基于伴随方法的涡扇发动机涵道的气动噪声优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机噪声问题对持续增长的航空运输业提出一个重要的问题。其噪声级的大小直接关系到飞机适航签证的获取。这对于我国正在研制的民用客机来说,无疑是巨大的挑战。风扇噪声是现代民用飞机在起飞和降落状态下的主要声源。通过优化发动机涵道外形来降低风扇噪声是一种行之有效的方法。伴随方法具有梯度计算几乎与设计变量数目无关的显著优势,较好地克服了气动噪声优化中计算开销大的问题,使得进行多参数低噪声优化设计成为可能,有着很大的研究价值和广阔应用前景。然而,伴随方法用于发动机涵道减噪优化还处于初步探索阶段,有许多科学问题亟需解决。
     本文首次提出并发展了基于连续伴随方法的气动噪声优化设计理论,突破了一般优化算法在多设计变量下的计算效率低的瓶颈问题。研究与发展了非定常伴随方程的高阶有限差分数值求解方法及相应梯度公式的数值求解方法。在此基础上,结合本文发展的减噪设计理论,针对进气道和外涵道减噪问题,分别提出适合各自问题的减噪设计算法,开展了进气道和外涵道减噪问题研究,有效降低了从涵道辐射到远场的噪声,解决了涵道的多参数设计计算量大的难题。从而,为涡扇发动机涵道多参数减噪设计探索出一条高效可靠的新路。
     论文的主要研究内容如下:
     (1)研究了单音噪声在涡扇发动机进气道中传播和远场辐射过程。通过求解二维轴对称线性欧拉方程(2.5D LEE)研究了单个傅立叶声模态的近场传播过程,然后采用FW-H积分计算远场的声压级。发展了高精度进气道噪声计算工具,通过NASA JT15D静态测试实验的数据验证其正确性,然后详细探究了典型进气道噪声传播机理,得出了衍射和折射效应是两个影响声波传播方向的机制。而且衍射效应是更主要的影响因素。
     (2)研究了单音噪声在涡扇发动机外涵道中传播和远场辐射过程。由于外涵道流体与外部流体之间出现剪切层,使得无法直接使用频域有限元、无限元和LEE方法。本文通过求解声扰动方程(2.5D APE)来模拟近场声传播,解决了计算放大的问题,最后利用FW-H积分得到远场指向性特征。发展了高精度外涵道噪声预测工具,其正确性通过使用TURNEX项目的外涵道实验数据得到验证。
     (3)首次系统地提出了基于连续伴随方法的气动噪声优化设计理论。提出了合适的减噪设计的目标函数及约束条件,发展了目标函数取在积分线上的减噪优化方法。在计算坐标系下详细推导了LEE的非定常伴随方程,伴随边界条件以及关键的梯度表达式。针对伴随方程的数学性质,研究与发展了伴随方程的高阶有限差分数值求解方法及相应梯度公式的数值求解方法,较好解决了非定常伴随方程和梯度公式的数值求解问题。利用该优化方法,可一次性求出所有设计变量的梯度值,从而大大提高了减噪设计的效率。
     (4)提出了基于连续伴随理论和2.5D LEE方程的进气道减噪设计算法。推导了2.5D LEE的伴随方程及边界条件,并给出了最终梯度求解形式。通过利用网格扰动技术,避免了优化设计过程中多次生成计算网格的问题,获得了度量矩阵变分来进行梯度求解。使用Hicks-Henne函数来描述设计变量扰动对进气道表面的影响。优化设计过程使用拟牛顿优化算法,在不同背景流条件和噪声模态下,成功地进行了高达50个设计变量的典型进气道的减噪问题研究,取得显著的减噪效果。
     (5)提出了基于连续伴随理论和2.5D APE方程的外涵道减噪设计算法。导出了2.5D APE的非定常伴随方程及相应物面边界条件以及梯度表达式,应用高精度有限差分法对其进行了有效的数值求解。基于最速下降算法,对含实验数据的TURNEX外涵道,在不同背景流条件和噪声模态下,成功进行了含48个设计变量的减噪设计。最优外形取得显著减噪效果。
Aircraft noise problems raised an important question for the air transportindustry with sustained growth. The obtaining of the aircraft airworthinesscertification directly depends on its noise level. It is undoubtedly a hugechallenge to the developing of China's civil aircraft. Fan noise is the primarysound source of modern civil aircraft during takeoff and landing condition.It’s an effective method to reduce the fan noise by optimizing the shape ofengine duct. The major advantage of the adjoint method is that thecomputation of the sensitivity derivatives of cost function with respect todesign variables is nearly independent of the number of design variables,which greatly saves the computational cost and well overcomes largecomputational overhead of the aeroacoustic optimization problem, making itpossible for multi-parameter optimization design for low-noise. It has greatresearch value and broad application prospects. Nevertheless, relevantresearch on this aspect is preliminary, and many scientific issues should befurther investigated.
