4H-SiC功率肖特基势垒二极管(SBD)和结型势垒肖特基(JBS)二极管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)由于具有禁带宽度大、临界位移能高、热导率高等优点而成为制作高温、高频、大功率和抗辐射器件极具潜力的宽带隙半导体材料。在功率系统中,一个良好的整流器件应具有较小的导通电阻、较低的泄漏电流、较高的击穿电压以及较快的开关速度等特性,因此SiC功率肖特基势垒二极管(SBD)和结型势垒肖特基(JBS)二极管就成为了很具潜力的应用器件类型。国外对于SiCSBD和JBS二极管已经有了诸多报道,并且在近些年来取得了长足的发展,而国内对于SiC功率器件制作的报道相对较少。虽然SiC材料和工艺都取得了一定的进步,但是由于SiC材料的特殊性,在SiC器件制作工艺方面仍然存在诸多不足。本文主要在以下几个方面对4H-SiC功率SBD和JBS二极管的设计、仿真和制作做出了针对性研究:
     1.理论分析了4H-SiC功率SBD和JBS二极管的器件特性和工作特点,建立合适的理论模型,通过ISE-TCAD软件进行器件特性的仿真,并分析了器件结构中的关键参数对于器件特性的影响。
     2.对SiC器件制作过程中的关键工艺进行了分析和研究。通过LPCVD非故意掺杂生长得到了质量良好的4H-SiC N-同质外延层:原子力显微镜(AFM)测试得到其平均面粗糙度(Ra)为0.64nm,均方根粗糙度(RMS)测试结果为0.78nm;傅里叶红外线光谱分析(FTIR)测试得到其平均厚度为10μm;次级离子质谱法(SIMS)测试得到其掺杂浓度为1015cm-3量级。另外还通过Trim软件仿真和实验SIMS测试结果的对比分析,研究了离子注入的剂量、能量的选定,获得了选择性掺杂的工艺条件。对离子激活退火的保护也通过碳膜掩蔽的方法有效控制了高温退火导致的Si升华问题,通过碳膜保护退火获得的表面RMS测试结果为7.03nm,对于未作保护的RMS为54.77nm的表面有显著提高。
     3.仿真研究了采用场限环终端的JBS二极管器件特性,并流片制作了采用场限环终端的SBD和JBS二极管。通过两种区别工艺制作P型欧姆接触,即独立制作P型欧姆接触金属及退火和一次完成正电极与欧姆接触制作的工艺,对比了两种工艺条件下的器件直流特性,分析了工艺过程对于器件特性的影响。
     4.针对场限环终端对于表面电荷敏感的缺陷提出了在4H-SiC SBD和JBS二极管中引入偏移场板终端。通过仿真和理论分析详细研究了氧化层中电荷对于器件反向特性的影响,同时确定了结构参数。通过实验流片制作偏移场板终端的SBD和JBS器件,并通过直流特性测试、开关特性测试、以及变温测试等方法详细研究分析了器件特性。通过采用B离子和Al离子共同注入的方法制作P+结,在获得较大结深的同时能够有效减小反向恢复时间,常温下得到了反向恢复时间仅为44ns的4H-SiC JBS二极管。同时变温条件下的测试也证明了4H-SiC整流器在高达300C的条件下仍具有优越直流特性和开关特性。
     5.针对离子注入工艺和离子激活退火工艺对于器件特性的影响,进行了浮金属场环终端的4H-SiC SBD的流片实验,并分析了Ti和Ni两种金属所形成的肖特基势垒情况。采用Ti制作的SBD在4.4V正向偏压下达到了1600A/cm~2的电流密度,而采用Ni制作的SBD在反向偏压200V下获得了小于10-7A/cm~2的反向漏电流,还获得了击穿电压达到850V的4H-SiC SBD。另外详细研究了结终端扩展JTE对于提高4H-SiC SBD器件特性的作用,通过仿真分析了JTE关键参数对于反向击穿电压、表面电场分布的影响,给出了JTE的设计要点和优化参数。在流片实验中测得了击穿电压达到950V的JTE终端的4H-SiC SBD,正向电流密度在5V时为803A/cm~2。
Silicon Carbide (SiC) has received a substantial increase in research interest due toits wide band gap, high critical field strength, high radiation tolerance and excellentthermal conductivity. SiC-based devices are deemed as a candidate to replace Si-baseddevices in applications of high temperature, high power, and high radiation hardness. Ina power system, a well-built rectifier shall have low conduct resistance, low reverseleakage current, high breakdown voltage and fast switching speed, making SiC acandidate for high-performance Schottky barrier (SBD) and junction barrier Schottky(JBS) diodes. SiC SBDs have been studied and reported worldwide, but the nationalreports, especially those about fabrication, are relatively limited. Though the materialquality and techniques have been improved enormously, there are still many problemsleft to be studied and improved. In this work,4H-SiC SBD and JBS diodes have beenthus designed, fabricated and characterized, the main work including:
     1. The characteristics of4H-SiC SBD and JBS diode were simulated and analyzed.Suitable models were built based on the performance of the devices, and the simulationusing ISE-TCAD was carried out to understand the influence of the structure on thecharacteristics of devices.
