高性能音频Delta-Sigma数据转换器的设计与优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Delta-Sigma数据转换器具有转换精度高、硬件开销低等特点,十分适用于便携式医疗设备以及高性能音频信号处理等领域。然而其设计中尚有许多技术问题有待深入研究,尤其是现代CMOS工艺与数字技术的发展使得集成电路的电源电压不断降低,严重制约了模拟信号的动态范围,也使得数据转换器的高分辨率设计成为难点。同时,对于便携式设备而言,电池的续航能力始终是决定产品竞争力的关键技术之一,这也对数据转换器的低功耗设计提出了更大挑战。
     本文根据一些重要应用领域的要求,对高精度音频Delta-Sigma数据转换器的设计技术展开研究,重点围绕其低功耗与面积优化技术展开,主要内容与创新包括:
     1.针对植入式生物医疗装置如人工耳蜗等对音频Delta-Sigma ADC的低压超低功耗及微型化的设计要求,结合理论计算与建模仿真,对设计中诸多非理想因素展开深度分析,归结出一套Delta-Sigma调制器的完整设计流程,给出了符合要求的电路设计指标;采用开关型运放与运放共享技术实现了积分器的低功耗设计,并利用基于高密度电容阵列的改进型量化器结构实现了转换器面积的大幅度优化;提出一种无信号衰减二次相加策略,在低功耗实现调制器内部信号相加的同时,解决了传统开关电容型加法电路因电荷分配引入的信号衰减问题,有效降低了多位量化器设计难度;还提出一种分割两向移位数据加权平均(Data Weighted Averaging,DWA)技术,可在较低硬件开销下减小多比特转换器的非线性误差,并有效抑制传统DWA技术在低频激励信号时谐波失真的产生,提高了转换精度。提出的音频Delta-Sigma ADC原型在0.18-μm CMOS工艺下流片,测试结果显示其峰值信噪比为92.2-dB,动态范围为94.6-dB,在0.9-V电源电压下系统总功耗为164-μW,其中Delta-Sigma调制器的功耗仅为56-μW,品质因数达到42-fJ/转换步长。
     2.针对高性能便携式音频信号处理的需要,对于高精度音频Delta-SigmaDAC的面积优化与低功耗设计技术展开研究。提出一种改进型公用副表式消除算法用于DAC内插滤波器的系数优化,有效降低传统算法下系统实现的硬件开销与逻辑深度,优化了芯片面积;以全数字实现方式将分割两向移位DWA技术应用于多位量化Delta-Sigma调制器,改善模拟重构级的非线性失真,以合理的硬件开销有效提高转换精度;采用低功耗FIR/IIR混合型滤波器的全差分直接电荷转移型开关电容DAC构建模拟重构级,同时片上集成了后置平滑滤波器,有效提升转换器性能。实验与芯片测试结果显示,提出的音频Delta-Sigma DAC峰值信噪比达到102.2-dB,动态范围为103.6-dB,在1.5-V电源电压下系统总功耗仅为3.54-mW,利用较小的芯片面积实现了转换精度与功耗之间的良好均衡。
Featuring high conversion precision and low hardware overhead, delta-sigma data converters are appropriate for portable medical devices and high performance audio signal processing. However, there are still many technical problems remain to be discussed, especially for that the rapid development of modern CMOS technology and digital electronics makes a trend that the supply voltage of the electronic system is consistently lowering. This trend restricts the dynamic range of the analog signal, and therefore makes the design of high precision data converters even more difficult.In addition, the long battery life is always of key importance to the portable equipment to enhance its core-competitiveness, which makes low-power design facing more challenges.
     According to the key requirements of some major applications, this dissertation deeply studied the design techniques of high-precision audio delta-sigma data converters, especially their power and chip area optimization. The major contents and innovation include:
     1. Aiming at the demands on low-voltage ultra-low power and miniaturization of the audio delta-sigma ADC applying to implantable biomedical devices such as cochlear implants, an improved design process of delta-sigma modulator was summarized based on theoretical calculations, modeling and simulation combining with the in-depth analysis of non-ideality factors in design. Based on it, the circuit specifications satisfying the requirements were finally determined. Switched op-amps and the op-amp shared techniques were used to achieve low-power integrators, and an improved multi-bit quantizer based on high-density capacitor array was employed to optimize the chip area. A novel two-step adding scheme was proposed to realize the internal signals summation and avoid the attenuation of the signal swing caused by charge sharing between two or more capacitors, and therefore the design specifications of multi-bit quantizer were simplified. The split-and-bidirectional-shift data weighted averaging (DWA) technique was proposed to eliminate the mismatch errors caused in the feedback DAC without introducing signal-dependent tones. The prototype ADC has been implemented in a standard0.18-μm process and measured to have92.2-dB peak SNR and94.6-dB dynamic range with20-kHz signal bandwidth. The power consumption is164-μW of the ADC at0.9V supply voltage, and58-μW of the modulator, which translates to a figure-of-merit (FoM) of42-fJ/step.