     In this thesis, the aeroacoustic optimization design theory based on theadjoint method has been proposed for the first time. Not like the generaloptimization method, the bottlenecks of the inefficiency of calculating thegradient is broke through by this method.The numerical algorithms of solvingthe unsteady adjoint equations for LEE have been developed by using high-order finite difference methodology. The numerical solution of thecorresponding gradient formula also has been exploited. Base on theaeroacoustic optimization design theory developed in this paper, theaeroacoustic optimization algorithms of turbofan engine inlet and bypass duct are proposed and the multi-parameter aeroacoustic optimization designexamples for ducts have been done successfully. The noise radiated to the far-field is reduced effectively and the intensive computational cost of the multi-parameter noise design problems is solved.Thereby, a novel optimizationapproach with high efficiency and reliability has been devised for low-noisedesign of turbofan engine inlet and bypass duct.
     The main work and contributions of the present thesis are as follows:
     (1) The near field propagation mehanisim and far-field radiationdirectivity of a tone noise at the inlet of the turbofan engine is studied. Thenear field propagation is studied by solving the two-dimensionalaxisymmetric linear Euler equation (2.5D LEE), then the far-field soundpressure level is calculated through the FW-H integration. The high-precisionnoise calculation tool of inlet is developed. And its correctness is validated bythe experimental data of NASA JT15D static testing. Base on that, thepropagation mechanisms of a tone noise at a typical intake are explored indetail. It’s obtained that diffraction and refraction effects are two mechanismsaffecting the direction of wave propagation. And diffraction effects are moreimportant factors.
     (2) The near field propagation mechanisim and far-field radiationdirectivity of a tone noise at the bypass duct of the turbofan engine is studied.The prediction of aft radiated fan noise from turbofan aero-engines ischallenging for conventional numerical schemes, more so than for thecorresponding intake problem. The major complicating factor in the case ofthe bypass duct is the presence of a mixing shear layer between the bypassstream and the external flow. This precludes the straightforward use offrequency-domain finite, infinite element (FE/IE) method and LEE.The meanflow field is calculated using the FLUENT before the simulation of the near-field sound propagation by solving the acoustic perturbation equations (2.5DAPE), avoiding the problem of numerical amplification, and finally far-fielddirectivity characteristics is obtained by the use of FW-H integration. Thenoise prediction tool of bypass duct with high-precision is further developed. The predicted results compared very well with the correspondingexperimental data of TURNEX bypass duct.
     (3) The aeroacoustic optimization design theory based on the adjointmethod is put forward creatively. After the noise cost function and constraintsare properly proposed, the adjoint-based optimization method for noisereduction is developed with the acoustic objective function defined on theintegral line. The corresponding unsteady adjoint equation of LEE, adjointboundary conditions and critical gradient expression are derived in Cartesiancoordinate system in detail. The numerical algorithm of solving the unsteadyadjoint equations for LEE have been developed by using high-order finitedifference methodology after analysing the mathematical nature of unsteadyadjoint equation. The numerical solution of the corresponding gradientformula also has been exploited. With this optimization theory, one can obtainall the gradient value of the design variables once, thus greatly improving theefficiency of the low-noise design.
     (4) The aeroacoustic optimization algorithms of turbofan engine inletbased on the2.5D LEE and its adjoint formular is proposed. Thecorresponding adjoint equations and boundary conditions of2.5D LEE arederived first, and the final forms of the gradient expression are given. Thegrid perturbation technique is adopted, avoiding the repeat generation of thecomputational grid during the design process, and the metrics are obtained forthe solution of Gradient. The influence of perturbation of the design variableson the inlet surface is described by Hicks-Henne function. The quasi-Newtonoptimization algorithm is used and some practical design tests for inlet ductsshow that, for the different flow condition and modal noise condition, thecontinuous adjoint approach is highly effective and useful for multi-parameteraeroacoustic optimization design with up to50design variables.
     (5) At the same time, we have done the research of aeroacousticoptimum design for bypass ducts by using2.5D APE.The aeroacousticoptimization algorithms of turbofan engine bypass duct based on the2.5DAPE and its adjoint formular is also proposed.The corresponding unsteady adjoint equations and boundary conditions of2.5D APE are derived, and theexpressions of the gradient expression are given. The adjoint equations aresolved by using high-order finite difference scheme. The steepest descentmethod is used and with up to48design variables, the multi-parameteraeroacoustic optimization design examples for TURNEX bypass ducts havebeen done successfully for the different flow condition and modal noisecondition.