     2. The key techniques in manufacturing SiC devices were analyzed. N-epilayerswere grown on the4H-SiC substrate by LPCVD and characterized using FTIR, SIMS,and AFM. Furthermore, Trim was used for the simulation to determine the dosage andenergy for selective doping with ion-implantation, and the simulated results werecompared with the empirical findings. Finally, a study on active annealing was carriedout; and results showed that masking by carbon film effectively protects the surface ofthe wafer during annealing.
     3. A JBS diode terminated by field guarding ring (FGR) was simulated, and bothSBD and JBS diode using FGR were fabricated. Two different techniques wereemployed in fabricating the P-type Ohmic contact: independent metal deposition andannealing, and simultaneous fabrication of the Schottky contact and ohmic contact. TheDC characteristics of devices produced by these two methods were compared tounderstand the difference between those two techniques.
     4. Directed towards the sensitivity of the devices on the charges in the oxidationlayer, the offset field-plate (offset-FP) was employed as the edge termination of SBD and JBS diode. With stimulation and theoretical analyses, effects of the charges in oxidelayer were studied, and the structure were determined thereby. The devices werecharacterized by DC and switching tests; all these tests were also carried out in a variedtemperature to show the temperature dependence of the devices’ performances. Thereverse recovery characteristics show that with B and Al ion co-implantation, therecovery time of a4H-SiC JBS is remarkably reduced to44ns at room temperature.
     5. A Floating metal ring (FMR) was fabricated as the edge termination for4H-SiCSBD to avoid ion-implantation and activating annealing. Ti and Ni were employed toform the Schottky contact. Using Ti contacts, SBD reached a forward current density of1600A/cm~2when forward voltage is4.4V. Meanwhile, Ni contacts formed a higherSchottky barrier height, yielding SBDs with lower reverse current density, which islower then10-7A/cm~2within200V, and4H-SiC SBD breakdown voltages of850V wereachieved. Furthermore, junction termination extension (JTE) was also simulated instudy of SBD to find suitable parameters of structure. In the experiment, a4H-SiC SBDterminated by JTE with breakdown votage of950V is achieved; the forward currentdensity of which is803A/cm~2at5V.
引文
[1.1]王守国,张岩. SiC材料及器件的应用发展前景.自然杂志.2011,33(1):42-53
    [1.2] http://www.yole.fr
    [1.3] Matocha K, Chow T. P, and Gutmann R. J. High-voltage normally off GaNMOSFETs on sapphire substrates. IEEE Transactions on Electron Devices.2005,52(1):6-10
    [1.4] Noborio M, Suda J, Kimoto T.4H-SiC Double RESURF MOSFETs with a RecordPerformance by Increasing RESURF Dose.20thInternational Symposium onPower Semiconductor Devices and IC’s.2008,18:263-266
    [1.5] http://www.cree.com/products/sic_sub_prop.asp
    [1.6] B. Ozpineci, and L. M. Tolbert. Comparison of Wide-bandgap Semiconductors forPower Electronics Applications. Tennessee, U.S.: Oak Ridge National Laboratory.2003:6-22
    [1.7] J. P. Colinge, and C. A. Colige. Physics of Semiconductor Devices. New york,U.S.: Springer.2006:51-68
    [1.8] E. O. Jonson. Physical limitations on frequency and power parameters oftransistors. RCA Rev.1965,26:163-177
    [1.9] R. W. Keyes. Figure of merit for semiconductors for high-speed switches. Proc. ofthe IEEE.1972,60(2):225
    [1.10] B. J. Baliga. Semiconductors for High Voltage Vertical Channel FETs. J. Appl.Phys.1982,53:1759-1764
    [1.11] B. J. Baliga. Power Semiconductor Device Figure of Merit for High-frequencyApplications. IEEE Electron device letters.1989,10(10):455-457
    [1.12] R. Rupp and I. Zverev. SiC power devices: How to be competitive towardsSi-based Solutions. Materials Science Forum.2003,433:805-812.
