K562-4-1BBL-MICA工程细胞构建及其联合IL-21对NK细胞体外扩增的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是机体在各种理化诱变剂或生物致癌因素作用下,细胞在基因水平上失去对其生长的正常调控而异常增生形成的病变。肿瘤的发生意味着免疫系统内的免疫器官、免疫细胞或免疫分子部分发生故障,使得机体免疫监视功能受损而不能正常行使清除自发突变细胞的功能。晚期癌症患者的治疗以放射疗法、化学药物疗法为主,但是放、化疗的副作用明显,能引起骨髓造血抑制、免疫细胞功能低下。由于肿瘤的发生发展和预后同免疫细胞功能紧密相关,而激活的免疫细胞具有强大的肿瘤杀伤能力,免疫细胞过继疗法为主的肿瘤生物疗法逐渐成为继外科手术、放射疗法、化学药物疗法之后的第四大肿瘤治疗方法。淋巴因子激活的杀伤细胞(lymphokine-activated killercells,LAK)成分复杂且在转移至患者机体后仍需要高浓度IL-2的刺激来维持肿瘤杀伤活性,而高浓度IL-2会诱发严重的毒副反应如毛细血管渗漏综合征(capillary leaksyndrome,CLS)。肿瘤浸润T细胞(tumor-infiltrating lympbocytes,TIL)过继转移的免疫疗法在部分黑色素瘤患者中取得了显著的成功,但是限制其广泛应用的最大困难是无法分离得到足够数量的免疫细胞。在一些研究中,基因改造T细胞,让它表达嵌合抗原的受体,能够识别多种肿瘤相关抗原,在小鼠模型和患者的过继免疫治疗中,可以有效对抗多种类型肿瘤。至今,过继疗法的效应细胞主要是具有MHC限制性的CD8+T细胞,越来越多的研究报道了过继性转移自然杀伤(Natural Killer,NK)细胞能诱导更有效的抗肿瘤、抗感染免疫反应。
     NK细胞是固有免疫系统的主要效应细胞,能无需预先刺激,通过使用穿孔素和颗粒酶以及其它机制,无MHC限制性杀伤肿瘤细胞和病毒感染细胞。NK细胞表达众多的激活性受体,能有效识别肿瘤细胞或感染细胞产生的应激性配体,而抑制性受体在靶细胞MHC表达下调或消失时则失去对NK细胞杀伤作用的抑制作用。同种异体或自体移植NK细胞在临床应用中很有前景,研究显示NK细胞有很强的抗肿瘤活性。但是NK细胞在外周血中比例小,体外扩增难,扩增后细胞毒活性弱,都是限制其应用于临床免疫治疗的瓶颈。
     本实验的目的是通过基因工程的方法,构建基因修饰的K562工程细胞,使其双表达激活性配体4-1BBL和MICA,将其同体外分离的外周血单个核细胞(Pefipheral BloodMononuclear Cells,PBMCs)共培养,观察NK细胞体外扩增、检测细胞表面激活性、抑制性受体等表达、测定扩增前后NK细胞毒活性变化、分析扩增前后NK细胞亚群异同,为NK细胞过继疗法从实验室研究向临床应用的转化提供理论依据。
     1K562-4-1BBL-MICA工程细胞的制备
     1.14-1BBL和MICA表达质粒的构建
     从人PBMCs中提取总RNA,根据NCBI参考序列(NCBI Reference Sequence:NM_003811.3),设计引物,进行逆转录PCR获得4-1BBL的全长CDS序列。再次设计引物,将4-1BBL序列前后分别加入酶切位点BmaHI/XbaI,酶切后,连接到pcDNA3.1-Hygro中,构建成重组表达质粒pcDNA3.1-Hygro-4-1BBL。
     同样的方法,从人K562细胞系中提取RNA,通过RT-PCR获得MICA全长CDS序列(NCBI Reference Sequence:NM_000247.1)。设计引物,将MICA序列加入酶切位点XhoI/Nhe I,酶切之后连接到pVITRO2-Neo-mcs的MCS2中,构建成重组表达质粒pVITRO2-Neo-MICA。
     1.2构建并克隆化K562-4-1BBL-MICA细胞
     将pcDNA3.1-Hygro-4-1BBL用脂质体转染法转染K562细胞,潮霉素筛选抗性细胞,流式细胞术测定表达4-1BBL的K562细胞比例,有限稀释法克隆出并通过流式细胞术鉴定高表达4-1BBL的K562细胞。接着将pVITRO2-Neo-MICA转染K562-4-1BBL细胞,G418和潮霉素共同筛选抗性细胞,同样的方法获得双表达4-1BBL和MICA的K562细胞。经过多次有限稀释法进行单克隆以及流式细胞术鉴定,最终获得单克隆化、可以稳定遗传的K562-4-1BBL-MICA细胞株。
     2K562-4-1BBL-MICA工程细胞体外扩增PBMCs中NK细胞
     2.1体外扩增NK细胞
     首先用一定浓度的丝裂霉素C灭活K562-4-1BBL-MICA工程细胞,按照1:1的比例,在IL-21存在下将其与体外分离的PBMCs在24孔板中共培养,分别在第0天、7天、14天、21天和28天用流式细胞术测定NK细胞在PBMCs中的比例并计算NK细胞总量。在5ng/mLIL-21存在时,NK细胞在共培养第21天获得最高的比例以及数量。
     2.2扩增后NK细胞表面受体分析
     选取第0天、21天的NK细胞,分析其表面ADCC效应受体CD16、激活性受体CD69、CD38和NKG2D、抑制性受体CD94、CD158a和CD158f、自然细胞毒受体NKp46、NKp44和NKp30以及CD8、CD62L、CD57表达情况。NK细胞活化受体CD69、CD38、NKG2D和抑制性受体CD94表达均显著上调,NK细胞终末分化标志CD57几乎不表达。
     2.3扩增前后NK细胞毒活性试验
     使用流式细胞术和CCK8试验分别检测NK细胞对K562敏感细胞的特异性杀伤和对常见细胞株Hela、HepG2和SKOV3的细胞毒活性。扩增后的NK细胞相对于新分离的NK细胞,在不同的效:靶比下,对NK敏感K562细胞杀伤力显著增加;扩增后的NK细胞对Hela、HepG2和SKOV3细胞株也有增强的细胞毒作用。
     2.4刺激前后NK细胞分泌IFN-γ能力检测
     经过胞内染色检测,扩增后NK细胞可以分泌IFN-γ,而扩增前NK细胞中仅仅部分CD56brightNK细胞分泌IFN-γ。
     2.5扩增后NK细胞亚群变化
     体外扩增21天后,NK细胞中主要亚群为CD56brightCD16+NK细胞,而新分离的NK细胞中CD56dimNK细胞约占约90%,激活的D56brightCD16+NK细胞依然高水平表达穿孔素,表现出对K562细胞更强的杀伤活性。
     综上所述,我们成功构建了可以稳定遗传的单克隆化的K562-4-1BBL-MICA工程细胞,用其联合5ng/mL的IL-21,可以体外从PBMCs中扩增出活化性受体和抑制性受体同时表达上调的NK细胞,扩增后的NK细胞毒活性相对于新鲜分离的NK细胞显著增强,且分泌免疫调理细胞因子IFN-γ。在扩增后的NK细胞中,CD56brightCD16+NK细胞占主要地位,高水平表达穿孔素,同时相对于CD56dimCD16+NK细胞表现出增强的细胞毒活性。本研究对于NK细胞体外扩增后用于免疫过继疗法治疗肿瘤提供了实验依据,同时也为CD56brightCD16+NK细胞亚群的细胞生物学分析提供了体外扩增的方法。
Tumorgenesis occurrs when normal cells are exposed to various mutagens, and itsuggests an impaired immune function. Besides surgical resection, radiotherapy andchemotherapy are the main means in the treatment of cancer, although there are a number ofserious side effects, including suppression of hematopoiesis and impaired immunology. Inconsideration of the close relation between tumorgenesis and cellular immunity, adoptiveimmunotherapy become more and more important in tumor therapy, following the threecommon methods mentioned above. Lymphokine-activated killer cells (LAK) are potentkiller cells in the lysis of tumor cells, however, high dose IL-2that induces serious capillaryleak syndrome (CLS), is needed after infusion of LAK cells to maintain their killing ability.Adoptive immunotherapy involving transfer of tumor infiltrating T cells (TIL) has shownremarkable success in a proportion of melanoma patients. However the use of TIL therapyfor most malignancies has been hampered due to difficulties in isolating sufficient numbersof these cells. Many of these studies to date have involved in the transfer of predominantlyCD8+effector T cells. However, more recent studies have reported that adoptive transfer ofNK cells can in some cases induce more effective anti-tumor responses.
