AlGaN/GaN HFET击穿特性分析与耐压新结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与Si、GaAs基等传统电力电子器件相比,宽禁带半导体材料GaN不但具有临界击穿电场高、电子饱和速率高、耐高温、抗辐照等优势,同时由于极化效应,可以与AlGaN等材料形成具有高面密度和高迁移率的二维电子气(2DEG)沟道,从而使AlGaN/GaN异质结场效应晶体管(AlGaN/GaN HFET)可以同时获得高击穿电压和低导通电阻,被认为是最具潜力的电力电子器件之一。本论文从器件物理出发,针对目前影响AlGaN/GaN HFET击穿电压、导通电阻以及输出功率等器件性能的相关科学技术问题,建立了带有场板结构的AlGaN/GaN HFET沟道电场分布模型,研究了AlGaN/GaN HFET器件变温特性与高场应力下击穿特性变化,提出了新型AlGaN/GaN HFET耐压结构并分别进行了优化设计。
     (1)带有场板结构的AlGaN/GaN HFET沟道电场分布模型。首先对器件沟道横向电场分布与器件参数之间物理关系进行了分析,接着通过求解泊松方程,结合计算机仿真,建立了器件沟道电场分布模型。该模型同时适用于栅场板与源场板结构,所得模型与仿真结果和实验结果符合良好。基于该模型,导出了最大化器件击穿电压的优化准则,获得了器件最优结构参数的解析表达式。
     (2)测试了变温条件下AlGaN/GaN异质结系统传输线测试图形和HFET器件,分析表明温度上升时器件性能退化主要是由于沟道2DEG迁移率降低引起的。当温度为200°C时,2DEG迁移率仅为室温下的34%。
     实验测试了变温下高场应力后钝化AlGaN/GaN HFET击穿特性的变化,发现器件击穿电压随着温度的升高而单调增大;高场应力后,器件的击穿电压有所增大,证实了钝化后表面陷阱仍在起作用。实验发现只有应力时间大于300s时,表面陷阱才会被充电;表面陷阱充电需要一个特征电场,室温下该特征电场值为0.12MV/cm;200°C时降低为0.09MV/cm。
     (3)提出了一种带有背电极的RESURF AlGaN/GaN HFET结构,以解决普通RESURF AlGaN/GaN HFET中沟道电场分布均匀性差的问题。在器件背部引入一接地的背电极,当器件反向偏置时,该背电极通过感应诱生负电荷来调节沟道电场分布,提升沟道电场均匀性和器件耐压。仿真结果显示,对于栅漏间距为6μm的器件,背电极的引入使器件击穿电压从1118V提升至1701V,同时对器件导通电阻几乎没有影响。
     (4)对垂直AlGaN/GaN HFET(AlGaN/GaN VHFET)结构进行了仿真分析与参数优化。研究发现器件电流阻挡层是决定器件耐压机制与耐压大小的关键因素之一,电流阻挡层最优厚度TCBL-opt与其掺杂浓度NCBL存在以下关系TCBL-opt=1/(0.69NCBL/NCBL0-0.18) μm,其中NCBL0=1×1017cm~(-3)。当电流阻挡层厚度大于TCBL-opt时,器件击穿机制为雪崩电离,反之为泄漏电流,在器件设计过程中,应尽量避免器件由于漏电而击穿。优化设计了器件结构参数,得到了使器件优值达到最大值的最佳器件参数值。
     (5)针对AlGaN/GaN VHFET中由于p型杂质激活率低而导致的电流阻挡层漏电问题,提出了一种带有极化掺杂电流阻挡层的AlGaN/GaN VHFET结构,在AlGaN极化掺杂电流阻挡层中,通过Al组分渐变而产生的极化电场来提升p型杂质激活率,增强电流阻挡层抑制泄漏电流的能力,提升器件击穿电压。仿真结果表明,对于0.5μm厚的极化掺杂电流阻挡层,当Al组分从0线性渐变至0.5时,器件击穿电压较普通结构提升了约35%,同时由于极化掺杂电流阻挡层与缓冲层之间形成的2DEG有效阻挡了耗尽层向缓冲层扩展,器件导通电阻几乎没有变化。
     (6)提出了一种带有p型埋层的AlGaN/GaN VHFET结构,以解决器件缓冲层内电场随着远离缓冲层/电流阻挡层界面而逐渐降低的问题,在n-GaN缓冲层内引入p型埋层后,在每一个反向偏置的p-n结界面均形成电场峰值,从而有效提升缓冲层内电场均匀性与耐压强度。分析表明,当缓冲层厚度为14.5μm,掺杂浓度为1×10~(16)cm~(-3)时,器件击穿电压可达3100V,远高于普通结构的1846V。
     (7)为了进一步提升AlGaN/GaN VHFET击穿电压,提出了一种超结AlGaN/GaN VHFET结构,在缓冲层内形成的横向p-n-p超结结构,反向偏置下p区电场与n区电场相互补偿,从而得到均匀的缓冲层电场分布,提升器件耐压能力。对于9.5μm厚的缓冲层,器件优值达到了6.8GW/cm~2,远高于普通AlGaN/GaNVHFET器件。
Comparing with the conventional semiconductors, e.g. Si or GaAs, the wide-bandsemiconductor material gallium nitride (GaN) show the advantages in critical electricalfield, electron saturation velocity, thermal stability and anti-radiation capability.Moreover, a two-dimensional electron gas (2DEG) can be induced at the interface ofGaN and AlGaN by polarization effect. The2DEG has high electron sheet density andhigh electron mobility, thus is perfect for the application as transistor channel. Becauseof the above merits of GaN, the heterojunction field effect transistors (HFETs) t hatutilizing AlGaN/GaN heterostructure can achieve high breakdown voltage and lowon-state resistance at the same time. Therefore, the GaN-based HFETs are considered asone of the most promising candidates in power electron devices. However, severaltechnical issues that related to breakdown voltage, on-state resistance and output powerof AlGaN/GaN HFETs are still remaining to be solved. In order to address theseproblems, the electrical field distribution of AlGaN/GaN HFETs with plate field wasmodeled, and the device breakdown characteristics at various temperatures and highelectrical stress were studied. Moreover, several novel structures of AlGaN/GaN HFETswere proposed and optimizations were applied accordingly. The outline of researchtopics and main conclusions of the dissertation are listed as follows.