    [1.13] Raúl P. R. Planar Edge Terminations and Related Manufacturing ProcessTechnology for High Power4H-SiC Diodes. Bellaterra: Universitat Antònoma deBarcelona.2005,10
    [1.14] Ishikawa K, Ogawa K, and Onose H, et al. Traction inverter that applies hybridmodule using3-kV SiC-SBDs.2010International Power Electronics Conference(IPEC).2010:3266-3270
    [1.15] J. B. Fedison, N. Ramungul, and T. P. Chow, et al. Electrical characteristics of4.5kV implanted anode4H-SiC PiN junction rectifiers. IEEE Electron DeviceLetters.2001,22:130-132
    [1.16] M. K. Das, J. J. Sumakeris, and M. J. Paisley, et al. High power4H-SiC PiNdiodes with minimal forward voltage drift. Materials Sicence Forum.2004,457:1105-1109
    [1.17] J. P. Bergman, H. Lendenmann, and P. A. Nilsson, et al. Crystal defects as sourceof anomalous forward voltage increase of4H-SiC diodes. Materials ScienceForum.2001,435:299-302
    [1.18] Y. Sugawara, D. Takayama, and K. Asano, et al.12-19kV4H-SiC PiN diodeswith low power loss.2001International Symposium on Power Devices and ICs(ISPSD’2001).2001:27-30
    [1.19] Y. Sugawara. SiC devices for high voltage high power applications. MaterialsScience Forum.2004,457:963-998
    [1.20] B. M. Wiliamovski. Schottky diodes with high breakdown voltage. Solid-StateElectronics.1983,26:491-493
    [1.21] B. J. Baliga. The pinch rectifier: A low forward drop, high speed power diode.IEEE Electron Device Letters.1984,5:194-196
    [1.22] B. J. Baliga. Analysis of Junction Barrier Controlled Schottky RectifierCharacteristics. Solid-State Electronics.1985,28:1089-1093
    [1.23] B. J. Baliga. Analysis of a high voltage merged PiN/Schottky(MPS) rectifier.IEEE Electron Device Letters.1987,8:407-409
    [1.24] P. Brosselard, V. Banu, and N. Camara, et al. Recent progress in3.3kV SiCdiodes. Materials Science and Engineering: B.2009,165(1-2)25:15-17
    [1.25] Jun Wang, Yu Du, and Bhattacharya S, et al. Characterization, modeling of10-kV SiC JBS diodes and their application prospect in X-ray generators. IEEEEnergy Conversion Congress and Exposition,2009(ECCE2009).2009:1488-1493
    [1.26] Takao K, Shinohe T, Harada S, and Fukuda K, et al. Evaluation of a SiC powermodule using low-on-resistance IEMOSFET and JBS for high power densitypower converters.2010Twenty-Fifth Annual IEEE Applied Power ElectronicsConference and Exposition (APEC).2010:2030-2035
    [1.27] Sheng K, Radhakrishnan R, and Zhang Y, et al. A vertical SiC JFET with amonolithically integratedJBS diode.21st International Symposium on PowerSemiconductor Devices&IC's,2009(ISPSD2009).2009:255-258
    [1.28] Radhakrishnan R, and Zhao J. H. Monolithic Integration of a4H-Silicon CarbideVertical JFET and a JBS Diode. IEEE Electron Device Letters.2011,32(6):785-787
    [1.29] P. Friedrichs, H. Mitlehner, and R. Sch rner, et al. Applications-orieentedUnipolar Swithching SiC Devices. Mater. Sci. Forum.2002,389:1185-1190
    [1.30] W. V. Münch, and P. Hoeck. Silicon Carbide Bipolar Transistor. Solid StateElectronics.1978,21:479-480
    [1.31] A. K. Agarwal, S. H. Ryu, and J. Richmond, et al. Large Area,1.3kV,17A,Bipolar Junction Transistors in4H-SiC. ISPSD2003.2003,14:135
    [1.32] Y. Tang, and T.P. Chow. High Gain Monolithic4H-SiC Darlington Transistors.ISPSD2003.2003,14:383
    [1.33] A. Khan, J. A. Cooper, and M. A. Capano, et al. High-Voltage UMOSFETs in4H-SiC. ISPSD2002,2002,4:157
    [1.34] S. Ryu, A. Agarwal, and J. Richmond, et al.10A,2.4kV Power DiMOSFETs in4H-Si. EEE Electron Device Letters.2002,23(6):321-323
    [1.35] Wood R. A, Urciuoli D. P, and Salem T. E, et al. Reverse conduction of a100A SiC DMOSFET module in high-power applications. Twenty-Fifth Annual IEEEApplied Power Electronics Conference and Exposition (APEC2010).2010:1568-1571
    [1.36] Igor Sankin. Edge Termination and Resurf Technology in Power Silicon CarbideDevices. Mississippi: Mississippi State University.2006:34
    [1.37] Casady J. B, Agarwal A. K, and Rowland L. B, et al. Silicon carbide powerMOSFET technology. IEEE International Symposium on CompoundSemiconductors.1997,8:359-362
    [1.38] R. C. Clarke, and John W. Palmour. SiC Microwave Power Technologies.Proceedings of the IEEE.2002,90(6)
    [1.39] J. H. Zhao, K. Tone, and P. Alexandrov, et al.1710V2.77m·cm24H-SiCtrenched and implanted vertical junction field-effect transistors. IEEE ElectronDevice Letters.2003,24(2):81
    [1.40]曹全军.4H-SiC MESFET非线性模型研究.博士学位论文.西安:西安电子科技大学.2008:5
    [1.41] K. Horio, Y. Fuseya, and H. Kusuki, et al. Numerical Simulation of GaAsMESFET’s with a p-Buffer Layer on the Semi-Insulating Substrate Compensatedby Deep Traps. IEEE Transactions on Microwave Theory and Techniques.1989,37(9)
    [1.42] N. Sghaier, J. M. Bluet, and A. Souifi, et al. Influence of Semi-InsulatingSubstrate Purity on the Output Characteristics of4H-SiC MESFETs. Mat. Sci.Forum.2002,389:1363-1366
    [1.43] Y. Watanabe, and J. Nishizawa. Jap. Patent205060: published No.28-6077,Applic.1950.