     NK cells are a potent innate immune cell type which are able to respond quickly to adisease threat, and can kill target cells using perforin and granzymes, among othermechanisms. They express a number of different activating and inhibitory receptors whichenable these cells to effectively recognize stress ligands on tumor cells that have otherwisedown-regulated or lost MHC expression. The transfer of allogeneic NK cells has shownpromise in the clinical setting. Studies demonstrate that NK cells possess strong anti-tumoractivity and potential, however the difficulty in generating sufficient numbers of NK cellshas posed difficulties for universal use of these cells. This indicated the feasibility tomanipulate and redirect NK killing for a specific antigen target, and highlights the potentialuse of gene-modified NK cells in clinic.
     This study was aimed to construct a genetically modified k562cell line with stablesurface expression of4-1BBL and MICA, and tried to expand NK cells in vitro with isolatedPBMCs. Expression of activating and inhibitory receptors is detected later, as well as specific cytotoxicity against tumor cells. Our research would provide biological evidence forthe clinical application of adoptive NK cells in tumor therapy.
     1Preparation of modified K562-4-1BBL-MICA cell line
     1.1Construction of expression vectors with4-1BBL or MICA
     RNA was obtained from newly isolated PBMCs and Reverse transctiption wasconducted to aquire cDNA.4-1BBL was obtained through PCR from cDNA, subsequentlyinserted into multiple cloning site of pcDNA3.1/Hygro (+)(Invitrogen), namedpcDNA3.1-Hygro-4-1BBL. MICA was obtained from K562cell line (ATCC), using reversetranscriptase PCR, and was inserted into MCS2of pVITRO2-noe-mcs plasmid (Invivogen),called pVITRO2-Neo-MICA.
     1.2Construction and cloning of K562cells with surface expression of4-1BBL and MICA
     At the beginning, Lipofectamine2000was used to transfect K562cells withpcDNA3.1-Hygro-4-1BBL. Culture medium with hygromycin was used to select K562cellswith stable transfection. K562cells with resistance to hygromycin were cloned with limitingdilution assay and identified the expression of4-1BBL by flow cytometry. And then, therecombinant pVITRO2-Neo-MICA was transduced into K562-4-1BBL cells.K562-4-1BBL-MICA cells were reconfirmed again in the same way mentioned above andmaintained with G418and hygromycin. Limiting dilution assay was conducted four times toclone a stable K562-4-1BBL-MICA cell strain.
     2Long-term culture of PBMCs with K562-4-1BBL-MICA cells
     2.1Expansion of NK cells in vitro
     Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll Hypaque densitygradient centrifugation. K562-4-1BBL-MICA stimulator cells were treated with mitomycinC and then washed four times with PBS. PBMCs (1.0×106) were incubated in24-welltissue-culture plates with106K562-4-1BBL-MICA stimulator cells in the presence IL-21.The proportion of CD3CD56+CD16+NK cells in stimulated PBMCs was analyzed by flowcytometry on day0,7,14,21and28. The proportion of NK cell reached70﹪at day21, inthe presence of5ng/mL IL-21.
     2.2Phenotype analysis of expanded NK cells
     Expanded NK cells with K562-4-1BBL-MICA+IL-21were analyzed for detailedmarkers by flow cytometry on day21, as well as fresh isolated PBMCs. Cells were stainedwith mixed Antibodies CD3, CD56, CD16; CD8; CD94; CD62L; CD57; CD69; CD38;CD314(NKG2D); CD158a; CD158f; CD337(NKp30); CD336(NKp44); CD335. Up-regulation of activating receptors like CD69, CD38and NKG2D was observed inexpanded NK cells, so was inhibitory receptor CD94. Expanded NK cells seldomlyexpressed CD57, a terminal differential marker of NK cells.
     2.3Specific lysis of expanded NK cells against sensitive K562cells and cytotoxicityagainst Hela, HepG2and SKOV3cell strains.
     For lysis of fresh and expanded NK Cells, the effectors were mixed with log-phaseK562-EGFP target cells at different ratios. Cytotoxicity against Hela, SKOV3and HepG2cell strains was analyzed by Cell Counting Kit (CCK-8/WST-8)(SAB). Expanded NK cellsshowed higher killing ability against K562cells at each ratio, compared with freshly isolatedNK cells. Enhanced cytotoxicity was detected with stimulated NK cells against Hela,SKOV3and HepG2cell strains.
     2.4The expression of IFN-γ in expanded NK cells
     Expanded NK cells produced the immune-regulatory cytokine IFN-γ, which wouldpositively regulate Th1-type immunity in the cancer patients, compared with expression ina very few proportion of fresh NK cells, mainly in CD56brightNK subset.
     2.5Identification of NK subsets in expanded NK cells
     After expansion with K562-4-1BBL-MICA feeder cells, CD56brightCD16+NK subsetdominated in expanded NK cells and expressed similar level of perforin, wherever, morethan90﹪of newly isolated NK cells were CD56dimCD16+. CD56brightCD16+NK cellsshowed enhanced cytotoxicity against K562cells than CD56dimCD16+subset.
     According to results above, expansion of activated NK cells stimulated withK562-4-1BBL-MICA cells+IL-21for21days was confirmed, in which the CD56brightCD16+NK subset dominated. Our research provided a method to expand CD56brightCD16+NK cellsin vitro for further biological study, meanwhile, the data on expanded NK cells partiallysupports the application of stimulated NK cells in clinical immunotherapy against tumor inthe future. However, further investigations have to be done to generate sufficient clinical NKcells for adoptive immunotherapy.
引文
[1] Dudley ME, Gross CA, Langhan MM, et al. CD8+enriched young tumor infiltratinglymphocytes can mediate regression of metastatic melanoma [J]. Clin Cancer Res,2010,16:6122-6131.
    [2] Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastaticmelanoma: evaluation of intensive myeloablative chemoradiation preparative regimens[J]. J Clin Oncol,2008,26:5233-5239.
    [3] Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy [J].Nat Rev Cancer,2013,13:525-541.
    [4] Herberman RB, Nunn ME, Holden HT, et al. Natural cytotoxic reactivity of mouselymphoid cells against syngeneic and allogeneic tumors.II. Characterization of effect orcells [J]. Int J Cancer,1975,16(2):230–239.
    [5] Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoidcells against syngeneic acid allogeneic tumors.I. Distribution of reactivity andspecificity [J]. Int J Cancer,1975,16(2):216–29.
    [6] Kiessling R, Klein E, Pross H, et al.“Natural” killer cells in the mouse.II. Cytotoxic cellswith specificity for mouse Moloney leukemia cells. Characteristics of the killer cell [J].Eur J Immunol,1975,5(2):117–21.
    [7] Kiessling R, Klein E, Wigzell H.“Natural” killer cells in the mouse.I. Cytotoxic cellswith specificity for mouse Moloney leukemia cells. Specificity and distributionaccording to genotype [J]. Eur J Immunol,1975,5(2):112–7.
    [8] Timonen T, Saksela E. Isolation of human NK cells by density gradient centrifugation. JImmunol Methods [J],1980,36:285-291.
    [9] Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells [J].Blood,1990,76:2421–2438.
    [10] Lanier LL, LE AM, Civin CI, et al. The relationship of CD16(Leu-11) andLeu-19(NKH-1) antigen expression on human peripheral blood NK cells and cytotoxicT lymphocytes [J]. J Immunol,1986,136:4480-4486.
    [11] Lanier LL, Le AM, Civin CI, et al. The relationship of CD16(Leu-11) and Leu-19(NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic Tlymphocytes [J]. J Immunol.1986,136:4480-4486.
    [12] Caligiuri MA, Zmuidzinas A, Manley TJ, et al. Functional consequences of interleukin2receptor expression on resting human lymphocytes: identification of a novel naturalkiller cell subset with high affinity receptors [J]. J Exp Med.1990,171:1509-1526.
    [13] Baume DM, Robertson MJ, Levine H, et al. Differential responses to interleukin2define functionally distinct subsets of human natural killer cells [J]. Eur J Immunol,1992,22:1-6.
    [14] Caligiuri MA, Murray C, Robertson MJ, et al. Selective modulation of human naturalkiller cells in vivo after prolonged infusion of low dose recombinant interleukin2[J]. JClin Invest.1993,91:123-132.
    [15] Matos ME, Schnier GS, Beecher MS, et al. Expression of a functional c-kit receptor ona subset of natural killer cells [J]. J Exp Med.1993,178:1079-1084.
    [16] Carson WE, Fehniger TA, Caligiuri MA. CD56bright natural killer cell subsets:characterization of distinct functional responses to interleukin-2and the c-kit ligand [J]..Eur J Immunol1997,27:354-360.
    [17] Nagler A, Lanier LL, Cwirla S, et al. Comparative studies of human FcRIII-positive andnegative natural killer cells [J]. J Immunol.1989,143:3183-3191.
    [18] Ellis TM, Fisher RI. Functional heterogeneity of Leu19“bright”1and Leu19“dim”1lymphokineactivated killer cells [J]. J Immunol.1989,142:2949-2954.