     (1) The relationship between lateral electrical field distribution along the channeland device parameters of an AlGaN/GaN HFET with field plate was studied. By solvingPoisson equation, a model for channel electrical field distribution is established. Themodel is applicable for both source-and gate-connected field plate structures. Themodel shows good agreements with numerical simulation and experimental data. Basedon the results from the model, optimization guidelines were put forward to maximizebreakdown voltage of the devices. Analytical expressions for the optimal devicestructure parameters were obtained.
     (2) The electrical characteristics of AlGaN/GaN transmission line measurementstructures and AlGaN/GaN HFETs were measured at various temperatures. The resultsindicate that the device performance degradation is mainly due to the decrease of2DEG mobility. The2DEG mobility at200°C is only34%of that at room temperature.
     The breakdown characteristics of passivated AlGaN/GaN HFETs were also studiedat various temperatures and high-field stress. It was found that the breakdown voltageincreases monotonically with the temperature. Moreover, the breakdown voltageincreases after high-field stress is applied, indicating that surface traps still take effectafter surface passivation. The experiment results indicate that surface traps cannot becharged unless the stress time is larger than300s. A critical electrical field is alsorequired to charge surface traps. The value of the critical electrical is0.12MV/cm atroom temperature, and it decreases to0.09MV/cm when200°C is applied.
     (3) To improve the electrical field uniformity in the RESURF AlGaN/GaN HFET, anovel RESURF AlGaN/GaN HFET with back electrode was proposed. When the deviceis reverse biased, negative charges are induced by the back electrode and thus thechannel electrical field distribution can be modified. This leads to better uniformity ofchannel electrical field and, as a result, higher breakdown voltage. The simulationresults show that the breakdown voltage of RESURF AlGaN/GaN HFET with backelectrode can be as high as1701V, comparing with the1118V of the conventionaldevices. Meanwhile, the as-proposed device structure has negligible negative impact onthe on-state resistance.
     (4) Vertical AlGaN/GaN HFETs (AlGaN/GaN VHFETs) structure was studied bysimulation and the parameter optimization was performed. It is found that the currentblocking layer (CBL) is critical to determine the breakdown mechanism and breakdownvoltage. The optimal thickness of CBL (TCBL-opt) has a relationship with CBL dopingconcentration (NCBL), which is TCBL-opt=1/(0.18+0.69NCBL), where the unit of NCBLis1017cm~(-3). While CBL thickness is larger than TCBL-opt, the device breakdown is due toavalanche ionization; otherwise the device breakdown is caused by leakage current.Leakage current induced breakdown should be avoided in device structure design. Thestructure parameters were optimized according to the above mechanisms and theoptimal device parameters were obtained for maximized figure of merit.
     (5) To solve the CBL leakage problem due to low activation rate of p-type dopantin GaN, an AlGaN/GaN VHFET structure with polarization-doped current blockinglayer (PD-CBL) was proposed. In the AlGaN PD-CBL, the p-type dopant activation ratecan be improved by the polarization electrical field induced by graded Al fraction. Thus, the leakage current suppression effect by PD-CBL is enhanced and the devicebreakdown voltage increases. The simulation result shows that the breakdown voltageof AlGaN/GaN VHFET with0.5-μm-thick PD-CBL (the Al content increases linearlyfrom0to0.5) increases by35%compared with that of the conventional device. Inaddition, because the2DEG formed at the buffer/PD-CBL interface can preventdepletion region from extending to the buffer, the device on-state resistance does notdegraded.