    [1.44] J. Nishizawa, T. Terasaki, and J. Shibata. Field effect transistor versus analogtransistor (static induction transistor). IEEE Trans. on Electron Dev.1975,22:185-197
    [1.45] C. Bulucea, and A. Rusu. A First Order Theory of the SIT. Solid-St. Elect.1987,30(12):1227-1242
    [1.46] R. R. Siergiej, R. C. Clark, and A. K. Agarwal, et al. High Power4H-SiC StaticInduction Transistors. Int’l Electron Devices Meeting Tech. Dig.1995:353-356
    [1.47] J. Nishizawa, K. Motoya, and A. Itoh. The2.45GHz36W CW Si Recessed GateType SIT with High Gain and High Voltage Operation. IEEE Trans. On Elect.Dev.2000,47:482-487
    [1.48] A. K. Agarwal, L. S. Chen, and G.W. Eldridge, et al. Ion-implanted StaticInduction Transistors in4H-SiC. IEEE Device Research Conf.1998:94-95
    [1.49] R. C. Clarke, A. W. Morse, and P. Esker, et al. A16W,40%efficient,Continuous Wave,4H-SiC, L-band SIT.2000IEEE Cornell Conference on HighPerformance Devices.2000:141-143
    [1.50] J. N. Merrett, I. Sankin, and V. Bonderenko, et al. RF and DC Characterization ofSelf-aligned L-band4H-SiC Static Induction Transistors.2005InternationalConference on Silicon Carbide and Related Materials (ICSCRM) Poster.2005,1:29
    [1.51] Perez I, Tora J, and Van Zeghbroeck B.4H SiC RF bipolar junction transistors.Device Research Conference.2003:23-25
    [1.52] Agarwal A, Capell C, and Phan B, et al. Power Amplification in UHF BandUsing SiC RF Power BJTs. IEEE Lester Eastman Conference on HighPerformance Devices.2002,6(8):41-49
    [1.53] Bakowski M, Ericsson P, and Harris C, et al. Design and TechnologyConsiderations for a RF BJT in SiC. Materials Science Forum.2003,433:797-800
    [1.54] I. Sankin, and J. Dufrene. Silicon carbide bipolar junction transistor withovergrown base region. U.S. Patent6815304,2004
    [1.55] Vambersky M. B, Kazantsev V. I, and Sheluhin S. A. Microwave Transmitters.Moscow.1984:289
    [1.56] J. Zhao, V. Gruzinskis, and Y. Luo, et al. Monte Carlo simulation of4H-SiCIMPATT diodes. Semiconductor Science and Technology.2000,15(11):1093-100.
    [1.57] L. Yuan, M. R. Melloch, and J. A. Cooper, et al. Silicon carbide IMPATToscillators for high-power microwave and millimeter-wave generation.2000IEEECornell Conference on High Performance Devices.2000:158-67
    [1.58] C. C. Meng, and G. R. Liao. Analysis of SiC IMPATT device in millimeter-wavefrequencies. Microwave and Optical Technology Letters.1998,18(3):167-168.
    [1.59] R. P. Joshi, S. Pathak, and J. A. Mcadoo. Hot-electron and thermal effects on thedynamic characteristics of single-transit SiC impact-ionization avalanchetransit-time diodes. Journal of Applied Physics.1995,78(5):3492-3497
    [1.60] G. H. Glover. Charge multiplication in Au-SiC(6H) Schottky junction. Journal ofApplied Physics.1975,46:4842-4844
    [1.61] Sekikawa M, Funaki T, and Hikihara T. Power A study on power device loss ofDC-DC buck converter with SiC schottky barrier diode Electronics Conference(IPEC2010).2010:1941-1945
    [1.62] Janke W, and Hapka A. The current-voltage characteristics of SiC Schottkybarrier diodes with the self-heating included.16th International Workshop onhermal Investigations of ICs and Systems (THERMINIC).2010:1-3
    [1.63] Adamowicz M, Giziewski S, and Pietryka J, et al. Evaluation of SiC JFETs andSiC Schottky diodes for wind generation systems.2011IEEE InternationalSymposium on Industrial Electronics (ISIE),2011:269-276
    [1.64] K. Tone, J. H. Zhao, and M. Weiner, et al. Fabrication and Testing of1000V-60A4H-SiC MPS Diodes in an Inductive Half Bridge Circuit. Materials Science forum.2000,338:1187-1190.
    [1.65] Sang-Cheol K, Wook B, and In-Ho K, et al. Fabrication characteristics of1.2kVSiC JBS diode.26th International Conference on Microelectronics.2008:181-184.