     2. According to the demands on audio signal processing of high performance portable devices, the research on low power and area-efficiency optimization of high precision audio-band delta-sigma DAC was carried out. An improved common subexpression elimination method, which decreased the hardware overhead and logical depth was proposed to implement the coefficients of the interpolator. The split-and-bidirectional-shift DWA technique was applied in full-digital form to eliminate the mismatch errors of conversion units in the reconstruction filter. A hybrid FIR/IIR based direct charge transfer (DCT) DAC was employed to build the reconstruction stage, combined with an on-chip smooth filter to improve the system performance. Experimental and test results showed that the peak SNR and the dynamic range of the prototype delta-sigma DAC are102.2-dB and103.6-dB respectively, and the power consumption is3.54-mW under a voltage supply of1.5-V. it has been proven that a favorable balance between the converting precision and the power consumption is achieved.
引文
[I]Oppenheim, A., Schafer, R. and Buck, J.. Discrete-time signal processing. Upper Saddle River: Prentice hall,1999.
    [2]Walden, R.. Performance trends for analog-to-digital converters. IEEE Communications Magazine,37.2 (1999):pp.96-101.
    [3]Allen, P. and Holberg, D.. CMOS analog circuit design. New York: Oxford University Press, 2011.
    [4]Chai, Y. and Wu, J.. A 5.37 mW 10b 200MS/s dual-path pipelined ADC.2012 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 462-464.
    [5]Fredenburg, J. and Flynn, M.. A 90MS/s 11 MHz bandwidth 62dB SNDR noise-shaping SAR ADC.2012 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.468-470.
    [6]Schreier, R. and Temes, G.. Understanding delta-sigma data converters. New York:IEEE Press,2004.
    [7]Verbruggen, B., Craninckx, J., Kuijk, M, et al. A 2.6 mW 6b 2.2 GS/s 4-times interleaved fully dynamic pipelined ADC in 40nm digital CMOS.2010 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.296-297.
    [8]Payne, R., Sestok, C., Bright, W, et al. A 12b 1GS/s SiGe BiCMOS two-way time-interleaved pipeline ADC.2011 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.182-184.
    [9]Perez, A., Bonizzoni, E. and Maloberti, F.. A 84dB SNDR 100kHz bandwidth low-power single op-amp third-order ΔΣ modulator consuming 140μW. IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.478-480.
    [10]Michel, F. and Steyaert, M. A 250mV 7.5 μW 61dB SNDR CMOS SC ΔΣ modulator using a near-threshold-voltage-biased CMOS inverter technique.2011 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.476-478.
    [11]Dhanasekaran, V., Gambhir, M., Elsayed, M., et al. A 20MHz BW 68dB DR CT ΔΣ ADC based on a multi-bit time-domain quantizer and feedback element.2009 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.174-175.
    [12]Kauffman, J., Witte, P., Becker, J., et al. An 8mW 50MS/s CT ΔΣ modulator with 81 dB SFDR and digital background DAC linearization.2011 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.472-474.
    [13]Shettigar, P. and Pavan, S.. A 15mW 3.6 GS/s CT-ΔΣ ADC with 36MHz bandwidth and 83dB DR in 90nm CMOS.2012 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.156-158.
    [14]Srinivasan, V., Wang, V, Satarzadeh, P., et al. A 20m W 61dB SNDR (60MHz BW) 1b 3rd-order continuous-time delta-sigma modulator clocked at 6GHz in 45nm CMOS.2012 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 158-160.
    [15]Witte, P., Kauffman, J., Becker, et al. A 72dB-DR ΔΣ CT modulator using digitally estimated auxiliary DAC linearization achieving 88fJ/conv in a 25MHz BW. IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.154-156.
    [16]Anderson, D.. The cochlear implant controversy: Lessons learned for using anticipatory governance to address societal concerns of nano-scale neural interface technologies. Nanotechnology, the Brain, and the Future, (2013):pp.147-158.