    [19] Robertson MJ, Soiffer RJ, Wolf SF, et al. Response of human natural killer (NK) cells toNK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells aredifferentially regulated by NKSF [J]. J Exp Med.1992,175:779-788.
    [20] Voss SD, Daley J, Ritz J, et al. Participation of the CD94receptor complex incostimulation of human natural killer cells [J]. J Immunol.1998,160:1618-1626.
    [21] Andre P, Spertini O, Guia S, et al. Modification of P-selectin glycoprotein ligand-1witha natural killer cell-restricted sulfated lactosamine creates an alternate ligand forL-selectin [J]. Proc Natl Acad Sci U S A.2000,97:3400-3405.
    [22] Frey M, Packianathan NB, Fehniger TA, et al. Differential expression and function ofL-selectin on CD56bright and CD56dim natural killer cell subsets [J].. J Immunol1998,161:400-408.
    [23] Cooper MA, Fehniger TA, Turner SC, et al, Human natural killer cells: a unique innateimmunoregulatory role for the CD56(bright) subset [J]. Blood,2001,97:3146-3151.
    [24] Kim S, Iizuka K, Kang HS, et al. In vivo developmental stages in murine natural killercell maturation [J]. Nat Immunol,2002,3:523-528.
    [25] Freud AG, Yokohama A, Becknell B, et al. Evidence for discrete stages of humannatural killer cell differentiation in vivo [J]. J Exp Med,2006,203:1033-1043.
    [26] Hayakawa, Y.&Smyth, M.J. CD27dissects mature NK cells into two subsets withdistinct responsiveness and migratory capacity [J]. J Immunol.2006,176:1517-1524.
    [27] Fu B, Tian Z, Wei H. Subsets of human natural killer cells and their regulatory effects[J]. Immunology.2013, Dec5.
    [28] Jin J, Fu B, Mei X, et al. CD11b(-)CD27(-) NK Cells Are Associated with theProgression of Lung Carcinoma [J]. Plos One,2013,8(4): e61024.
    [29] Fu B, Wang F, Sun R, et al. CD11b and CD27reflect distinct population and functionalspecialization in human natural killer cells [J]. Immunology,2011,133:350-359.
    [30] Shi F.D, Ljunggren H.G, et al.&Van Kaer, L. Organ-specific features of natural killercells [J]. Nat Rev Immunol,2011,11:658-671.
    [31] Tian Z, Chen Y, Gao B. Natural killer cells in liver disease [J]. Hepatology,2013,57:1654-1662.
    [32] Sun H.Y, Sun C, Tian Z.G, et al. NK cells in immunotolerant organs [J]. Cell MolImmunol,2013,10:202-212.
    [33] Peng H, Jiang X, Chen Y, et al. Liver-resident NK cells confer adaptive immunity inskin-contact inflammation. J Clin Invest [J],2013,123:1444-1456.
    [34] Arck P.C, Hecher K. Fetomaternal immune cross-talk and its consequences for maternaland off spring's health [J]. Nature medicine,2013,19:548-556.
    [35] Man YG, Stojadinovic A, Mason J, et al. Tumor-infiltrating immune cells promotingtumor invasion and metastasis: existing theories [J]. Journal of Cancer,2013,4:84-95.
    [36] Farag SS, Fehniger TA, Ruggeri L, et al. Natural killer cell receptors: New biology andinsights into the graft-versus-leukemia effect [J]. Blood,2002,100:1935–1947.
    [37] Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved inhuman natural killer cell-mediated cytolysis [J]. Annu Rev Immunol,2001,19:197–223.
    [38] Lazetic S, Chang C, Houchins JP, et al. Human natural killer cell receptors involved inMHC class I recognition are disulfide-linked heterodimers of CD94and NKG2subunits[J]. J Immunol,1996,157:4741–4745.
    [39] Plougastel B, Jones T, Trowsdale J. Genomic structure, chromosome location, andalternative splicing of the human NKG2A gene [J]. Immunogenetics,1996,44:286–291.
    [40] Glienke J, Sobanov Y, Brostjan C, et al. The genomic organization of NKG2C, E, F,and D receptor genes in the human natural killer gene complex [J]. Immunogenetics,1998,48:163–173.
    [41] Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptorfor stress-inducible MICA [J]. Science,1999,285:727–729.
    [42] Cosman D, Mullberg J, Sutherland CL, et al. ULBPs, novel MHC class I-relatedmolecules, bind to CMV glycoprotein UL16and stimulate NK cytotoxicity through theNKG2D receptor [J]. Immunity,2001,14:123–133.
    [43] O Neill AF, Satwani P, Guttmann S, et al. Increased expression of natural killer (NK)cell activating receptor NK G2D ligands on pediatric solid and hematologicmalignancies: Potential role of NK cellular immunotherapy [J]. Pediatr Blood Cancer,2005,45: P.A.047.
    [44] Sivori S, Vitale M, Morelli L, et al. p46, a novel natural killer cellspecific surfacemolecule that mediates cell activation [J]. J Exp Med,1997,186:1129–1136.
    [45] Vitale M, Bottino C, Sivori S, et al. NKp44, a novel triggering surface moleculespecifically expressed by activated natural killer cells, is involved in non-majorhistocompatibility complexrestricted tumor cell lysis [J]. J Exp Med,1998,187:2065–2072.
    [46] Cantoni C, Bottino C, Vitale M, et al. NKp44, a triggering receptor involved in tumorcell lysis by activated human natural killer cells, is a novel member of theimmunoglobulin superfamily [J]. J Exp Med,1999,189:787–796.
    [47] Maki G, Krystal G, Dougherty G, et al. Induction of sensitivity to NK-mediatedcytotoxicity by TNF-alpha treatment: Possible role of ICAM-3and CD44[J]. Leukemia,1998,12:1565–1572.
    [48] Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cellsovercomes inhibitory signals and induces specific killing of leukemic cells [J]. Blood,2005,106:376–383.
    [49] Moretta L, Bottino C, Pende D, et al. Human natural killer cells: Molecular mechanismscontrolling NK cell activation and tumor cell lysis [J]. Immunol Lett,2005,100:7–13.
    [50] Pao LI, Sumaria N, Kelly JM, et al. Functional analysis of granzyme M and its role inimmunity to infection [J]. J Immunol,2005,175:3235–3243.
    [51] Berthou C, Marolleau JP, Lafaurie C, et al. Granzyme B and perforin lytic proteins areexpressed in CD34+peripheral blood progenitor cells mobilized by chemotherapy andgranulocyte colony-stimulating factor [J]. Blood,1995,86:3500–3506.
    [52] Spaeny-Dekking EH, Kamp AM, Froelich CJ, et al. Extracellular granzyme A,complexed to proteoglycans, is protected against inactivation by protease inhibitors [J].Blood,2000,95:1465–1472.
    [53] Andoniou CE, van Dommelen SL, Voigt V, et al. Interaction between conventionaldendritic cells and natural killer cells is integral to the activation of effective antiviralimmunity [J]. Nat Immunol,2005,6:1011–1019.
    [54] Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: A unique innateimmunoregulatory role for the CD56(bright) subset [J]. Blood,2001,97:3146–3151.
    [55] Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to acell surface antigen co-downregulated with the receptor of tumor necrosis factor [J]. JExp Med,1989,169:1747–1756.
    [56] Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a newmember of the TNF family that induces apoptosis [J]. Immunity,1995,3:673–682.
    [57] Wallin RP, Screpanti V, Michaelsson J, et al. Regulation of perforin-independent NKcell-mediated cytotoxicity [J]. Eur J Immunol,2003,33:2727–2735.
    [58] OshimiY, Oda S, HondaY, et al. Involvement of Fas ligand and Fasmediated pathwayin the cytotoxicity of human natural killer cells [J]. J Immunol,1996,157:2909–2915.
    [59] Takeda K, Smyth MJ, Cretney E, et al. Critical role for tumor necrosis factor-relatedapoptosis-inducing ligand in immune surveillance against tumor development [J]. J ExpMed,2002,195:161–169.
    [60] Hazenbos WL, Gessner JE, Hofhuis FM, et al. Impaired IgG-dependent anaphylaxis andArthus reaction in Fc gamma RIII (CD16) deficient mice [J]. Immunity,1996,5:181–8.
    [61] Zeis M, Uharek L, Glass B, et al. Allogeneic MHC-mismatched activated Natural Killercells administered after bone marrow transplantation provide a stronggraft-versusleukaemia effect in mice [J]. Br J Haematol,1997,96:757–61.
    [62] Koh CY, Blazar BR, George T, et al. Augmentation of antitumor effects by NK cellinhibitory receptor blockade in vitro and in vivo [J]. Blood,2001,97:3132–7.
    [63] Siefer A, Longo D, Harrison C, et al. Activated Natural Killer cells and interleukin-2promote granulocytic and megakaryocytic reconstitution after syngeneic bonemarrowtransplantation in mice [J]. Blood,1993,82:2577–84.