    [1.66] d'Alessandro V, Irace A, and Breglio G, et al. Influence of Layout Geometries onthe Behavior of4H-SiC600V Merged PiN Schottky (MPS) Rectifiers. IEEEInternational Symposium on Power Semiconductor Devices and IC's.2006:1-4
    [1.67] Lin Z, Chow T. P, and Jones K. A, et al. Design, fabrication, and characterizationof low forward drop, low leakage,1-kV4H-SiC JBS rectifiers. IEEE Transactionson Electron Devices.2006,53(2):363-368
    [1.68] Lin Z, Canhua L, and Chow T. P, et al.1.5kV Novel4H-SiC Lateral Channel (LC)JBS Rectifiers with Low Leakage Current and Capacitance. The17th InternationalSymposium on Power Semiconductor Devices and ICs.2005:283-286
    [1.69] Lin Z, and Chow T P. Analytical Modeling of High-Voltage4H-SiC JunctionBarrier Schottky (JBS) Rectifiers. IEEE Transactions on Electron Devices.2008,55(8):1857-1863
    [1.70] Hefner A. Jr, Berning D, and Lai J. S, et al. Silicon carbide merged PiN Schottkydiode switching characteristics and evaluation for power supply applications.IEEE Industry Applications Conference.2000,5:2948-1954
    [1.71] Singh R, Capell D C, and Hefner A R, et al. High-power4H-SiC JBS rectifiers.IEEE Transactions on Electron Devices.2002,49(11):2054-2063
    [1.72] Yan G, Huang A. Q, and Agarwal A. K, et al. Integration of1200V SiC BJT WithSiC Diode.20th International Symposium on Power Semiconductor Devices andIC's.2008:233-236
    [1.73] Callanan R. J, Agarwal A, and Burk A, et al. Recent progress in SiC DMOSFETsand JBS diodes at Cree.34th Annual Conference of IEEE on Industrial Electronics.2008:2885-2890
    [1.74]张玉明,张义门, and P.Alexandrov, et al.4H-SiC混合PN/Schottky二极管的研制.半导体学报.2001,22(3):265-270[1.75]倪炜江,李宇柱,李哲洋, et al.耐250°C高温的1200V-5A4H-SiC JBS二极管.固体电子学研究与进展.2010,30(4):478-480
    [1.76]倪炜江,李宇柱,李哲洋, et al.2700V4H-SiC结势垒肖特基二极管.固体电子学研究与进展.2011,31(3):223-225
    [2.1] J. H. Zhao, P. Alexandrov, and X. Li. Demonstration of the first10-kv4H-SiCSchottky barrier diodes. Electron Device Letters, IEEE.2003,24:402-404.
    [2.2] L. Lorenz, G. Deboy, and A. Knapp, et al. Cool Mos-a new milestone in highvotage power MOSFET. International Symposium on Power SemiconductorDevices and ICs.1999:3-10
    [2.3] T. Fujihira, and Y. Miyasaka. Simulated Superior Performances of SemiconductorSuperjunction Devices. International Symposium on Power SemiconductorDevices and ICs.1998:423-426
    [2.4] E. H. Rhoderick, and R. H. Williams. Metal-Semiconductor Contacts.2nd Ed.Clarendon. U.K.: Oxford.1988.
    [2.5] C. R. Crowell, and M. Beguwala. Recombination Velocity Effects on CurrentDiffusion and Imref in Schottky Barriers. Solid State Electronics.1971,14(11):1149-1157
    [2.6] B. J. Baliga. Power Semiconductor Devices. Boston: PWS Publishing Co.1995.
    [2.7] E. H. Rhoderick, and R. H. Williams. Metal-semiconductor contacts, New York:Oxford University Press.1988.
    [2.8]施敏,伍国珏.半导体器件物理(第3版).西安:西安交通大学出版社,2008:69-75
    [2.9] W. Shockley. The Theory of p-n Junctions in Semiconductors and p-n JunctionTransistors. Bell Syst. Tech. J.1949,28:435
    [2.10]刘恩科,朱秉升,罗晋升等.半导体物理.北京:北京国防工业出版社,1994:158
    [2.11] B. J. Baliga. Undamentals of Power Semiconductor Devices. New York: Springer,2008:232-235
    [2.12]吕红亮,张义门,张玉明.4H-SiC器件击穿特性的新型解析模型.西安电子科技大学学报(自然科学版.2003,30(6):771-774
    [2.13]刘恩科,朱秉升,罗晋升等.半导体物理.北京:北京国防工业出版社,1994:173
    [2.14] M. T. Rahimo, and N.Y. A. Shammas. Freewheeling Diode Reverse RecoveryFailure Modes in IGBT Applications. IEEE Transactions on Industry Applications.37(2):661-670
    [2.15]仓田衡著(张光华译).半导体器件的数值分析.北京:电子工业出版社.1985:31-73
    [2.16] B. J. Baliga. Advanced Power Rectifier Concepts. New York: Springer,2008:260-261
    [3.1] R. Yakimova, M. Syvajarvi, and M. Tuominen. Seeded sublimation growth of6Hand4H-SiC crystals. Mater.Sci.Eng.B.1999,61-62:54
    [3.2] http://www.epigress.com/index.php?id=2&L=1
    [3.3] T. Kimoto, N. Miyamoto, and A. Schoner, et al. High-energy (MeV) Al and B IonImplantations into4H-SiC and Fabrication of PiN Diodes. J. Appl. Phys.2002,91:4242-4248
    [3.4] M. S. Janson, M. K. Linnarsson, and A. Hallen, et al. Range Distribution ofImplanted Ions in Silicon Carbide. Materials Science Forum.2002,389-393:779-782
    [3.5] S. K. Ghandh. VLSI Fabrication Principles. John Wiley&sons, New York.1994.