    [17]Causon, A., Verschuur, C. and Newman, T.. Trends in cochlear implant complications: implications for improving long-term outcomes. Otology & Neurotology,34.2 (2013): pp.259-265.
    [18]Roy, A, Jiradejvong, P., Carver, C., et al. Musical sound quality impairments in cochlear implant (CI) users as a function of limited high-frequency perception. Trends in amplification, 16.4 (2012):pp.191-200.
    [19]Sansen, W., Steyaert, M., Peluso, V., et al. Toward sub 1V analog integrated circuits in submicron standard CMOS technologies.1998 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.186-187.
    [20]De Jager, F. Delta Modulation:A method of PCM transmission using the one unit code. Philips Res. Rep.,7.6 (1952):442-466.
    [21]Cutler, C.. Transmission systems employing quantization. U.S. Patent: US2927962,1960.
    [22]Inose, H., Yasuda, Y. and Murakami, J.. A telemetering system by code modulation Δ-Σ modulation. IRE Transactions on Space Electronics and Telemetry,3 (1962):204-209.
    [23]Ritchie, G.. Higher order interpolative analog to digital converters, Ph.D. Dissertation. Philadelphia, University of Pennsylvania,1977.
    [24]Hayashi, T, Inabe, Y., Uchimura, K., et al. A multistage delta-sigma modulator without double integration loop.1986 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, vol.29:pp.182-183.
    [25]Carley, L.. A noise-shaping coder topology for 15+bit converters. IEEE Journal of Solid-State Circuits,24.2 (1989):267-273.
    [26]Baird, R. and Fiez, T.. Improved ΔΣ DAC linearity using data weighted averaging.1995 IEEE International Symposium on Circuits and Systems (ISCAS), vol.1:pp.13-16.
    [27]Peluso, V., Steyaert, M. and Sansen, W.. A 1.5-V-100-μW ΔΣ modulator with 12-b dynamic range using the switched-opamp technique. IEEE Journal of Solid-State Circuits,32.7 (1997): 943-952.
    [28]Chae, Y. and Han, G.. Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE Journal of Solid-State Circuits,44.2 (2009):458-472.
    [29]Chae, Y. and Han, G.. A low power sigma-delta modulator using class-C inverter.2007 IEEE Symposium on VLSI Circuits (VLSIC), pp.240-241.
    [30]Fiorenza, J., Sepke, T., Holloway, P, et al. Comparator-based switched-capacitor circuits for scaled CMOS technologies. IEEE Journal of "Solid-State Circuits,41.12 (2006):2658-2668.
    [31]Sepke, T., Fiorenza, J., Sodini, C., et al. Comparator-based switched-capacitor circuits for scaled CMOS technologies.2006 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.812-821.
    [32]Yamamoto, K. and Carusone, A.. A 1-1-1-1 MASH delta-sigma modulator using dynamic comparator-based OTAs.2011 IEEE Custom Integrated Circuits Conference (CICC), pp.1-4.
    [33]Yamamoto, K. and Carusone, A.. A 1-1-1-1 MASH delta-sigma modulator using dynamic comparator-based OTAs. IEEE Journal of Solid-State Circuits,47.8 (2012):1866-1883.
    [34]Park, M. and Perrott, M. A 0.13 μm CMOS 78dB SNDR 87mW 20MHz BW CT ΔΣ DAC with VCO-based integrator and quantizer.2009 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.170-171.
    [35]Taylor, G. and Galton, I. A reconfigurable mostly-digital ΔΣ ADC with a worst-case FOM of 160dB.2012 Symposium on VLSI Circuits (VLSIC), pp.166-167.
    [36]Carlton, B., Lakdawala, H., Alpman, E., et al. A 32nm,1.05 V, BIST enabled,10-40MHz, 11-9 bit,0.13 mm2 digitized integrator MASH ΔΣ ADC.2011 Symposium on VLSI Circuits (VLSIC), pp.36-37.
    [37]Meng, Q., Lee, K. Sugimoto, T., et al. A 0.8 V,88dB dual-channel audio ΔΣ DAC with headphone driver.2006 Symposium on VLSI Circuits (VLSIC), pp.66-67.
    [38]Lee, K., Meng, Q., Sugimoto, T., et al. A 0.8 V,2.6 mW,88 dB dual-channel audio delta-sigma D/A converter with headphone driver. IEEE Journal of Solid-State Circuits,44.3 (2009):916-927.
