,8-Naphthyridin-5-One Derivative Via an Intramolecular 1,3-Dipolar Cycloaddition Reaction [J]. J Heterocyclic Chem, 1995, 32(5): 1595-7.
    [19] KRAUS G A, GUPTA V, KOHUT M, et al. A direct synthesis of 5,6-dihydroindolo[2,1-a]isoquinolines that exhibit immunosuppressive activity [J]. Bioorg Med Chem Lett, 2009, 19(19): 5539-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700