    [3.6] P. Petrik, E. R. Shaaban, and T. Lohner, et al. Ion Implantation-caused Damage inSiC Measured by Spectroscopic Ellipsometry. Thin Solid Films.2004,455-456:239-243
    [3.7] L. A. Christel, and J. F. Gibbons. Stoichiometric Disturbances in Ion ImplantedCompound Semiconducttors. J. Appl. Phys.1981,52:5050-5055
    [3.8] A. Hallen, A. Henry, and P. Pellegrino, et al. Ion Implantation Induced Defects inEpitaxial4H-SiC. Materials Science and Engineering.1999,61-62:378-381
    [3.9] M. Ghezzo, D. M. Brown, and E. Downey, et al. Nitrogen-Implanted SiC DiodesUsing High-temperature Implantation. IEEE Electron Dev. Letts.1992,13:636-641
    [3.10] Y. Zhang, W. J. Weber, and W. Jiang, et al. Effects of Implantation Temperatureon Damage Accumulation in Al-implantated4H-SiC. J. Appl. Phys.2004,95:4012-4018
    [3.11] N. S. Saks, A. V. Suvorov, and D. C. Capell. High Temperature High-doseImplantation of Aluminum in4H-SiC. Appl. Phys. Letters.2004,84:5195-5197
    [3.12] H. G. Bohn, J. M. Williams, and C. J. McHargue, et al. Recrystallization ofIon-implanted α-SiC. J. Mater. Res.1987,2:107-116
    [3.13] S. Seshadri, G. W. Eldridge, and A. K. Agarwal. Comparison of the AnnealingBehavior of High-dose Nitrogen-, Aluminum-, and Boron-implanted4H-SiC.Appl. Phys. Letters.1998,72:2026-2028
    [3.14] E. M. Handy, M. V. Rao, and K. A. Jones, et al. Effectiveness of AlN Encapsulantin Annealing Ion-implanted SiC. J. Appl. Phys.1999,86:746-751
    [3.15] L. Zhu, M. Shanbhag, and T. P. Chow, et al.1kV4H-SiC JBS RectifiersFabricated Using an AlN capped Anneal”, Marterials Science Forum.2003,433-436:843-846
    [3.16] M. A. Capano, S. Ryu, and M. R. Melloch, et al. Depant Activation and SurfaceMorphology of Ion Implanted4H-and6H-Silicon Carbide. J. Electronic Materials.1997,27:370-376
    [3.17] K. A. Jones, P. B. Shah, and T. S. Zheleva, et al. Effect of High-temperatureAnneals on4H-SiC Implanted with Al or Al and Si. J. Appl. Phys.2004,96:5613-5618
    [3.18] T. Troffer, M. Schadt, and T. Frank, et al. Doping of SiC by Implantation ofBoron and Alumimum. Physica Status Solidi A.1997,162:277-298
    [3.19] J. R. Jenny, M. Skowronski, and W. C. Mitchel, et al. Pptical and ElectricalCharacterization of Voron Impurities in Silicon Carbide Grown by Physical VaporTransport. J. Appl. Phys.1996,79:2326-2331
    [3.20] H. Itoh, T. Troffer, and G. Pensl. Coimplantation Effects on the ElectricalProperties of Boron and Aluminum Acceptors in4H-SiC. Materials ScienceForum.1998,264-268:685-688
    [3.21] N. Ramungul, V. Khemka, and R. Tyagi, et al. Comparison of Aluminum-andBoron-implanted Verical6H-SiC p+n Junction Diodes. Solid-state Electronics.1998,42:17-22
    [3.22] L. Quintanilla, S. Duenas, and E. Castan, et al. Dopant Level Freeze-out andNonideal Effects in6-H-SiC Epilayer Junctions. J. Appl. Phys.1996,79:310-315
    [3.23] P. G. Neudech, and C. Fazi. High-field Fast-risetime Pulse Failures in4H-and6H-SIC PN Junction Rectifiers. J. Appl. Phys.1996,80:1219-1225
    [3.24] M. K. Linnarsson, M.S. Janson, and A. Shoner, et al. Boron Diffusion in Intrinsic,N-type and P-type4H-SiC. Materials Science Forum.2004,457-460:917-920
    [3.25] I. O. Usov, A. A. Suvorova, and Y. A. Kudriavtsev, et al. Diffusion of Boron in6H and4H SiC Coimplanted with Boron and Nitrogen Ions. J. Applied Physics.2004,96:4960-4964
    [3.26] M. Laube, G. Pensl, and H. Itoh. Suppressed Diffusion of Implanted Boron in4H-SiC. Appl. Phys. Letters.1999,74:2292-2294
    [3.27] L. Zhu, Z. Li, and T. P. Chow. N-type Doping of4H-SiC with Phosphoruscoimplanted with C or Si. J. Electronic Materials.2001,30:891-894
    [3.28] M. A. Capano, J. A. Cooper, and Jr. M. R. Melloch, et al. Ionization Energies andElectron Mobilities in Phosphorus-and Nitrogen-implanted4H-Silicon Carbide.Materials Science Forum.2000,338-342:703-706