    [39]Lee, Y., Seok, C., Kim, B., et al. A 1.3-mw per-channel 103-dB SNR stereo audio DAC with class-D head-phones amplifier in 65nm CMOS.2008 IEEE Symposium on VLSI Circuits (VLSIC), pp.176-177.
    [40]Lee, Y, Seok, C., Kim, B., et al. A self-calibration 103-dB SNR stereo audio DAC with true-GND class-D headphone drivers in 45nm CMOS.2010 International SoC Design Conference (ISOCC), pp.336-337.
    [41]Nguyen, K., Bandyopadhyay, A., Adams, B., et al. A 108 dB SNR,1.1 mW oversampling audio DAC with a three-level DEM technique. IEEE Journal of Solid-State Circuits,43.12 (2008):2592-2600.
    [42]Hezar, R., Risbo, L, Kiper, H., et al. A 110dB SNR and 0.5 mW current-steering audio DAC implemented in 45nm CMOS.2010 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.304-305.
    [43]Baschirotto, A., Bollati, G., Colonna, V., et al. A 94dB-SNR-76dB-THD high-efficiency hybrid audio power-DAC for loudspeaker (4Ω/8Ω) and earphone (16Q/32Q).2010 Proceedings of the European Solid-State Circuits Conference (ESSCIRC), pp.226-229.
    [44]段营,戎蒙恬,刘文江。二阶Sigma-Delta ADC自适应量化算法及电路实现。上海交通大学学报,2007,41(8):1374-1377。
    [45]杨骁,陈贵灿,程军等。一种新型高阶两通道时间交织∑△调制器系统结构。西安交通大学学报,2008,42(12):1541-1545。
    [46]黄剑。10位60MSPS流水线ADC的研究和设计,硕士学位论文。西安,西安电子科技大学:2009。
    [47]吴光林。多通道时间交叉ADC校准技术研究及实现,博士学位论文。南京,东南大学:2006。
    [48]刘海涛。超高速ADC芯片设计及测试方法研究,博士学位论文。南京,东南大学:2010。
    [49]苟曦,李怡然,陈建球等。一个0.9V电源电压16位300μW音频EA调制器。复旦学报(自然科学版),2008,47(6):763-768。
    [50]杨海峰。应用于音频带宽可调的低功耗Delta-sigma调制器研究与实现,硕士学位论文。上海,复旦大学:2011。
    [51]董一枫。音频低电压连续时间Sigma-Delta模数转换器研究与实现,硕士学位论文。上海,复旦大学:2011。
    [52]Liu, L., Li, D., Chen, L., et al. A 1V 350μW 92dB SNDR 24 kHz ΔΣ modulator in 0.18 μm CMOS.2010 IEEE Asian Solid State Circuits Conference (A-SSCC), pp.1-4.
    [53]Liu, L., Li, D., Ye, Y., et al. A 95dB SNDR audio ΔΣ modulator in 65nm CMOS. Proceedings of 2011 IEEE Custom Integrated Circuits Conference (CICC).
    [54]Chen, R., Liu, L. and Li, D.. A cost-effective digital front-end realization for 20-bit ΣΔ DAC in 0.13 μm CMOS.2007 IEEE Custom Integrated Circuits Conference (CICC), pp.447-450.
    [55]Xu, J., Wu, X., M. Zhao, et al.9μW 88dB DR fully-clocked switched-opamp ΔΣ modulator with novel efficient resonator. Electronics Letters,46.19 (2010):1313-1315.
    [56]Xu, J., Wu, X., Wang, H., et al. Power optimization of high performance ΔΣ modulators for portable measurement applications. Proceedings of 2010 IEEE Asian Solid State Circuits Conference (A-SSCC).
    [57]Xu, J., Wu, X., M. Zhao, et al. Ultra low-FOM high-precision δσ modulators with fully-clocked SO and static power-less quantizers. Proceedings of 2011 IEEE Custom Integrated Circuits Conference (CICC).
    [58]Understanding Data Converters. Application Notes SLAA013, Texas Instruments,1995: http://www.ti.com/litv/pdf/slaa013.
    [59]Kester, W. Understand SINAD, ENOB, SNR, THD, THD+N, SFDR, so you don't get lost in the noise floor. Tutorial MT-003, Analog Devices Inc.,2009: www.analog.com/static/imported-files/tutorials/MT-003.pdf.