引文
[1] FAA Office of Aviation Policy, Plans and Management Analysis. FAA Statistical HandBook ofAviation[M]. Washington, D.C.,1992
    [2] International Civil Aviation Organisation,“Volume1: Aircraft noise” in Annex16to the Conventionon International Civil Aviation: Environmental Protection,5th Edition[M]. July2008.
    [3] http://ec.europa.eu/research/research-for-europe/transport-nacre_en.html
    [4] Arguelles, P., Lumsden, J., Bischoff, M., Ranque, D., Busquin, P., S. Rasmussen,B. Droste, P.Reutlinger, R. Evans, R. Robins, W. K roll, H. Terho, J. Lagardere,A. Wittlov, and A. Lina.“Meetingsociety’s needs and winning global leadership,”in European aeronautics: A vision for2020[M].January2001.
    [5] Powell,C., preisser., J.S., NASA subsonic jet transport noise reduction research[J]. AeronauticalJournal,2000,104(1038):353-358
    [6] Friedl, R. Atmospheric effects of subsonic aircraft: Interim assessment report of the advancedsubsonic technology program[R].1997
    [7] Macaraeg, M.G. Fundamental investigations of airframe noise[C]. AIAA PAPER,1998,2224:2-4
    [8] Herkes,W.H., R.Olsens.Uellenberg. The Quiet Technology Demonstrator Program: Flight Validationof Airplane Noise Reduction Concepts[C]. AIAA PAPER,2006,2720:2006
    [9] Yu, J., Nesbitt, E., Kwan, H., et al.Quiet Technology Demonstrator2intake Liner Design andValidation[C]. AIAA PAPER,2006:2006-2458
    [10] Callender, B., Janardan, B., Uellenberg, S., et al.The Quiet Technology Demonstrator Program: StaticTest of an Acoustically Smooth Inlet [C]. AIAA PAPER,2007:2007-3671
    [11] Herkes, W., Callender, B., Moe, J., et al.The Quiet Technology Demonstrator Program:Static Test ofAirplane Noise-Reduction Concepts[C]. AIAA PAPER,2007:2007-3670
    [12] FAR Part36, Noise Standards: Aircraft Type and Airworthiness Certification[M]. The FederalAviation Adminstration,2004.
    [13] Astley, R. J., Agarwal, A., Holland, K. R., Joseph, P. F., Self, R. H., Smith, M. G., Sugimoto, R., andTester, B. J. Predicting and reducing aircraft noise[C]. in14th International Congress on Sound andVibration, Cairns, Australia,9-12July2007.
    [14] Claire Roisin McAleer, Predicting Fan Noise Propagation in Aeroengine Bypass Ducts[D]. PhD thesis,University of Southampton,2009.
    [15] Tyler, J.M. and Sofrin, T.G., Axial Flow Compressor Noise Studies [J]. SAE transactions,1961,70:123-149.
    [16] Lewy, S., and Canard-Caruana, S., Experimental Study of Noise Sources and Acoustic Propagation ina Turbofan Model[C]. AIAA,13th Aerospace Conference, PAPER No.90-3950, October22-24,1990.
    [17] José Santiago Alonso-Miralles.Theoretical Modeling with Validation of A Combined HQ-LINERSystem for Turbofan Engine Noise Control[D]. PhD thesis, Virginia Polytechnic Institute and StateUniversity,1995.
    [18] Tam,C.K.W. Computational aeroacoustics: An overview of computational Challenges andapplications[J]. international Journal of Computational Fluid Dynamics,2004,18(6):547-567
    [19] Roe, P.L. Technical prospects for computational aeroacoustics[C]. AIAA PAPER92-02-032.
    [20] Tam, C.K.W. Computational aeroacoustics: issues and methods [J]. AIAA J.33(10):1788-1796.
    [21] Wells, V.L. and Renaut, R.A. Computing aerodynamically generated noise[J]. Annu. Rev. Fluid. Mech.29:161-199.
    [22] Zingg, D.W. Comparison of high-accuracy finite-difference methods for linear wave propagation [J].SlAM J. Sci. Comput.22(2):476-502.
    [23] Mankbadi, R.R. Review of computational aeroacoustics in propulsion systems[J]. J. PropulsionPower,15(4):504-512.
    [24] Hardin, J.C., Ristorcelli, J.R. and Tam, C.K.W. ICASEhRC Workshop on BenchmarkProblems in Computational aeroacoustics (CAA)[R]. NASA CP3300.