     (6) To alleviate the electrical field lowering effect in the buffer regarding to thedistance from the buffer/CBL interface, an AlGaN/GaN VHFET structure with p-typeburied layers was proposed. As the p-type buried layer is introduced in the n-type GaNbuffer, peak electrical field is formed in each of the reverse biased p-n junction interface.This improves the electrical field uniformity and thus the breakdown strength of thebuffer layer effectively. When the buffer layer thickness is14.5μm and the dopantconcentration is1×10~(16)cm~(-3), the device breakdown voltage can be boosted to3100V,much higher than the1846V of the conventional device.
     (7) To further improve the breakdown voltage of AlGaN/GaN VHFET, asuper-junction AlGaN/GaN VHFET structure was proposed. In the as-proposedstructure, the p-n-p super-junction is along the lateral direction of the buffer. When thedevice is reserve biased, the electrical fields in the p-type regions and n-type regions arecompensated by each other, and a uniformly distributed electrical field is obtained in thebuffer. As a result, higher breakdown voltage is expected. For the device with9.5-μm-thick buffer, the figure of merit is6.8GW/cm~2, which is much higher than thatof conventional AlGaN/GaN VHFETs.
引文
[1] X. B. Chen. Semiconductor power devices with alternating conductivity type high voltagebreakdown region [P]. U.S. Patent5216275, June1,1993
    [2] T. Fujihira. Theory of semiconductor superjunction devices [J]. Journal of Applied Physics,1997,36(10):6254-6262
    [3] A. Sugi, M. Takei, K. Takahashi, et al. Super junction MOSFETs above600V with parallelgate structure fabricated by deep trench etching and epitaxial growth [C]. IEEE Proceedingsof International Symposium on Power Semiconductor Devices&IC's,2008:165-168
    [4] R. Zhu, V. Khemka, T. Khan, et al. A high voltage super-junction NLDMOS deviceimplemented in0.13μm SOI based smart power IC technology [C]. IEEE Proceedings ofInternational Symposium on Power Semiconductor Devices&IC's,2010:79-82
    [5] L. J. Wu, W.T. Zhang, M. Qiao, et al. SOI SJ high voltage device with linear variable dopinginterface thin silicon layer [J]. Electronics Letters,2012,48(5):288-289
    [6] R. S. Pengelly, S. M. Wood, J. W. Milligan, et al. A review of GaN on SiC high electron-mobility power transistors and MMICs [J]. IEEE Transaction on Electron Devices,2012,60(6):1764-1783
    [7] F. Medjdoub, M. Zegaoui, B. Grimbert, et al. First demonstration of high-powerGaN-on-Silicon transistors at40GHz [J]. IEEE Electron Device Letters,2012,33(8):1168-1170
    [8] Q. Jiang, C. Liu, Y. Lu, et al.1.4-kV AlGaN/GaN HEMTs on a GaN-on-SOI platform [J].IEEE Electron Device Letters,2013,34(3):357-359
    [9] Z. Dong, S. Tan, Y. Cai, et al.5.3A/400V normally-off AlGaN/GaN-on-Si MOS-HEMT withhigh threshold voltage and large gate swing [J]. Electronics Letters,2012,49(3):221-222
    [10] R. Chu, A. Corrion, M. Chen, et al.1200-V normally off GaN-on-Si field-effect transistorswith low dynamic on-resistance [J]. IEEE Electron Device Letters,2011,32(5):632-634
    [11] W. Maojun, K. J. Chen. Off-state breakdown characterization in AlGaN/GaN HEMT usingdrain injection technique [J]. IEEE Transaction on Electron Devices,2010,57(7):1492-1496
    [12] A. Sugi, M. Takei, K. Takahashi, et al. Super junction MOSFETs above600V with parallelgate structure fabricated by deep trench etching and epitaxial growth [C]. IEEE Proceedingsof International Symposium on Power Semiconductor Devices&IC's,2008:165-168
    [13] W. Saito, I. Omura, S. Aida, et al. A15.5mΩcm2-680V Super junction MOSFET reducedon-resistance by lateral pitch narrowing [C]. IEEE Proceedings of International Symposiumon Power Semiconductor Devices&IC's,2006:1-4
    [14] W. Saito, I. Omura, S. Aida, et al. A20mΩ·cm2600V-class superjunction MOSFET [C].IEEE Proceedings of International Symposium on Power Semiconductor Devices&IC's,2004:459-462