    [60]Shahramian, S., Voinigescu, P. and Carusone, A.. A 35-GS/s,4-bit flash ADC with active data and clock distribution trees. IEEE Journal of Solid-State Circuits,44.6 (2009):1709-1720.
    [61]Proesel, J., Plouchart, G. and Pileggi, L.. An 8-bit 1.5 GS/s flash ADC using post-manufacturing statistical selection. Proceedings of 2010 IEEE Custom Integrated Circuits Conference (CICC).
    [62]El-Chammas, M. and Murmann, B..A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration. IEEE Journal of Solid-State Circuits,46.4 (2011): 838-847.
    [63]Javid, B., and Heydari, P.. A 4-bit 12GS/s data acquisition System-on-Chip including a flash ADC and 4-channel DeMUX in 130nm CMOS. Proceedings of 2012 IEEE Custom Integrated Circuits Conference (CICC).
    [64]Taft, R., Francese, P., Tursi, M., et al. A 1.8 V 1.0 GS/s 10b self-calibrating unified-folding-interpolating ADC with 9.1 ENOB at Nyquist frequency. IEEE Journal of Solid-State Circuits,44.12 (2009):3294-3304.
    [65]Nakajima, Y., Sakaguchi, A., Ohkido, T., et al. A self-background calibrated 6b 2.7 GS/s ADC with cascade-calibrated folding-interpolating architecture.2009 Symposium on VLSI Circuits, pp.266-267.
    [66]Nakajima, Y., Sakaguchi, A., Ohkido, T., et al. A background self-calibrated 6b 2.7 GS/s ADC with cascade-calibrated folding-interpolating architecture. IEEE Journal of Solid-State Circuits,45.4 (2010):707-718.
    [67]Lee, J., Michael, B., Park, H., et al. A 7b 1GS/s 60mW folding ADC in 65nm CMOS.2010 International SoC Design Conference (ISOCC), pp.338-341.
    [68]Panigada, A and Galton, I.. A 130 mW 100 MS/s pipelined ADC with 69 dB SNDR enabled by digital harmonic distortion correction. IEEE Journal of Solid-State Circuits,44.12 (2009): 3314-3328.
    [69]Verma, A. and Razavi, B.. A 10b 500MHz 55mW CMOS ADC.2009 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.84-85.
    [70]Huang, Y and Lee, T.. A 10-bit 100-MS/s 4.5-mW pipelined ADC with a time-sharing technique. IEEE Transactions on Circuits and Systems I:Regular Papers,58.6 (2011): 1157-1166.
    [71]Mulder, J., van der Goes, F., Vecchi, D., et al. An 800MS/s dual-residue pipeline ADC in 40nm CMOS.2011 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.184-186.
    [72]Chai, Y. and Wu, J.. A 5.37 mW 10b 200MS/s dual-path pipelined ADC." 2012 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 462-464.
    [73]秦琳。基于终端电容复用开关策略的11位逐次逼近型ADC的研究与设计,硕士学位论文。杭州,浙江大学:2012。
    [74]Yip, M., and Chandrakasan, A.. A resolution-reconfigurable 5-to-10b 0.4-to-1V power scalable SAR ADC." 2010 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.190-192.
    [75]Tai, H. Chen, H. Chen, H..3.2 fJ/c.-s.0.35 V 10b 100KS/s SAR ADC in 90nm CMOS.2012 Symposium on In VLSI Circuits (VLSIC), pp.92-93.
    [76]Yoshioka, M., Ishikawa, K., Takayama, T., et al. A 10b 50MS/s 820μW SAR ADC with on-chip digital calibration.2010 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.384-385.
    [77]Maloberti, F.. Data converters. Dordrecht: Springer,2007.
    [78]Norsworthy, S., Schreier, R. and Temes, G.. Delta-sigma data converters:Theory, design, and simulation. New York: IEEE Press,1996.
    [79]Razavi, B.. Design of analog CMOS integrated circuits. New York: McGraw-Hill,2002.
    [80]Aksin, D., Al-Shyoukh, M. and Maloberti, F.. Switch bootstrapping for precise sampling beyond supply voltage. IEEE Journal of Solid-State Circuits,41.8 (2006):1938-1943.
    [81]Franco, S.. Design with operational amplifiers and analog integrated circuits. New York: McGraw-Hill,2001.