    [64] deMagalhaes-Silverman M, DonnenbergA, Lembersky B, et al. Posttransplant adoptiveimmunotherapy with activated Natural Killer cells in patients with metastatic breastcancer [J]. J Immunother,2000,23:154–60.
    [65] Lister J, Rybka WB, Donnenberg AD, et al. Autologous peripheral blood stem celltransplantation and adoptive immunotherapy with activated Natural KillerNatural Killercells in the immediate post transplant period [J]. Clin Cancer Res,1995,1:607–14.
    [66] Asai O, Longo DL, Tian ZG, et al. Suppression of graft-versus-host disease andamplification of graftversus-tumor effects by activated Natural Killer cells afterallogeneic bone marrow transplantation [J]. J Clin Invest,1998,101:1835–42.
    [67] Burns LJ, Weisdorf DJ, DeFor TE, et al. IL-2-based immunotherapy after autologoustransplantation for lymphoma and breast cancer induces immune activation andcytokine release: a phase I/II trial [J]. Bone Marrow Transplant,2003,32:177–86.
    [68] Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and invivo expansion of human haploidentical NK cells in patients with cancer [J]. Blood,2005,105:3051–7.
    [69] Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor Natural Killer cellalloreactivity in mismatched hematopoietic transplants [J]. Science,2002,295:2097–100.
    [70] Giebel S, Locatelli F, Lamparelli T, et al. Survival advantage with KIR ligandincompatibility in hematopoietic stem cell transplantation from unrelated donors [J].Blood,2003,102:814–9.
    [71] Davies SM, Ruggieri L, DeFor T, et al. Evaluation of KIR ligand incompatibility inmismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-likereceptor [J]. Blood,2002,100:3825–7.
    [72] Ruggeri L, Capanni M, Casucci M, et al. Role of Natural Killer cell alloreactivity inHLA-mismatched hematopoietic stem cell transplantation [J]. Blood,1999,94:333–9.
    [73] Cooley S, McCullar V,Wangen R, et al. KIR reconstitution is altered by T cells in thegraft and corre lates with clinical outcomes after unrelated donor transplantation [J].Blood,2005,106:4370–6.
    [74] Giebel S, Nowak I, Wojnar J, et al. Impact of activating killer immunoglobulin-likereceptor genotype on outcome of unrelated donor-hematopoietic cell transplantation [J].Transplant Proc,2006,38:287–91.
    [75] Vela-Ojeda J, Garcia-Ruiz Esparza MA, Reyes-Maldonado E, Jet al. Clinical relevanceof NK, NKT, and dendritic cell dose in patients receiving G-CSF mobilized peripheralblood allogeneic stem cell transplantation [J]. Ann Hematol,2006,85:113–20.
    [76] Wachowiak J. Effects of cyclosporin A on the activity of mouse Natural Killer cells andhybrid resistance [J]. Immunol Lett,1986,13:95–9.
    [77] Vitale C, Chiossone L, Morreale G, et al. Human Natural Killer cells undergoing invivo differentiation after allogeneic bone marrow transplantation: analysis of thesurface expression and function of activating NK receptors [J]. Mol Immunol,2005,42:405–11.
    [78] Alpdogan O, Eng JM, Muriglan SJ, et al. Interleukin-15enhances immunereconstitution after allogeneic bone marrow transplantation [J]. Blood,2005,105:865–73.
    [79] Miller JS, Tessmer-Tuck J, Pierson BA, et al. Low dose subcutaneous interleukin-2after autologous transplantation generates sustained in vivo Natural Killer cell activity.Biol Blood Marrow Transplant [J],1997,3:34–44.
    [80] Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies:integrating mammalian biology [J]. Cell,2001,104:487–501.
    [81] Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cellimmunity?[J]. Nat Rev Immunol,2003,3:609–620.
    [82] Vinay DS, Kwon BS. Role of4-1BB in immune responses [J]. Semin Immunol,1998,10:481–489.
    [83] Watts TH, DeBenedette MA. T cell costimulatory molecules other than CD28[J]. CurrOpin Immunol,1999,11:286–293.
    [84] Watts TH. TNF TNFR family members in costimulation of T cell responses [J]. AnnuRev Immunol,2005,23:23–68.
    [85] Gavin MA, Clarke SR, Negrou E, et al. Homeostasis and anergy of CD4(+)CD25(+)suppressor T cells in vivo [J]. Nat Immunol,2002,3:33–41.
    [86] McHugh RS, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expressionanalysis reveals a functional role for the glucocorticoid-induced TNF receptor [J].Immunity,2002,16:311–323.
    [87] Pauly S, Broll K, Wittmann M, et al. CD137is expressed by follicular dendritic cellsand costimulates B lymphocyte activation in germinal centers [J]. J Leukoc Biol,2002,72:35–42.
    [88] Futagawa T, Akiba H, Kodama T, et al. Expression and function of4-1BB and4-1BBligand on murine dendritic cells [J]. Int Immunol,2002,14:275–286.
    [89] Wilcox RA, Chapoval AI, Gorski KS, et al. Cutting edge: expression of functionalCD137receptor by dendritic cells [J]. J Immunol,2002,168:4262–4267.
    [90] Lee SW, Park Y, So T, et al. Identification of regulatory functions for4-1BB and4-1BBL in myelopoiesis and the development of dendritic cells [J]. Nat Immunol,2008,9:917–926.
    [91] Langstein J, Michel J, Fritsche J, et al. CD137(ILA4-1BB), a member of the TNFreceptor family, induces monocyte activation via bidirectional signaling [J]. J Immunol,1998,160:2488–2494.
    [92] Nishimoto H, Lee SW, Hong H, et al. Costimulation of mast cells by4-1BB, a memberof the tumor necrosis factor receptor superfamily, with the high-affinity IgE receptor [J].Blood,2005,106:4241–4248.
    [93] Heinisch IV, Bizer C, Volgger W, et al. Functional CD137receptors are expressed byeosinophils from patients with IgE-mediated allergic responses but not by eosinophilsfrom patients with non-IgE-mediated eosinophilic disorders [J]. J Allergy Clin Immunol,2001,108:21–28.
    [94] Heinisch IV, Daigle I, Knopfli B, et al. CD137activation abrogatesgranulocyte-macrophage colony-stimulating factor-mediated anti-apoptosis inneutrophils [J]. Eur J Immunol,2000,30:3441–3446.
    [95] Lee SC, Ju SA, Pack HN, et al.4-1BB (CD137) is required for rapid clearance ofListeria monocytogenes infection [J]. Infect Immun,2005,73:5144–5151.
    [96] Vinay DS, Choi BK, Bae JS, et al. CD137-deficient mice have reduced NK NKT cellnumbers and function, are resistant to lipopolysaccharide-induced shock syndromes,and have lower IL-4responses [J]. J Immunol,2004,173:4218–4229.
    [97] Melero I, Johnston JV, Shufford WW, et al. NK1.1cells express4-1BB (CDw137)costimulatory molecule and are required for tumor immunity elicited by anti-4-1BBmonoclonal antibodies [J]. Cell Immunol,1998,190:167–172.
    [98] Wilcox RA, Tamada K, Strome SE, et al. Signaling through NK cell-associated CD137promotes both helper function for CD8+cytolytic T cells and responsiveness to IL-2but not cytolytic activity [J]. J Immunol,2002,169:4230–4236.
    [99] Sabbagh L, Pulle G, Liu Y, et al. ERK-dependent Bim modulation downstream of the4-1BB-TRAF1signaling axis is a critical mediator of CD8T cell survival in vivo [J]. JImmunol,2008,180:8093–8101.
    [100] Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword [J].Nat Rev Immunol,2003,3:745–756.
    [101] Chung JY, Park YC, Ye H, et al. All TRAFs are not created equal: common anddistinct molecular mechanisms of TRAF-mediated signal transduction [J]. J Cell Sci,2002,115:679–688.
    [102] Arch RH, Thompson CB.4-1BB and Ox40are members of a tumor necrosis factor(TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associatedfactors and activate nuclear factor κB [J]. Mol Cell Biol,1998,18:558–565.
    [103] Cannons JL, Choi Y, Watts TH. Role of TNF receptor-associated factor2and p38mitogen-activated protein kinase activation during4-1BB-dependent immune response[J]. J Immunol,2000,165:6193–6204.
    [104] Cannons JL, Hoeflich KP, Woodgett JR, et al. Role of the stress kinase pathway insignaling via the T cell costimulatory receptor4-1BB [J]. J Immunol,1999,163:2990–2998.
    [105] Jang IK, Lee ZH, Kim YJ, et al. Human4-1BB (CD137) signals are mediated byTRAF2and activate nuclear factor-kappa B [J]. Biochem Biophys Res Commun,1998,242:613–620.
    [106] Pulle G. The Role of4-1BBL and TRAF1in the Maintenance of CD8T Cell Memory
    [PhD Thesis]. University of Toronto,2007.
    [107] Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associatedfactors (TRAFs)–a family of adapter proteins that regulates life and death [J]. GenesDev,1998,12:2821–2830.