    [15] S. G. Nassif-Khalil, C. A. T. Salama. Super-junction LDMOST on a silicon-on-sapphiresubstrate [J]. IEEE Transactions on Electron Devices,2003,50(5):1385-1391
    [16] G. Deboy, M. Marz, J. P. Stengl. A new generation of high voltage MOSFETs breaks thelimit line of silicon [C]. International Electron Devices Meeting,1998:683-685
    [17] K. Matocha, P. Losee, S. Arthur, et al.1400V5mΩ·cm2SiC MOSFETs for high-speedswitching [C]. IEEE Proceedings of International Symposium on Power SemiconductorDevices&IC's,2010:365-368
    [18] B. A. Hull, M. K. Das, S. Ryu, et al. Status of1200V4H-SiC power DMOSFETs [C].International Semiconductor Device Research Symposium,2007:1-2
    [19] N. Miura, K. Fujihira, Y. Nakao, et al. Successful development of1.2kV4H-SiC MOSFETswith the very low on-resistance of5mΩ-cm2[C]. IEEE Proceedings of InternationalSymposium on Power Semiconductor Devices&IC's,2006:1-4
    [20] S. Harada, M.Kato, M.Okamoto, et al. Low on-resistance in inversion channel IEMOSFETformed on4H-SiC C-face substrate [C]. IEEE Proceedings of International Symposium onPower Semiconductor Devices&IC's,2006:1-4
    [21] J. Tan, J. A. Cooper, M. R. Melloch. High-voltage accumulation-layer UMOSFET’s in4H-SiC [J]. IEEE Electron Device Letters,1998,19(12):487-489
    [22] M. V. Hove, S. Boulay, S. R. Bahl, et al. CMOS process-compatible high-powerlow-leakage AlGaN/GaN MISHEMT on silicon [J]. IEEE Electron Device Letters,2012,33(8):667-669
    [23] I. Hwang, H. Choi, J. W. Lee, et al.1.6kV,2.9m·cm2normally-off p-GaN HEMT device
    [C]. IEEE Proceedings of International Symposium on Power Semiconductor Devices&IC's,2012:41-44
    [24] A. Nakajima, Y. Sumida, M. H. Dhyani, et al. GaN-based super heterojunction field effecttransistors using the polarization junction concept [J]. IEEE Electron Device Letters2011,32(4):542-544
    [25] P. Srivastava, J. Das, D. Visalli, et al. Record breakdown voltage (2200V) of GaN DHFETson Si with2-μm buffer thickness by local substrate removal [J]. IEEE Electron DeviceLetters,2011,32(1):30-32
    [26] S. L. Selvaraj, A. Watanabe, A. Wakejima, et al.1.4-kV breakdown voltage for AlGaN/GaNhigh-electron-mobility transistors on silicon substrate [J]. IEEE Electron Device Letters,201233(10):1375-1377
    [27] A. M. Khan, A. Bhattarai, J. N. Kuznia, et al. High electron mobility transistor based on aGaN-AlxGa1-xN heterojunction [J]. Applied Physics Letters,1993,63(9):1214-1215
    [28] R. Chu, L. Shen, N. Fichtenbaum, et al. V-gate GaN HEMTs for X-band power applications[J]. IEEE Electron Device Letters,2008,29(9):974-976
    [29] O. Hilt, A. Knauer, F. Brunner, et al. Normally-off AlGaN/GaN HFET with p-type GaN gateand AlGaN buffer [C]. IEEE Proceedings of International Symposium on PowerSemiconductor Devices&IC's,2010:347-350
    [30] H. Kim, J. Lee, D. Liu, et al. Gate current leakage and breakdown mechanism inunpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing [J].Applied Physics Letters,2005,86(14):143505
    [31] J. Lee, H. Lee and H. Cha, et al. Field plated AlGaN/GaN-on-Si HEMTs for high voltageswitching applications [J]. Journal of the Korean Physical Society,2011,59(3):2297-2230
    [32] Saito W, Takada Y, Kuraguchi M, et al. High breakdown voltage AlGaN-GaN power-HEMTdesign and high current density switching behavior [J]. IEEE Transaction on ElectronDevices,2003,50(12):2528-2531
    [33] Y. Uemoto, D. Shibata, M. Yanagihara, et al.8300V blocking voltage AlGaN/GaN powerHFET with thick poly-AlN passivation [C]. IEEE International Electron Devices Meeting,2007:861-864
    [34] E. Bahat-Treidel, O. Hilt, F. Brunner, et al. AlGaN/GaN/AlGaN DH-HEMTs breakdownvoltage enhancement using multiple grating field plates (MGFPs)[J]. IEEE Transaction onElectron Devices,2010,57(6):1208-1216
    [35] Xing H, Dora Y, Chini A, et al. High breakdown voltage AlGaN-GaN HEMTs achieved bymultiple field plates [J]. IEEE Electron Device Letters,2004,25(4):161-163.