    [3.29] Z. Y. Jiang, J. T. Han, and X. H. Liu. Comparison of Ohmic ContactCharacteristics of Different Metal on N Type4H-SiC. Advanced MaterialsResearch.2010,152-153:1529-1532
    [3.30] A. Virshup, F. Liu, D. Lukco, and K. Buchholt, et al. Improved Thermal StabilityObserved in Ni-Based Ohmic Contacts to n-Type SiC for High-TemperatureApplications. Journal of Electronic Materials.2010,40(4):400-405
    [3.31] I. P. Nikitina, K. V. Vassilevski, and N. G. Wright, et al. Formation and Role ofGraphinte and Nickel Silicide in Nickel Based Ohmic Contacts to N-type SiliconCarbide. J. Appl. Phys.2005,97:83709-83717
    [3.32] S. Tanimoto, N. Kiritani, and M. Hoshi, et al. Ohmic Contact Structure andFabrication Process Applicable to Practical SiC Devices. Materials Science Forum.2002,389-393:879-884
    [3.33] B. P. Downey, S. E. Mohney, and T. E. Clark, et al. Reliability of Aluminum-bearing Ohmic Contacts to SiC under High Current Density. MicroelectronicReliability.201050(12):1967-1972
    [3.34] R. Kakanakov, L. Kasamakova-Kolaklieva, and N. Hristeva, et al. HighTemperature and High Power Stability Investigation of Al-based Ohmic Contactsto P-type4H-SiC.27th International Spring Seminar on Electronics Technology.2004,3:543-546
    [3.35] M. R. Jennings, A. Pérez-Tomás, and M. Davies, et al. Analysis of Al/Ti, Al/NiMultiple and Triple Layer Contacts to P-type4H-SiC. Solid-State Electronics.2007,51:797-801
    [3.36] M. Marcin, S. Mariusz, and K. Ryszard, et al. TiAl-based Ohmic Contacts onP-type SiC.34thInternational Spring Seminar on Electronics Technology.2011,11-15:68-72
    [3.37] A. A. Iliadis, S. N. Androneseu, and V. Talyansky, et al. Focused Ion BeamAssisted Ohmic Metallizations to P-6H-SiC. IEEE International Symposium onCompound Semiconductors.1997,8:353-357
    [3.38] L. Kolaklieva, R. Kakanakov, and E. Polychroniadis, et al. Formation andCharacterization of Nanolayered Pd-Based Metal/p-4H-SiC Systems with OhmicBehaviour. Journal of Nano Research.2010,10:77-85
    [3.39] S. Liu, and J. D. Scofield. Ohmic Contacts to P-type SiC with Improved ThermalStability. Materials Science forum.1998,264-268:791-794
    [3.40] S. Liu, K. Reinhardt, and C. Severt, et al. Thermally Stable Ohmic Contacts onN-type6H-and4H-SiC Based on Silicide and Carbide.6thInt. Conf. on SiC andRelated Materials.1995:589-582
    [3.41]贾仁需4H-SiC同质外延的表征及深能级分析研究.博士学位论文.西安:西安电子科技大学.2008:60-66
    [3.42] E M Handy, M. V. Rao, and O. W. Holland et al. Al, B, and Ga Ion-ImplantationDoping of SiC. J. Electron. Mater.2000,29:1340
    [3.43] L.B. Ruppalt, S. Stafford, and D. Yuan et al. Using a PLD BN.AlN Composite asan Annealing Cap for Ion Implanted SiC. Solid State Electronics.2003,47:53
    [3.44]郭辉. SiC器件欧姆接触的理论和实验研究.博士学位论文.西安:西安电子科技大学.2007:25-27
    [4.1] M. S. Tyagi, and R. van Overstraeten. Minority carrier recombination inheavily-doped Silicon. Solid-State Electronics.1983,26(6):577-597
    [4.2] H. Goebel, and K. Hoffmann. Full dynamic power diode model includingtemperature behavior for use in circuits simulators.1992International Symposiumon Power Semiconductor Devices&ICs.1992:130-135
    [4.3]吕红亮,张义门,张玉明.4H-SiC pn结型二极管击穿特性中隧道效应影响的模拟研究.物理学报,2003,52(10):2541-2546
    [4.4] L. C. Yu, and K. Sheng. Breaking the theoretical limit of SiC unipolar powerdevice-simulation study. Solid-State Electronics.2006,50:1062-1072
    [4.5] D. C. Sheridan, G. F. Niu, and J. Neil Merrett, et al. Design and fabrication ofplanar guard ring termination for high-voltage SiC diodes. Solid-State Electronics.2000,44:1367-1372
    [4.6]郑庆立.大功率碳化硅PiN二极管击穿特性的模拟研究.硕士学位论文.西安:西安电子科技大学.2010:13-16
    [4.7]苗永斌,张玉明,张义门.碳化硅MPS:新一代功率开关二极管.微电子学.2004,34(2):116-121
    [4.8]陈治明,李守智.宽禁带半导体电力电子器件及其应用.北京:机械工业出版社.2009.