    [108] Rothe M, Sarma V, Dixit VM, et al. TRAF2-mediated activation of NF-kappa B byTNF receptor2and CD40[J]. Science,1995,269:1424–1427.
    [109] Saoulli K, Lee SY, Cannons JL, et al. CD28-independent, TRAF2-dependentcostimulation of resting T cells by4-1BB ligand [J]. J Exp Med,1998,187:1849–1862.
    [110] Lee HW, Park SJ, Choi BK, et al.4-1BB promotes the survival of CD8(+) Tlymphocytes by increasing expression of Bcl-x(L) and Bfl-1[J]. J Immunol,2002,169:4882–4888.
    [111] Bishop GA, Xie P. Multiple roles of TRAF3signaling in lymphocyte function [J].Immunol Res,2007,39:22–32.
    [112] Rothe M, Wong SC, Henzel WJ, et al. A novel family of putative signal transducersassociated with the cytoplasmic domain of the75kDa tumor necrosis factor receptor [J].Cell,1994,78:681–692.
    [113] Zapata J M, Reed J C. TRAF1: lord without a RING [J]. Sci STKE,2002,2002: PE27.
    [114] Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction ofTRAF1and TRAF2and c-IAP1and c-IAP2to suppress caspase-8activation [J].Science,1998,281:1680–1683.
    [115] Zapata JM, Krajewska M, Krajewski S, et al. TNFR-associated factor family proteinexpression in normal tissues and lymphoid malignancies [J]. J Immunol,2000,165:5084–5096.
    [116] Plenge RM, Seielstad M, Padyukov L, et al. TRAF1-C5as a risk locus for rheumatoidarthritis–a genomewide study [J]. N Engl J Med,2007,357:1199–1209.
    [117] Kurreeman FA, Padyukov L, Marques RB, et al. A candidate gene approach identifiesthe TRAF1C5region as a risk factor for rheumatoid arthritis [J]. PLoS Med,2007,4:e278.
    [118] Albers HM, Kurreeman FA, Houwing-Duistermaat JJ, et al. The TRAF1C5region is arisk factor for polyarthritis in juvenile idiopathic arthritis [J]. Ann Rheum Dis,2008,67:1578–1580.
    [119] Carpentier I, Beyaert R. TRAF1is a TNF inducible regulator of NF-kappaB activation[J]. FEBS Lett,1999,460:246–250.
    [120] Fotin-Mleczek M, Henkler F, Hausser A, et al. Tumor necrosis factorreceptor-associated factor (TRAF)1regulates CD40-induced TRAF2-mediatedNF-kappaB activation [J]. J Biol Chem,2004,279:677–685.
    [121] Tsitsikov EN, Laouini D, Dunn IF, et al. TRAF1is a negative regulator of TNFsignaling. enhanced TNF signaling in TRAF1-deficient mice [J]. Immunity,2001,15:647–657.
    [122] Arron JR, Pewzner-Jung Y, Walsh MC, et al. Regulation of the subcellular localizationof tumor necrosis factor receptor-associated factor (TRAF)2by TRAF1revealsmechanisms of TRAF2signaling [J]. J Exp Med,2002,196:923–934.
    [123] Xie P, Hostager BS, Munroe ME, et al. Cooperation between TNF receptor-associatedfactors1and2in CD40signaling [J]. J Immunol,2006,176:5388–5400.
    [124] Speiser DE, Lee SY, Wong B, et al. A regulatory role for TRAF1in antigen-inducedapoptosis of T cells [J]. J Exp Med,1997,185:1777–1783.
    [125] Sabbagh L, Srokowski CC, Pulle G, et al. A critical role for TNF receptor-associatedfactor1and Bim down-regulation in CD8memory T cell survival [J]. Proc Natl AcadSci USA,2006,103:18703–18708.
    [126] Wang C, Wen T, Routy J P, et al.4-1BBL induces TNF receptor-associated factor1-dependent Bim modulation in human T cells and is a critical component in thecostimulationdependent rescue of functionally impaired HIV-specific CD8T cells [J]. JImmunol,2007,179:8252–8263.
    [127] Baessler T, Charton JE, Schmiedel, et al. CD137ligand mediates opposite effects inhuman and mouse NK cells and impairs NK-cell reactivity against human acutemyeloid leukemia cells [J]. Blood,2010,115:3058–3069.
    [128] Melero I, Johnston J.V, Shufford W.W, et al. NK1.1cells express4-1BB (CDw137)costimulatory molecule and are required for tumor immunity elicited by anti-4-1BBmonoclonal antibodies [J]. Cell.Immunol.1998,190:167–172.
    [129] Wilcox RA, Tamada K, Strome SE, et al. Signaling through NK cell-associated CD137promotes both helper function for CD8+cytolytic T cells and responsiveness to IL-2butnot cytolytic activity [J]. J Immunol,2002,169:4230–4236.
    [130] Kohrt H.E, Houot R, Goldstein M.J, et al. CD137stimulation enhances theanti-lymphoma activity of anti-CD20antibodies [J]. Blood,2011,117:2423–2432.
    [131] Houot R, Goldstein M.J, Kohrt H.E, et al. Therapeutic effect of CD137immuno-modulation in lymphoma and its enhancement by Treg depletion [J]. Blood,2009,114:3431–3438.
    [132] Kohrt H.E, Houot R, Weiskopf K, et al. Stimulation of natural killer cells with aCD137-specific antibody enhances trastuzumab efficacy in xenotransplant models ofbreast cancer [J]. J. Clin.Invest,2012,122:1066–1075.
    [133] Maniar A, Zhang X, Lin W, et al.(2010). Human gamma delta T lymphocytes inducerobust NK cell-mediated antitumor cytotoxicity through CD137engagement [J].Blood,2010,116:1726–1733.
    [134] Buechele C, Baessler T, Schmiedel BJ, et al.4-1BB ligand modulates direct andRituximab-induced NK-cell reactivity in chronic lymphocytic leukemia [J]. Eur. J.Immunol,2012,42:737–748.
    [135] Houtenbos I, Westers T.M, Dijkhuis A, et al. Leukemia-specificT-cell reactivityinduced by leukemic dendritic cells is augmented by4-1BB targeting [J]. Clin. CancerRes,2007,13:307–315.
    [136] Eissner G, Kolch W, Scheurich P. Ligands working as receptors: reverse signaling bymembers of the TNF superfamily enhance the plasticity of the immunesystem [J].Cytokine Growth Factor Rev,2004,15:353–366.
    [137] Mocellin S, Marincola F. M, Young H.A. Interleukin-10and the immune responseagainst cancer: a counter point [J]. J. Leukoc. Biol,2005,78:1043–1051.
    [138] Jewett A, Cavalcanti M, Bonavida B. Pivotal role of endogenous TNF-alpha in theinduction of functional inactivation and apoptosis in NK cells [J]. J.Immunol,1997,159:4815–4822.
    [139] Arch R.H, Thompson C.B.4-1BB and Ox40are members of a tumor necrosis factor(TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associatedfactors and activate nuclear factor kappa B [J]. Mol.Cell. Biol,1998,18:558–565.
    [140] Wang C, Lin G. H, Mc Pherson A.J, et al. Immune regulation by4-1BB and4-1BBL:complexitiesandchallenges [J]. Immunol.Rev,2009,229:192–215.
    [141] Jang I.K, Lee Z.H, Kim Y.J, et al. Human4-1BB(CD137) signals are mediated byTRAF2and activate nuclear factor-kappa B [J]. Biochem. Biophys.Res.Commun,1998,242:613–620.
    [142] Hauer J, Puschner S, Ramakrishnan P, et al. TNF receptor (TNFR)-associated factor(TRAF)3serves as aninhibitor of TRAF2/5-mediated activation of the non-canonicalNF-kappa B pathway by TRAF-binding TNFRs [J]. Proc.Natl. Acad.Sci.U.S.A,2005,102:2874–2879.
    [143] Marvel J, Walzer T. CD137in NK cells [J]. Blood,2010,115:2987–2988.
    [144] Kim Y.J, Pollok K.E, Zhou Z, et al. Novel T cell antigen4-1BB associates with theprotein tyrosine kinase p56lck1[J]. J.Immunol,1993,151,1255–1262.
    [145] Salcedo T.W, Kurosaki T, Kanakaraj P, et al. Physical and functional association of p56lck with Fcgamma RIIIA(CD16) in natural killer cells [J]. J. Exp.Med,1993,177:1475–1480.
    [146] Ma B.Y, Mikolajczak S.A, Danesh A, et al. The expression and the regula tory role ofOX40and4-1BB heterodimer in activated human T cells [J]. Blood,2005,106:2002–2010.
    [147] Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immuneresponses [J]. Immunol Rev,2010,235(1):267–85.
    [148] Gleimer M, Parham P. Stress management: MHC class I and classI-like molecules asreporters of cellular stress [J]. Immunity,2003,19(4):469–77.