    [36] W. Saito, T. Nitta, Y. Kakiuchi, et al. Suppression of dynamic on-resistance increase andgate charge measurements in high-voltage GaN-HEMTs with optimized field-plate structure[J]. IEEE Transaction on Electron Devices,2007,54(8):1825-1830
    [37] Gang Xie, E. Xu, J. Lee. Breakdown-voltage-enhancement technique for RF-basedAlGaN/GaN HEMTs with a source-connected air-bridge field plate [J]. IEEE ElectronDevice Letters,2012,33(5):670-672
    [38] T. Deguchi, A. Kamada, M. Yamashita. High-voltage AlGaN/GaN HFETs by using gradedgate field plates [J]. Electronics Letters,2012,48(2):109-110
    [39] A. Nakajima, M. H. Dhyani, E. M. S. Narayanan, et al. GaN based super HFETs over700Vusing the polarization junction concept [C]. IEEE Proceedings of International Symposiumon Power Semiconductor Devices&IC's,2011:280-283
    [40] S. Karmalkar, J. Deng, M. S. Shur, et al. RESURF AlGaN/GaN HEMT for high voltagepower switching [J]. IEEE Electron Device Letters,2001,22(8):373-375.
    [41] W. X. Huang, T. P. Chow, Y. Niiyama, et al. Experimental demonstration of novelhigh-voltage epilayer RESURF GaN MOSFET [J]. IEEE Electron Device Letters,2009,30(10):1018-1020
    [42] W. Huang, T. P. Chow, Y. Niiyama, et al. Lateral implanted RESURF GaN MOSFETs withBV up to2.5kV [C]. IEEE Proceedings of International Symposium on PowerSemiconductor Devices&IC's,2008:291-294
    [43] K. Matocha, T.P. Chow, R. J. Gutmann. High-voltage accumulation-mode lateral RESURFGaN MOSFETs on SiC substrate [C]. IEEE Proceedings of International Symposium onPower Semiconductor Devices&IC's,2003:54-57
    [44] W. Huang, T. P. Chow, Y. Niiyama, et al.730V,34mΩ·cm2lateral epilayer RESURF GaNMOSFET [C]. IEEE Proceedings of International Symposium on Power SemiconductorDevices&IC's,2009:29-32
    [45] C.H. Seager, A.F. Wright, J. Yu. Role of carbon in GaN [J]. Journal of Applied Physics,2002,92(11):6553-6560
    [46] H. Tang, J. B. Webb, J. A. Bardwell. Properties of carbon-doped GaN [J]. Applied PhysicsLetters,2001,78(6):757-759
    [47] D. S. Green, U. K. Mishra, J. S. Speck, et al. Carbon doping of GaN with CBr4inradio-frequency plasma-assisted molecular beam epitaxy [J]. Journal Applied Physics,2004,95(12):8456-8462
    [48] A. Armstrong, C. Poblenz, D. S. Green, et al. Impact of substrate temperature on theincorporation of carbon-related defects and mechanism for semi-insulating behavior in GaNgrown by molecular beam epitaxy [J]. Applied Physics Letters,2006,88(8):082114
    [49] Z. Q. Fang, B. Claflin, D. C. Look, et al. Deep traps in AlGaN/GaN heterostructures studiedby deep level transient spectroscopy: effect of carbon concentration in GaN buffer layers [J].Journal of Applied Physics,2010,108(6):063706
    [50] E. Bahat-Treidel, F. Brunner, O. Hilt, et al. AlGaN/GaN/GaN:C back-barrier HFETs withbreakdown voltage of over1kV and low RON×A [J]. IEEE Transaction on Electron Devices,2010,57(11):3050-3058
    [51] F. Medjdoub, J. Derluyn, K. Cheng, et al. Low on-resistance high-breakdown normally offAlN/GaN/AlGaN DHFET on Si substrate [J]. IEEE Electron Device Letters,2010,31(2):111-113
    [52] M. S. I. Khan, H. M. M. Maruf, M. Ahmed, et al. Recessed Y-gate AlN/GaN/AlGaNDHFET with GaN cap layer at the gate edge [C]. IEEE International Power Engineering andOptimization Conference, Melaka, Malaysia,2012:302-305
    [53] D. F. Brown, K. Shinohara, A. Williams, et al. Monolithic integration of enhancement-anddepletion-mode AlN/GaN/AlGaN DHFETs by selective MBE regrowth [J]. IEEETransaction on Electron Devices,2011,58(4):1063-1607
    [54] D. Visalli, V. H. Marleen, J. Derluyn, et al. Limitations of field plate effect due to the siliconsubstrate in AlGaN/GaN/AlGaN DHFETs [J]. IEEE Transaction on Electron Devices,2010,57(12):3333-3339
    [55] P. Srivastava, J. Das, D. Visalli, et al. Silicon substrate removal of GaN DHFETs forenhanced (<1100V) breakdown voltage [J]. IEEE Electron Device Letters,2010,31(8):851-853
    [56] M. Yanagihara, Y. Uemoto, T. Ueda, et al. Recent advances in GaN transistors for futureemerging applications [J]. Physica Status Solidi A,2009,206:1221-1227
    [57] I. B. Rowena, S. L. Selvaraj, T. Egawa, et al. Buffer thickness contribution to suppressvertical leakage current with high breakdown field (2.3MV/cm) for GaN on Si [J]. IEEEElectron Device Letters,2011,32(11):1534-1536