    [4.9] d'Alessandro V, Irace A, and Breglio G, et al. Influence of Layout Geometries onthe Behavior of4H-SiC600V Merged PiN Schottky (MPS) Rectifiers. IEEEInternational Symposium on Power Semiconductor Devices and IC's.2006:1-4
    [4.10]张玉明,牛新军,张义门. SiC和Si混合PiN/Schottky二极管的模拟和设计.电力电子技术.2002,36(1):56-59
    [4.11]牛新军.4H-SiC混合PiN/Schottky (MPS)二极管的研究.硕士学位论文.西安:西安电子科技大学.2002:21-24
    [4.12] L. H. Cao.4H-silicon carbide gate turn-off thyristor and merged p-i-n andSchottky barrier diode. Ann Arbor, Mich, UMI.2000
    [4.13] Zhang L, Zhang Y. M, and Zhang Y. M, et al. Gamma-ray radiation effect onNi/4H-SiC SBD. Acta Phys. Sin.2009,58(4):2737第五章
    [5.1] H. Yilmaz. Optimization and Surface Charge Sensitivity of High-Voltage BlockingStructure with Shallow Junction. IEEE Transactions on Electron Devices.1991,38(7):666-1675
    [5.2] B. J. Baliga. Modern Power Devices. Wiley.1987:62-119
    [5.3]王荣,尚士奇,吴非.具有场板和场限环的P+N二极管击穿特性的研究.微处理器.1995.1:61-64
    [5.4]张颖,陈炳全,石广元. VDMOSFET终端场板的设计考虑.辽宁大学学报.2001,28(4):332-335
    [5.5] Q. Zhang, S. Soloviev, and V. Madangarli, et al. High Voltage Schottky BarrierDiodes on P-type SiC Using Metal Overlap on a Thick Oxide layer as EdgeTermination. Mater. Res. Soc. Symp.1999,572:75
    [5.6] Zhang Y. M, Niu X. J, and Zhang Y. M, Power Electronics.2002,36:56-59
    [5.7]牛新军.4H-SiC混合PiN/Schottky (MPS)二极管的研究.硕士学位论文.西安:西安电子科技大学.2002:24-27
    [5.8] Zhang L, Zhang Y. M, and Zhang Y. M. High energy electron radiation effect onNi and Ti/4H-SiC Schottky barrier diode at room temperature. Acta Phys. Sin.2009,18(5):1931-1934
    [5.9]李瑞贞.偏移场板和场限环终端结构设计方法的研究.硕士学位论文.北京:北京工业大学.2003:47-58
    [5.10]张林.4H-SiC SBD与MESFET高能粒子辐照效应研究.博士学位论文.西安:西安电子科技大学.2009:22
    [5.11]施敏,伍国珏.半导体器件物理(第3版).西安:西安交通大学出版社.2008:132-134
    [5.12] Hull B. A, Sumakeris J. J, and O'Loughlin M. J, et al. Performance and Stabilityof Large-Area4H-SiC10-kV Junction Barrier Schottky Rectifiers. IEEETransactions on Electron Devices.2008,55(8):1864-1870
    [5.13] Millan J, Banu V, and Brosselard P, et al. Electrical performance at hightemperature and surge current of1.2kV power rectifiers: Comparison between SiPiN,4H-SiC Schottky and JBS diodes. CAS2008International SemiconductorConference.2008,13-15(1):53-59
    [5.14] Brosselard P, Camara N, and Banu V, et al. Bipolar Conduction Impact onElectrical Characteristics and Reliability of1.2-and3.5-kV4H-SiC JBS Diodes.IEEE Transactions on Electron Devices.2008,55(8):1847-1856
    [5.15] Brosselard P, Jorda X, and Vellvehi M, et al.1.2kV Rectifiers ThermalBehaviour: comparison between Si PiN,4H-SiC Schottky and JBS diodes.2007European Conference on Power Electronics and Applications,2007,2-5:1-9
    [5.16]. Storasta L, Bergman J. P, and Hallin C, et al. Electrical activity of residual boronin silicon caribide. Mater. Sci. Forum.2002.389–393:1309-1312
    [5.17] Bolotnikov A. V, Muzykov P. G, and Grekov A. E, et al2007IEEE Transactionson Electron Devices.2007,54:1540
    [5.18]牛新军.4H-SiC混合PiN/Schottky (MPS)二极管的研究.硕士学位论文.西安:西安电子科技大学.2002:28-34
    [6.1]C. H. Zhou, X. R. Luo, and X. C. Deng, et al. High breakdown voltage4H-SiCSchottky Barrier Diodes with floating metal rings for MMIC applications.8thInternational Conference on Solid-State and Integrated Circuit Technology(ICSICT '06).2006:944-946
    [6.2] S. C. Chang, S. J. Wang, and K. M. Uang, et al. Design and fabrication of highbreakdown voltage4H-SiC Schottky barrier diodes with floating metal ring edgeterminations. Solid-State Electronics.2005,49:437–444
    [6.3] Bhantnagar M, Nakanishi H, and Bothra S, et al. Edge terminations for SiC Highvoltage Schottky rectifiers. IEEE5th ISPSD.1993:89–94.
    [6.4] Macary V, Charitat G, and Bafleur M, et al. Comparison between biased andfloating guard rings used as junction termination technique. IEEE4th ISPSD1992:230–233
    [6.5] Ruska W. S. Microelectronic processing. New York: McGraw Hill.1987
    [6.6] Hiyoshi T, Hori T, and Suda J, et al. Simulation and Experimental Study on theJunction Termination Structure for High-Voltage4H-SiC PiN Diodes. IEEETransactions on Electron Devices.2008,55(8):1841-1846
    [6.7] K. Tone, J. H. Zhao, and M. Weiner, et.al. Fabrication and Testing of1000V-60A4H-SiC MPS Diodes in an Inductive Half Bridge Circuit. Materials Science forum.2000,338-342:1187-1190
    [6.8]宋庆文.4H-SiC高压肖特基二极管及结终端技术研究.硕士学位论文.西安:西安电子科技大学.2010:21-34
    [6.9]张波,陈星弼,李肇基. JTE结的二维电场分析.半导体学报.1993,14(10):626-631
    [6.10]黄建华.高压4H-SiC结势垒肖特基二极管的研究.硕士学位论文.西安:西安电子科技大学.2011:23-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700