    [149] Zingoni A, Ardolino M, Santoni A, et al. NKG2D and DNAM-1activating receptorsand their ligands in NK-T cell interactions: role in the NK cell-mediated negativeregulation of Tcell responses [J]. Front Immunol,2012,3:408.
    [150] Baychelier F, Vieillard V. The modulation of the cell-cycle: a sentinel to alert the NKcells of dangers [J]. Front Immunol,2013,4:325.
    [151] Bahram S, Bresnahan M, Geraghty DE, et al. A second lineage of mammalian majorhistocompatibility complex class I genes [J]. Proc Natl Acad Sci USA,1994,91:6259–63.
    [152] Leelayuwat C, Townend DC, Degli-Esposti MA, et al. A new polymorphic andmulticopy MHC gene family related to nonmammalian class I [J]. Immunogenetics,1994,40:339–51.
    [153] Groh V, Bahram S, Bauer S, et al. Cell stress-regulated human majorhistocompatibility complex class I gene expressed in gastrointestinal epithelium [J].Proc Natl Acad Sci USA,1996,93:12445–50.
    [154] Groh V, Steinle A, Bauer S, et al. Recognition of stress-induced MHC molecules byintestinal epithelial γ T cells [J]. Science,1998,279:1737–40.
    [155] Zwirner NW, Dole K, Stastny P. Differential surface expression of MICA byendothelial cells, fibroblasts, keratinocytes, and monocytes [J]. Hum Immunol,1999,60:323–30.
    [156] Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression andrecognition by tumor-derived gd T cells of MICA and MICB [J]. Proc Natl Acad SciUSA,1999,96:6879–84.
    [157] Hue S, Monteiro RC, Berrih-Aknin S, et al. Potential role of NKG2D/MHC classI-related chain A interaction in intrathymic maturation of single-positive CD8T cells[J]. J Immunol,2003,171:1909–17.
    [158] Zwirner NW, Fernandez-Vina MA, Stastny P. MICA, a new polymorphic HLA-relatedantigen, is expressed mainly by keratinocytes, endothelial cells, and monocytes [J].Immunogenetics,1998,47:139–48.
    [159] Molinero LL, Fuertes MB, Rabinovich GA, et al. Activation-induced expression ofMICA on T lymphocytes involves engagement of CD3and CD28[J]. J Leukoc Biol,2002,71:791–7.
    [160] Molinero LL, Fuertes MB, Girart MV, et al. NF-kB regulates expression of the MHCclass Irelated chain A gene in activated T lymphocytes [J]. J Immunol,2004,173:5583–90.
    [161] Maasho K, Opoku-Anane J, Marusina AI, et al. NKG2D is a costimulatory receptor forhuman naive CD8+T cells [J]. J Immunol,2005,174:4480–4.
    [162] Molinero LL, Domaica CI, Fuertes MB, et al. Intracellular expression of MICA inactivated CD4T lymphocytes and protection from NK cell-mediated MICA-dependentcytotoxicity [J]. Hum Immunol,2006,67:170–82.
    [163] Friese MA, Platten M, Lutz SZ, et al. MICA/NKG2D-mediated immunogene therapyof experimental gliomas [J]. Cancer Res,2003,63:8996–9006.
    [164] Pende D, Rivera P, Marcenaro S, et al. Major histocompatibility complex classI-related chain A and UL16-binding protein expression on tumor cell lines of differenthistotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cellcytotoxicity [J]. Cancer Res,2002,62:6178–86.
    [165] Vetter CS, Groh V, thor Straten P, et al. Expression of stress-induced MHC class Irelated chain molecules on human melanoma [J]. J Invest Dermatol,2002,118:600–5.
    [166] Doubrovina ES, Doubrovin MM, Vider E, et al. Evasion from NK cell immunity byMHC class I chain-related molecules expressing colon adenocarcinoma [J]. J Immunol,2003,171:6891–9.
    [167] Salih HR, Antropius H, Gieseke F, et al. Functional expression and release of ligandsfor the activating immunoreceptor NKG2D in leukemia [J]. Blood,2003,102:1389–96.
    [168] Gasser S, Orsulic S, Brown EJ, et al. The DNA damage pathway regulates innateimmune system ligands of the NKG2D receptor [J]. Nature,2005,436:1186–90.
    [169] Vousden KH, Lu X. Live or let die: the cell s response to p53[J]. Nat Rev Cancer,2002,2:594–604.
    [170] Karin M, Greten FR. NF-kB: linking inflammation and immunity to cancerdevelopment and progression [J]. Nat Rev Immunol,2005,5:749–59.
    [171] Das H, Groh V, Kuijl C, et al. MICA engagement by human γ T cells enhances theirantigendependent effector function [J]. Immunity,2001,15:83–93.
    [172] Groh V, Bruhl A, El-Gabalawy H, et al. Stimulation of T cell autoreactivity byanomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis [J]. ProcNatl Acad Sci USA,2003,100:9452–7.
    [173] Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8β T cells byNKG2D via engagement by MIC induced on virus-infected cells [J]. Nat Immunol,2001,2:255–60.
    [174] Hue S, Mention JJ, Monteiro RC, et al. A direct role for NKG2D/MICA interaction invillous atrophy during celiac disease [J]. Immunity,2004,21:367–77.
    [175] Zou Y, Bresnahan W, Taylor RT, et al. Effect of human cytomegalo virus onexpression of MHC class I-related chains A [J]. J Immunol,2005,174:3098–104.
    [176] Zwirner NW, Marcos CY, Mirbaha F, et al. Identification of MICA as a newpolymorphic alloantigen recognized by antibodies in sera of organ transplant recipients[J]. Hum Immunol,2000,61:917–24.
    [177] Meresse B, Chen Z, Ciszewski C, et al. Coordinated induction by IL15of aTCR-independent NKG2D signaling pathway converts CTL into lymphokine-activatedkiller cells in celiac disease [J]. Immunity,2004,21:357–66.
    [178] Jinushi M, Hodi FS, Dranoff G. Therapy-induced antibodies to MHC class Ichain-related protein A antagonize immune suppression and stimulate antitumorcytotoxicity [J]. Proc Natl Acad Sci USA,2006,103:9190–5.
    [179] Wiemann K, Mittrucker H-W, Feger U, et al. Systemic NKG2D down-regulationimpairs NK and CD8T cell responses in vivo [J]. J Immunol,2005,175:720–9.
    [180] Busche A, Goldmann T, Naumann U, et al. Natural killer cell-mediated rejection ofexperimental human lung cancer by genetic overexpression of major histocompatibilitycomplex class I chain-related gene A [J]. Hum Gene Ther,2006,17:135–46.
    [181] Smyth MJ, Swann J, Cretney E, et al. NKG2D function protects the host from tumorinitiation [J]. J Exp Med,2005,202:583–8.
    [182] Westwood JA, Kelly JM, Tanner JE, et al. Novel priming of tumor-specific immunityby NKG2D-triggered NK cell-mediated tumor rejection and Th1-independent CD4+Tcell pathway [J]. J Immunol,2004,172:757–61.
    [183] Screpanti V, Wallin RPA, Grandien A, et al. Impact of FasL-induced apoptosis in theelimination of tumor cells by NK cells [J]. Mol Immunol,2005,42:495–9.
    [184] Baetu TM, Hiscott J. On the TRAIL to apoptosis [J]. Cytokine Growth Factor Rev,2002,13:199–207.
    [185] Smyth MJ, Swann J, Kelly JM, et al. NKG2D recognition and perforin effectorfunction mediate effective cytokine immunotherapy of cancer [J]. J Exp Med,2004,200:1325–35.
    [186] Yabe T, McSherry C, Bach FH, et al. A multigene family on human chromosome12encodes natural killer-cell lectins [J]. Immunogenetics,1993,37:455-460.
    [187] Houchins JP, Yabe T, McSherry C, et al. DNA sequence analysis of NKG2, a familyof related cDNA clones encoding type II integral membrane proteins on human naturalkiller cells [J]. J Exp Med,1991,173:1017-1020.
    [188] Jamieson AM, Diefenbach A, McMahon CW, et al. The role of the NKG2D immunereceptor in immune cell activation and natural killing [J]. Immunity,2002,17:19-29.
    [189] Raulet DH. Roles of the NKG2D immunoreceptor and its ligands [J]. Nature RevImmunol,2003,3:781-790.
    [190] Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, areceptor for stressinducible MICA [J]. Science,1999,285:727-729.
    [191] Roberts AI, Lee L, Schwarz E, et al. NKG2D receptors induced by IL-15costimulateCD28-negative effector CTL in the tissue microenvironment [J]. J Immunol,2001,167:5527-5530.
    [192] Garrity D, Call ME, Feng J, et al. The activating NKG2D receptor assembles in themembrane with two signaling dimers into a hexameric structure [J]. Proc Natl Acad SciU S A,2005,102:7641-7646.