    [58] W. Saito, M. Kuraguchi, Y. Takada, et al. Influence of surface defect charge atAlGaN-GaN-HEMT upon schottky gate leakage current and breakdown voltage [J]. IEEETransactions on Electron Devices,2005,52(2):159-164
    [59] H. Kim, J. Lee, D. Liu, et al. Gate current leakage and breakdown mechanism inunpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing [J].Applied Physics Letters,2006,86(14):143505
    [60] L. Shen, T. Palacios, C. Poblenz, et al. Unpassivated high power deeply recessed GaNHEMTs with fluorine-plasma surface treatment [J]. IEEE Electron Device Letters,2006,27(4):214-216
    [61] D. M. Sathaiya, S. Karmalkar. Edge effects on gate tunneling current in HEMTs [J]. IEEETransactions on Electron Devices,2007,54(10):2614-2622
    [62] H. B. Lee, H. I Cho, H. S. An, et al. A normally off GaN n-MOSFET with schottky-barriersource and drain on a Si-auto-doped p-GaN/Si [J]. IEEE Electron Device Letters,2006,27(2):81-83
    [63] K. S. Kim, J. B. Ha, K. W. Kim, et al. Normally off GaN MOSFET based on AlGaN/GaNheterostructure with extremely high2DEG density grown on silicon substrate [J]. IEEEElectron Device Letters,2010,31(3):192-194
    [64] K. T. Lee, C. F. Huang, J. Gong. High-performance1-μm GaN n-MOSFET withMgO/MgO–TiO2stacked gate dielectrics [J]. IEEE Electron Device Letters,2011,32(3):306-308
    [65] U. Singisetti, M. H. Wong, S. Dasgupta, et al. Enhancement-mode N-polar GaN MISFETswith self-aligned source/drain regrowth [J]. IEEE Electron Device Letters,2011,32(2):137-139
    [66] J. Kim, B. Luo, R. Mehandru, et al. Improved DC and power performance of AlGaN/GaNhigh electron mobility transistors with Sc2O3gate dielectric or surface passivation [J].Solid-State Electronics,2003,47(10):1781-1786
    [67] C. Liu, E. F. Chor, L. S. Tan, et al. Investigations of HfO2AlGaNGaN metal-oxide-semiconductor high electron mobility transistors [J]. Applied Physics Letters,2006,88(17):173504
    [68] H. C. Chiu, C. W. Yang, Y. H. Lin, et al. Device characteristics of AlGaN/GaNMOS-HEMTs using high-k praseodymium oxide layer [J]. IEEE Transaction ElectronDevices,2008,55(11):3305-3309
    [69] S. Yagi, M. Shimizua, H. Okumuraa, et al.1.8kV AlGaN/GaN HEMTs withhigh-k/oxide/SiN MIS structure [C]. IEEE Proceedings of International Symposium onPower Semiconductor Devices&IC's,2007:261-264
    [70] M. Kanechika, M. Sugimoto, N. Soejima, et al. A vertical insulated gate AlGaN/GaNheterojunction field-effect transistor [J]. Japanese Journal of Applied Physics,2007,46(21):L503-L505
    [71] T. Uesugi, T. Kachi. GaN power switching devices for automotive applications [C]. CSMANTECH Conference, Florida USA,2009:1-4
    [72] Y. Gao, A.R. Stonas, I. Ben-Yaacov, et al. AIGaN/GaN current aperture vertical electrontransistors fabricated by photoelectrochemical wet etching [J]. Electronics Letters,2003,39(1):148-149
    [73] S. Chowdhury, M. H. Wong, B. L. Swenson, et al. CAVET on bulk GaN substrates achievedwith MBE-regrown AlGaN/GaN layers to suppress dispersion [J]. IEEE Electron DeviceLetters,2012,33(1):41-43
    [74] S. Chowdhury, M. H. Wong, B. L. Swenson, et al. Dispersion-free AlGaN/GaN CAVETwith low Ronachieved with plasma MBE regrown channel with Mg-ion-implanted currentblocking layer [C]. Device Research Conference,2010:201-202
    [75] S. Chowdhury, B. L. Swenson, U. K. Mishra. Enhancement and depletion modeAlGaN/GaN CAVET with Mg-ion-implanted GaN as current blocking Layer [J]. IEEEElectron Device Letters,2008,29(6):543-545
    [76] M. Sugimoto, H. Ueda, M. Kanechika, et al. Vertical device operation of AlGaN/GaNHEMTs on free-standing n-GaN substrates [C]. Power Conversion Conference, Nagoya,2007:368-372
    [77] S. Yaegassi, M. Okada, Y. Saitou, et al. Vertical heterojunction field-effect transistorsutilizing re-grown AlGaN/GaN two-dimensional electron gas channels on GaN substrates[J]. Physics Status Solidi C,2011,8(2):450–452
    [78] Y. Wang, N. S. Yu, D. M. Deng, et al. Improved breakdown voltage of AlGaN/GaN HEMTsgrown on Si substrates using partially Mg-doped GaN buffer layer by MOCVD [J]. ScienceChina,2012,53(9):1578-1581