    [82]徐建。高精度△∑调制器的高性能优化技术研究,博士学位论文。杭州,浙江大学:2011。
    [83]Cheung, V. and Luong, H.. A 0.9 V 0.5 μW CMOS single-switched-op-amp signal-conditioning system for pacemaker applications.2003 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp.408-503.
    [84]Crols, J., and Steyaert, M.. Switched-opamp:An approach to realize full CMOS switched-capacitor circuits at very low power supply voltages. IEEE Journal of Solid-State Circuits,29.8 (1994):936-942.
    [85]Yang, Y., Chokhawala, A., Alexander, M., et al. A 114-dB 68-mW chopper-stabilized stereo multibit audio ADC in 5.62 mm2. IEEE Journal of Solid-State Circuits,38.12 (2003): 2061-2068.
    [86]Early, A.. Chopper stabilized delta-sigma analog-to-digital converter. U.S. Patent: US4939516, 1990.
    [87]Fujimori, I., Longo, L., Hairapetian, A., et al. A 90-dB SNR 2.5-MHz output-rate ADC using cascaded multibit delta-sigma modulation at at 8x oversampling ratio. IEEE Journal of Solid-State Circuits,35.12 (2000):1820-1828.
    [88]Hamoui, A. and Martin, K.. Linearity enhancement of multibit ΔΣ modulators using pseudo data-weighted averaging.2002 IEEE International Symposium on Circuits and Systems (ISCAS), vol.3:pp. III-285.
    [89]Wang, R.. A multi-bit delta sigma audio digital-to-analog converter, Ph.D. dissertation. Corvallis, Oregon State University,2006.
    [90]Roh, J., Byun, S., Choi, Y., et al. A 0.9-V 60-μW 1-bit fourth-order delta-sigma modulator with 83-dB dynamic range. IEEE Journal of Solid-State Circuits,43.2 (2008):361-370.
    [91]Park, H., Nam, K., Su, D., et al. A 0.7-V 870-μW digital-audio CMOS sigma-delta modulator. IEEE journal of solid-state circuits,44.4 (2009):1078-1088.
    [92]Kuo, C., Shi, D. and Chang, K.. A low-voltage fourth-order cascade delta-sigma modulator in 0.18-μm CMOS. IEEE Transactions on Circuits and Systems I:Regular Papers,57.9 (2010): 2450-2461.
    [93]Doom, T., Schinkel, D., Annema, A, et al. An audio FIR-DAC in a BCD process for high power Class-D amplifiers. Proceedings of the 31st European Solid-State Circuits Conference (ESSCIRC), pp.459-462.
    [94]Yao, X., Liu, Y., Li, D., et al. A 90dB DR audio delta-sigma DAC with headphone driver for hearing aid.2010 3rd International Congress on Image and Signal Processing (CISP), vol.6, pp.2890-2893.
    [95]Nielsen, K.. Audio power amplifier techniques with energy efficient power conversion, Ph.D. Dissertation. Lyngby, Technical University of Denmark,1998.
    [96]邬桐。采用数字技术开环架构的D类音频功率放大器的研究与设计,硕士学位论文。杭州,浙江大学,2012。
    [97]Martinez-Peiro, M., Boemo, E. and Wanhammar, L.. Design of high-speed multiplierless filters using a nonrecursive signed common subexpression algorithm. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing,49.3 (2002):196-203.
    [98]Jang Y, Yang L. Low-power CSD linear phase FIR filter structure using vertical common subexpression. Electronics Letters,38.15 (2002):777-779.
    [99]Fujimori, I., Nogi, A. and Sugimoto, T.. A multibit delta-sigma audio DAC with 120-dB dynamic range. IEEE Journal of Solid-State Circuits,35.8 (2000):1066-1073.
    [100]孙鹏。用于植入式生物医疗系统的高性能仪表放大器的研究与设计,硕士学位论文。杭州,浙江大学,2013。
    [101]Annovazzi, M., Colonna, V., Gandolfi, G., et al. A low-power 98-dB multibit audio DAC in a standard 3.3-V 0.35-μm CMOS technology. IEEE Journal of Solid-State Circuits,37.7 (2002): 825-834.
    [102]Colonna, V., Annovazzi, M., Boarin, G., et al. A 0.22-mm2 7.25-mW per-channel audio stereo-DAC with 97-dB DR and 39-dB SNRout. IEEE Journal of Solid-State Circuits,40.7 (2005):1491-1498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700