    [193] Wu J, Song Y, Bakker AB, et al. An activating immunereceptor complex formed byNKG2D and DAP10[J]. Science,1999,285:730-732.
    [194] Upshaw JL, Arneson LN, Schoon RA, et al. NKG2D-mediated signaling requires aDAP10-bound Grb2-Vav1intermediate and phosphatidylinositol-3-kinase in humannatural killer cells [J]. Nat Immunol,2006,7:524-532.
    [195] Ogasawara K, Lanier LL. NKG2D in NK and T cell-mediated immunity [J]. J ClinImmunol,2005,25:534-540.
    [196] Gilfillan S, Ho EL, Cella M, et al. NKG2D recruits two distinct adapters to trigger NKcell activation and costimulation [J]. Nat Immunol,2002,3:1150-1155.
    [197] Diefenbach A, Tomasello E, Lucas M, et al. Selective associations with signalingproteins determine stimulatory versus costimulatory activity of NKG2D [J]. NatImmunol,2002,3:1142-1149.
    [198] McVicar DW, Taylor LS, Gosselin P, et al. DAP12-mediated signal transduction innatural killer cells. A dominant role for the Syk protein-tyrosine kinase [J]. J Biol Chem,1998,273:32934-32942.
    [199] Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8alphabeta Tcells by NKG2D via engagement by MIC induced on virus-infected cells [J]. NatImmunol,2001,2:255-260.
    [200] Dhanji S, Teh HS. IL-2-activated CD8+CD44high cells express both adaptive andinnate immune system receptors and demonstrate specificity for syngeneic tumor cells.J Immunol [J],2003,171:3442-3450.
    [201] Maasho K, Opoku-Anane J, Marusina AI, et al. NKG2D is a costimulatory receptor forhuman naive CD8+T cells [J]. J Immunol,2005,174:4480-4484.
    [202] Zhang C, Zhang J, Niu J, et al. Interleukin-12improves cytotoxicity of natural killercells via upregulated expression of NKG2D [J]. Hum Immunol,2008,69:490-500.
    [203] Horng T, Bezbradica JS, Medzhitov R. NKG2D signaling is coupled to the interleukin15receptor signaling pathway [J]. Nat Immunol,2007,8:1345-1352.
    [204] Burgess SJ, Maasho K, Masilamani M, et al. The NKG2D receptor: immunobiologyand clinical implications [J]. Immunol Res,2008,40:18-34.
    [205] Takaki R, Hayakawa Y, Nelson A, et al. IL-21enhances tumor rejection through aNKG2D dependent mechanism [J]. J Immunol,2005,175:2167-2173.
    [206] Friese MA, Wischhusen J, Wick W, et al. RNA interference targeting transforminggrowth factorbeta enhances NKG2D-mediated antiglioma immune response, inhibitsglioma cell migration and invasiveness, and abrogates tumorigenicity in vivo [J].Cancer Res,2004,64:7596-7603.
    [207] Zhang C, Zhang J, Sun R, et al. Opposing effect of IFNgamma and IFNalpha onexpression of NKG2receptors: negative regulation of IFNgamma on NK cells [J]. IntImmunopharmacol,2005,5:1057-1067.
    [208] Song H, Hur DY, Kim KE, et al. IL-2/IL-18prevent the down-modulation of NKG2Dby TGF beta in NK cells via the c-Jun N-terminal kinase (JNK) pathway [J]. CellImmunol,2006,242:39-45.
    [209] Ma J, Ma D, Ji C. The role of IL-21in hematological malignancies [J]. Cytokine,2011,56:133–139.
    [210] Sarra M, Franze E, Pallone F, et al. Targeting interleukin-21in inflammatory diseases[J]. Expert Opin Ther Targets,2011,15:695–702.
    [211] Sondergaard H, Skak K. IL-21: roles in immunopathology and cancer therapy [J].Tissue Antigens,2009,74:467–479.
    [212] Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer andautoimmunity [J]. Annu Rev Immunol,2008,26:57–79.
    [213] Yuan FL, Hu W, Lu WG, et al. Targeting interleukin-21in rheumatoid arthritis [J].Mol Biol Rep,2011,38:1717–1721.
    [214] Hashmi MH, Van Veldhuizen PJ. Interleukin-21: updated review of Phase I and IIclinical trials in metastatic renal cell carcinoma, metastatic melanoma andrelapsed/refractory indolent non-Hodgkin's lymphoma [J]. Expert Opin Biol Ther,2010,10:807–817.
    [215] Davis ID, Brady B, Kefford RF, et al. Clinical and biological efficacy of recombinanthuman interleukin-21in patients with stage IV malignant melanoma without priortreatment: a phase IIa trial [J]. Clin Cancer Res,2009,15:2123–2129.
    [216] Davis ID, Skrumsager BK, Cebon J, et al. An open-label, two-arm, phase I trial ofrecombinant human interleukin-21in patients with metastatic melanoma [J]. ClinCancer Res,2007,13:3630–3636.
    [217] Frederiksen KS, Lundsgaard D, Freeman JA, et al. IL-21induces in vivo immuneactivation of NK cells and CD8(+) T cells in patients with metastatic melanoma andrenal cell carcinoma [J]. Cancer Immunol Immunother,2008,57:1439–1449.
    [218] Thompson JA, Curti BD, Redman BG, et al. Phase I study of recombinantinterleukin-21in patients with metastatic melanoma and renal cell carcinoma [J]. J ClinOncol,2008,26:2034–2039.
    [219] Yi JS, Ingram JT, Zajac AJ. IL-21deficiency influences CD8T cell quality and recallresponses following an acute viral infection [J]. J Immunol,2010,185:4835–4845.
    [220] Novy P, Huang X, Leonard WJ, et al. Intrinsic IL-21signaling is critical for CD8Tcell survival and memory formation in response to vaccinia viral infection [J]. J Immunol,2011,186:2729–2738.
    [221] Elsaesser H, Sauer K, Brooks DG. IL-21is required to control chronic viral infection[J]. Science,2009,324:1569–1572.
    [222] Frohlich A, Kisielow J, Schmitz I, et al. IL-21R on T cells is critical for sustainedfunctionality and control of chronic viral infection [J]. Science,2009,324:1576–1580.
    [223] Yi JS, Du M, Zajac AJ. A vital role for interleukin-21in the control of a chronic viralinfection [J]. Science,2009,324:1572–1576.
    [224] Pawlak K, Mysliwiec M, Pawlak D. Interleukin-21in hemodialyzed patients:association with the etiology of chronic kidney disease and the seropositivity againsthepatitis C virus infection [J]. Clin Biochem,2011,44:1416–1420.
    [225] Franks I. Viral hepatitis: Interleukin21has a key role in age-dependent response toHBV [J]. Nat Rev Gastroenterol Hepatol,2011,8:243.
    [226] Ma SW, Huang X, Li YY, et al. High serum IL-21levels after12weeks of antiviraltherapy predict HBeAg seroconversion in chronic hepatitis B [J]. J Hepatol,2012,56:775–781.
    [227] Publicover J, Goodsell A, Nishimura S, et al. IL-21is pivotal in determiningage-dependent effectiveness of immune responses in a mouse model of human hepatitisB [J]. J Clin Invest,2011,121:1154–1162.
    [228] Parrish-Novak J, Dillon SR, Nelson A, et al. Interleukin21and its receptor areinvolved in NK cell expansion and regulation of lymphocyte function [J]. Nature,2000,408:57–63.
    [229] Parrish-Novak J, Foster DC, Holly RD, et al. Interleukin-21and the IL-21receptor:novel effectors of NK and T cell responses [J]. J Leukoc Biol,2002,72:856–863.
    [230] Coquet JM, Kyparissoudis K, Pellicci DG, et al. IL-21is produced by NKT cells andmodulates NKT cell activation and cytokine production [J]. J Immunol,2007,178:2827–2834.
    [231] Wei L, Laurence A, Elias KM, et al. IL-21is produced by Th17cells and drives IL-17production in a STAT3-dependent manner [J]. J Biol Chem,2007,282:34605–34610.
    [232] Nurieva RI, Chung Y, Hwang D, et al. Generation of T follicular helper cells ismediated by interleukin-21but independent of T helper1,2, or17cell lineages [J].Immunity,2008,29:138–149.
    [233] Hinrichs CS, Spolski R, Paulos CM, et al. IL-2and IL-21confer opposingdifferentiation programs to CD8+T cells for adoptive immunotherapy [J]. Blood,2008,111:5326–5333.
    [234] Ozaki K, Spolski R, Ettinger R, et al. Regulation of B cell differentiation and plasmacell generation by IL-21, a novel inducer of Blimp-1and Bcl-6[J]. J Immunol,2004,173:5361–5371.
    [235] Ozaki K, Kikly K, Michalovich D, et al. Cloning of a type I cytokine receptor mostrelated to the IL-2receptor beta chain [J]. Proc Natl Acad Sci U S A,2000,97:11439–11444.