    [79] W. Chen, C. Zhou, K. J. Chen. High-current-density high-voltage normally-off AlGaN/GaNhybrid-gate HEMT with low on-resistance [J]. Electronics Letters,2010,46(24):1626-1627
    [80] J. Ma, J. Zhang, J. Xue, et al. Characteristics of AlGaN/GaN/AlGaN double heterojunctionHEMTs with an improved breakdown voltage [J]. Journal of Semiconductor,2012,33(1):014002
    [81]于国浩,蔡勇,王越等.关态耐压1000V的AlGaN/GaN HEMT器件[C].全国半导体器件技术/产业发展研讨会,青海西宁,2012:303-304
    [82] S. Karmalkar, U. K. Mishra. Enhancement of breakdown voltage in AlGaN/GaN highelectron mobility transistors using a field plate [J]. IEEE Transaction on Electron Devices,2001,48(8):1515-1521
    [83] S. Karmalkar, M. S. Shur, G. Simin, et al. Field-plate engineering for HFETs [J]. IEEETransaction on Electron Devices,2005,52(12):2534-2540
    [84] S. Karmalkar, N. Soudabi. A closed-form model of the drain-voltage dependence of theoff-state channel electric field in a HEMT with a field plate [J]. IEEE Transaction ElectronDevices,2006,53(10):2430-2437
    [85] W. P. Gu, H. T. Duan, J. Y. Ni, et al. High-electric-field-stress-induced degradation of SiNpassivated AlGaN/GaN high electron mobility transistors [J]. Chinese Physics B,2009,18(4):1601-1608
    [86] D. Sandeepan, S. Min, A. Andrew, et al. Slow detrapping transients due to gate and drainbias stress in high breakdown voltage AlGaN/GaN HEMTs [J]. IEEE Transaction ElectronDevices,2012,59(8):2115-2122
    [87]陈星弼. p-n+结有场板时表面电场分布的简单表达式[J].电子学报,1986,14(1):36-43
    [88] Y. Okamoto, Y. Ando, T. Nakayama, et al, High-power recessed-gate AlGaN–GaN HFETwith a gield-modulating plate [J]. IEEE Transaction Electron Devices,2004,51(12):2217-2222
    [89] W. Huang, S. Zhang, J. Xu. High-Breakdown voltage field-plated normally-off AlGaN/GaNHEMTs for power management [C]. IEEE International Conference on Solid-State andIntegrated Circuit Technology [C],2010:1335-1337
    [90] B. Benbakhti, A. Soltani, K. Kalna, et al. Effects of self-heating on performance degradationin AlGaN/GaN-based devices [J]. IEEE Transaction Electron Devices,2009,56(10):2178-2185
    [91] M. Thorsell, K. Andersson, H. Hjelmgren, et al. Electrothermal access resistance model forGaN-based HEMTs [J]. IEEE Transaction Electron Devices,2011,58(2):466-472
    [92] H. Tokuda, J. Yamazaki, M. Kuzuhara. High temperature electron transport properties inAlGaN/GaN heterostructures [J]. Journal Applied Physics,2010,108(10):104509
    [93] A. Perez-Tomas, M. Placidi, N. Baron, et al. GaN transistor characteristics at elevatedtemperatures [J]. Journal of Applied Physics,2009,106(7):074519
    [94] R. Vetury, N. Q. Zhang, S. Keller, et al. The impact of surface states on the DC and RFcharacteristics of AlGaN/GaN HFETs [J]. IEEE Transaction Electron Devices,2001,48(3):560-566
    [95] C. S. Oh, C. J. Youn, G. M. Yang, et al. Thermal distributions of surface states causing thecurrent collapse in unpassivated AlGaN/GaN heterostructure field-effect transistors [J].Applied Physics Letters,2005,86(1):012106
    [96] P. Kordos, J. Bernat, M. Marso, et al. Influence of gate-leakage current on drain currentcollapse of unpassivated GaN/AlGaN/GaN high electron mobility transistors [J]. AppliedPhysics Letters,2005,86(25):253511
    [97] N. Q. Zhang, B. Moran, S. P. DenBaars, et al. Effects of surface traps on breakdown voltageand switching speed of GaN power switching HEMTs [C]. International Electron DevicesMeeting,2001:25.5.1-25.5.4
    [98] N. Akira, Y. Shuichi, S. Mitsuaki, et al. Effect of deep trap on breakdown voltage inAlGaN/GaN HEMTs [J]. Materials Science Forum,2009,600-603:1345-1348
    [99] S. A. Chevtchenko, M. A. Reshchikov, Q. Fan, et al. Study of SiNxand SiO2passivation ofGaN surfaces [J]. Journal of Applied Physics,2007,101(11):113709
    [100] A. Koudymov, V. Adivarahan, J. Yang, et al. Mechanism of current collapse removal infield-plated nitride HFETs [J]. IEEE Electron Device Letters,2005,26(10):704-706
    [101] F. Gonzalez-Posadal, A. F. Brahal, D. L. Romero, et al.2-DEG characteristics improvementby N2-plasma exposure in GaN HEMT heterostructures [C]. Spanish Conference onElectron Devices,2007:154-157
    [102] Z. Y. Fan, J. Li, M. L. Nakarmi, et al. AlGaN/GaN/AlN quantum-well field-effect transistorswith highly resistive AlN epilayers [J]. Applied Physics Letttters,2006,88(7):073513.