    [236] Jin H, Carrio R, Yu A, Malek TR. Distinct activation signals determine whether IL-21induces B cell costimulation, growth arrest, or Bim-dependent apoptosis [J]. J Immunol,2004,173:657–665.
    [237] Brandt K, Bulfone-Paus S, Jenckel A, et al. Interleukin-21inhibits dendriticcell-mediated T cell activation and induction of contact hypersensitivity in vivo [J]. JInvest Dermatol,2003,121:1379–1382.
    [238] Caruso R, Fina D, Peluso I, et al. IL-21is highly produced in Helicobacterpylori-infected gastric mucosa and promotes gelatinases synthesis [J]. J Immunol,2007,178:5957–5965.
    [239] Monteleone G, Caruso R, Fina D, et al. Control of matrix metalloproteinase productionin human intestinal fibroblasts by interleukin21[J]. Gut,2006,55:1774–1780.
    [240] Ruckert R, Bulfone-Paus S, Brandt K. Interleukin-21stimulates antigen uptake,protease activity, survival and induction of CD4+T cell proliferation by murinemacrophages [J]. Clin Exp Immunol,2008,151:487–495.
    [241] Asao H, Okuyama C, Kumaki S, et al. Cutting edge: the common gamma-chain is anindispensable subunit of the IL-21receptor complex [J]. J Immunol,2001,167:1–5.
    [242] Zeng R, Spolski R, Casas E, et al. The molecular basis of IL-21-mediated proliferation[J]. Blood,2007,109:4135–42.
    [243] Frederiksen KS, Lundsgaard D, Freeman JA, et al. IL-21induces in vivo immuneactivation of NK cells and CD8(+) T cells in patients with metastatic melanoma andrenal cell carcinoma [J]. Cancer Immunol Immunother,2008,57:1439–49.
    [244] Caprioli F, Sarra M, Caruso R, et al. Autocrine regulation of IL-21production inhuman T lymphocytes [J]. J Immunol,2008,180:1800–7.
    [245] Zeng R, Spolski R, Finkelstein SE, et al. Synergy of IL-21and IL-15in regulatingCD8+T cell expansion and function [J]. J Exp Med,2005,201:139–48.
    [246] Kasaian MT, Whitters MJ, Carter LL, et al. IL-21limits NK cell responses andpromotes antigen-specific T cell activation: a mediator of the transition from innate toadaptive immunity [J]. Immunity,2002,16:559–569.
    [247] Brady J, Hayakawa Y, Smyth MJ, Nutt SL. IL-21induces the functional maturation ofmurine NK cells [J]. J Immunol,2004,172:2048–2058.
    [248] Parrish-Novak J, Dillon SR, Nelson A, et al. Interleukin21and its receptor areinvolved in NK cell expansion and regulation of lymphocyte function [J]. Nature,2000,408:57–63.
    [249] Sivori S, Cantoni C, Parolini S, et al. IL-21induces both rapid maturation of humanCD34+cell precursors towards NK cells and acquisition of surface killer Ig-likereceptors [J]. Eur J Immunol,2003,33:3439–3447.
    [250] Strengell M, Matikainen S, Siren J, et al. IL-21in synergy with IL-15or IL-18enhances IFN-gamma production in human NK and T cells [J]. J Immunol,2003,170:5464–5469.
    [251] Wendt K, Wilk E, Buyny S, et al. Interleukin-21differentially affects human naturalkiller cell subsets [J]. Immunology,2007,122:486–495.
    [252] Harada H, Saijo K, Watanabe S, et al. Selective expansion of human natural killer cellsfrom peripheral blood mononuclear cells by the cell line [J], HFWT. Jpn J Cancer Res,2002,93:313–9.
    [253] Phillips J H, Lanier LL. A model for the differentiation of human natural killer cells.Studies on the in vitro activation of Leu-11+granular lymphocytes with a naturalkiller-sensitive tumor cell, K562[J]. J Exp Med,1985,161:1464–82.
    [254] Alderson MR, Smith CA, Tough TW, et al. Molecular and biological characterizationof human4-1BB and its ligand [J]. Eur J Immunol,1994,24:2219-2227.
    [255] Cannons JL, Lau P, Ghumman B, et al,4-1BB ligand induces cell division, sustainssurvival, and enhances effector function of CD4and CD8T Cells with similar efficacy[J]. J Immunol,2001,167:1313-1324.
    [256] Maniar A, Zhang X. Lin W, et al, Human gammadelta T lymphocytes induce robustNK cell-mediated antitumor cytotoxicity through CD137engagement [J]. Blood,2010,116:1726–1733.
    [257] Diefenbach A, Jensen ER, Jamieson AM, et al, Rae1and H60ligands of the NKG2Dreceptor stimulate tumor immunity [J]. Nature,2001,413:165-171.
    [258] Dhodapkar KM, Cirignano B, Chamian F, et al, Invariantnatural killer T cells arepreserved in patients with glioma and exhibit antitumor lytic activity followingdendritic cellmediated expansion [J]. Int J Cancer,2004,109:893-899.
    [259] Jiang X, Zou Y, Huo Z, et al, Association of major histocompatibility complex class Ichain-related gene A microsatellite polymorphism and hepatocellular carcinoma inSouth China Han population [J]. Tissue Antigens,2011,78:143-147.
    [260] Terme M, Ullrich E, Delahaye NF, et al. Natural killer cell-directed therapies: movingfrom unexpected results to successful strategies [J]. Nat Immunol,2008,9:486-494.
    [261] Kobayashi H, Dubois S, Sato N, et al. Role of trans-cellular IL-15presentation in theactivation of NK cell–mediated killing, which leads to enhanced tumorimmunosurveillance [J]. Blood,2005,105:721-727.
    [262] Fujisaki H, Kakuda H, Shimasaki N, et al, Expansion of Highly Cytotoxic HumanNatural Killer Cells for Cancer Cell Therapy [J]. Cancer Res,2009,69:4010-4017.
    [263] Gong W, Xiao W, Hu M, et al. Ex vivo expansion of natural killer cells with highcytotoxicity by K562cells modified to co-express major histocompatibility complexclass I chain-related protein A,4-1BB ligand, and interleukin-15[J]. TissueAntigens,2010,76:467-475.
    [264] Ofer M, Pratap M, Daniel M, et al. Human CD16as a lysis receptor mediating directnatural killer cell cytotoxicity [J]. Proc Natl Acad Sci U S A,1999,96:5640-5644.
    [265] Romee R, Foley B, Lenvik T, et al. NK cell CD16surface expression and function isregulated by a disintegrin and metalloprotease-17(ADAM17)[J]. Blood,2013,121:3599-3608.
    [266] Alexander C, Dowell, Kimberley A, et al. Long-term proliferation of functional humanNK cells, with conversion of CD56dim NK cells to a CD56bright phenotype, inducedby carcinoma cells co-expressing4-1BBL and IL-12[J]. Cancer Immunol Immunother,2012,61:615-628.
    [267] Borrego F, Robertson MJ, Ritz J, et al. CD69is a stimulatory receptor for natural killercell and its cytotoxic effect is blocked by CD94inhibitory receptor [J].Immunology,1999,97:159–165.
    [268] Mallone R, Funaro A, Zubiaur M, et al. Signaling through CD38induces NK cellactivation [J]. Int Immunol,2001,13:397-409.
    [269] Bauer S, Groh V, Wu J, Steinle A, et al, Activation of NK Cells and T Cells byNKG2D, a Receptor for Stress-Inducible MICA [J]. Science,1999,285:727-729.
    [270] Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innateimmunoregulatory role for the CD56(bright) subset [J]. Blood,2001,97:3146-3151.
    [271] Hussell T, Openshaw PJ. Intracellular IFN-gamma expression in natural killer cellsprecedes lung CD8+T cell recruitment during respiratory syncytial virus infection [J]. JGen Virol,1998,79:2593-2601.
    [272] Lee IF, Qin H, Priatel JJ, et al. Critical role for IFN-gamma in natural killercell-mediated protection from diabetes [J]. Eur J Immunol,2008,38:82-89.
    [273] Matikainen S, Paananen A, Miettinen M, et al. IFN-alpha and IL-18synergisticallyenhance IFN-gamma production in human NK cells: differential regulation of Stat4activation and IFN-gamma gene expression by IFN-alpha and IL-12[J]. Eur J Immunol,2001,31:2236-2245.
    [274] He XS, Draghi M, Mahmood K, et al. T cell-dependent production of IFN-gamma byNK cells in response to influenza A virus [J]. J Clin Invest,2004,114:1812-1819.
    [275] Zhang S, Saha B, Kodys K, et al, IFN-gamma production by human natural killer cellsin response to HCV-infected hepatoma cells is dependent on accessory cells [J]. JHepatol,2013,59:442-449.
    [276] Beziat V, Duffy D, Quoc SN, et al. CD56brightCD16+NK cells: A functionalintermediate stage of NK cell differentiation [J]. J. Immunol,2011,186:6753-6761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700