    [103] T. Ohki, T. Kikkawa, Y. Inoue, et al. Reliability of GaN HEMTs: current status and futuretechnology [C]. International Reliability Physics Symposium,2009:61-70
    [104] R. Menozzi. Reliability of GaN-based HEMT devices [C]. Conference on Optoelectronicand Microelectronic Materials and Devices,2008:44-50
    [105] J. Hilsenbeck, F. Lenk, R. Lossy, et al. DC and microwave properties of0.5μmAlGaN/GaNhigh electron mobility transistors fabricated on2-inch process line [C]. IEEEInternational Symposium on Compound Semiconductors,2000:351-356
    [106] B. Lu, T. Palacios. AlGaN/GaN vertical Power transistors [C]. Microsystems TechnologyLaboratories Annual Research Report,2009:DE29
    [107] J. Park, M. W. Shin, C. C. Lee. Thermal modeling and measurement of AlGaN–GaN HFETsbuilt on sapphire and SiC substrates [J]. IEEE Transaction on Electron Devices,2004,51(11):1753-1759
    [108] J. Roig, E. Stefanov, F. Morancho. Thermal behavior of a super junction MOSFET in ahigh-current conduction [J]. IEEE Transaction Electron Devices,2006,53(7):1712-1720
    [109] J. Neugebauer, C. Van de Walle. Native defects and impurities in GaN [J]. Festk rperProbleme Advances in Solid State Physics,1995:25–44
    [110] O. Hilt, A. Knauer, F. Brunner, et al. Normally-off AlGaN/GaN HFET with p-type GaN gateand AlGaN buffer [C]. IEEE Proceedings of International Symposium on PowerSemiconductor Devices&IC's,2010:347-350
    [111] P. Kozodoy, H. Xing, S. P. DenBaars, et al. Heavy doping effects in Mg-doped GaN [J].Journal of Applied Physics,2000,87(4):1832-1835
    [112] B. S. Shelton, J. J. Huang, D. J. H. Lambert, et al. AlGaN/GaN heterojunction bipolartransistors grown by metal organic chemical vapor deposition [J]. Electronics Letters,2000,36(1):80-81
    [113] L. Lahourcade, J. Pernot, A. Wirthmüller, et al. Mg doping and its effect on the semipolarGaN (1122) growth kinetics [J]. Applied Physics Letters,2009,95(17):171908
    [114] J. Simon, V. Protasenko, C. Lian, et al. Polarization-induced hole doping in wide-band-gapuniaxial semiconductor heterostructures [J]. Science,2010,327(1):60-64
    [115] L. Zhang, K. Ding, J. C. Yan, et al. Three-dimensional hole gas induced by polarization in(0001)-oriented metal-face III-nitride structure [J]. Applied Physics Letters,2010,97(6):062103
    [116] L. Zhang, X. C. Wei, N. X. Liu, et al. Improvement of efficiency of GaN-basedpolarization-doped light-emitting diodes grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters,2011,98(24):241111
    [117] O. Ambacher, B. Foutz, J. Smart, et al. Two dimensional electron gases induced byspontaneous and piezoelectric polarization in undoped and doped AlGaN/GaNheterostructure [J]. Journal of Applied Physics,2000,87(1):334-343
    [118] P. M. Shenoy, A. Bhalla, G. M. Dolny. Analysis of the effect of charge imbalance on thestatic and dynamic characteristics of the superjunction MOSFET. IEEE Proceedings ofInternational Symposium on Power Semiconductor Devices&IC's,1999:99-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700