    [25] Tam, C.K.W. and Hardin, J.C. Second Computational aeroacoustics (CAA) Workshop on BenchmarkProblems[R]. NASA CP3352.
    [26] Hardin, J.C., Huff, D. and Tam, C.K.W. Third Computational Aeroacoustics (CAA) Workshop onBenchmark Problems[R]. NASA/CP2000-209790.
    [27] Lighthill, M.J. On sound generated aerodynamically, I: general theory[J]. Proc. R. Soc. Lond., Ser. A211:564-587.
    [28] Curle, N. The influence of solid boundaries upon aerodynamic sound[J]. Proc. R. Soc. Lond., Sel: A231:505-514.
    [29] Ffowcs Williams, J.E. and Hawkings, D.L. Sound generation by turbulence and surfaces in arbitrarymotion[J]. Philos. Trans. R. Soc. Lond., Ser. A264:321-342.
    [30] Farassat, F. Derivation of Formulations1and1A of Farassat[R]. NASA/TM-2007-214853
    [31] Wang, M., Lele, S.K. and Moin, P. Computation of quadrupole noise using acoustic analogy[J].AIAA J.34(11):2247-2254.
    [32] Ffowcs Williams, J.E. and Kempton, A.J. The noise from the large-scale structure of a jet[J]. J. FluidMech.84:673-694.
    [33] Tam, C.K.W. On the failure of the acoustic analogy theory to identify the correct noise sources[C].AIAA PAPER2001-2117.
    [34] Morris, P.J. and Farassat, F. Acoustic analogy and alternative theories for jet noise prediction[J].AIAA J.40(4):671-680.
    [35] Lyrintzis, A.S. Review of the use of Kirchhoff's method in computational aero-acoustics[J]. J.Fluids Eng.116:665-676.
    [36] Lyrintzis, A.S. and Mankbadi, R.R. On the prediction of the Far-field jet noise using Kirchhoff'sformulation[J]. AIAA J.35(2):413-416.
    [37] Hardin, J.C. and Pope, D.S. An acoustic/viscous Splitting technique for computationalaeroacoustics[J]. Theor. Comput. Fluid Dyn.6(5-6):334-340.
    [38] Ekaterinaris, J.A. New formulation of Hardin-Pope equations for aeroacoustics[J]. AIAA J.37(9):1033-1039.
    [39] Shen, W.Z. and Sorensen, J.N. Comment on the aeroacoustic formulation of Hardin and Pope[J].AIM J.37(1):141-143.
    [40] Hardin, J.C. and Pope, D.S. Sound generation by flow over a two-dimensional cavity[J]. AIM J.33(3):407-412.
    [41] Pope, D.S. A viscous/acoustic splitting technique for Aeolian tone prediction,2nd CAA Workshop onBenchmark Problems[R]. NASA CP3352,305-318.
    [42] Viswanathan, K. and Sankar, L.N. Toward the direct calculation of noise: fluid acoustic coupledsimulation[J]. AIAA J.33(12):2271-2279.
    [43] Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T. Spectral Methods in Fluid Dynamics[M].Springer-Verlag, New York.
    [44] Patera, A. A spectral element method for fluid dynamics[J]. J. Comput. Phys.54:468-488.
    [45] Kopriva, D.A. and Kolias, J.H. A conservative staggered-grid chebyshev multidomain method forcompressible flows[J]. J. Comput. Phys.125:244-261.
    [46] Stanescu, D., Ait-Ali-Yahia, D., Habashi, W.G. and Robichaud, M. Multidomain spectralcomputations of sound radiation from ducted fans[J]. AIAA J.37:296-302.
    [47] Sudo, Y. and Sparrow, V.W. Sound propagation simulations using lattice gas methods[J]. AIAA J33(9):1582-1589.
    [48] Chang, S.C. The method of space-time conservation element and solution element-a new approach forsolving the Navier-Stokes and Euler equations[J]. J. Comput. Pkys.119:295-324.
    [49] Nance, D.V., Viswanathan, K. and Sankar, L.N. A low dispersion finite volume scheme foraeroacoustic applications[C]. AIAA PAPER96-0278.
    [50] Loh, H.T., Smith-Kent, R., Perkins, F. and Chwalowski, P. Evaluation of Aft skirt lengtheffects on rocket motor base heat, using computational fluid dynamics[C]. AIAA PAPER96-2645.
    [51] Hu, F.Q., Hussaini, M.Y. and Rasetarinera, P. An analysis of the discontinuous Galerkin method forwave propagation problems[J]. J. Comput. Phys.151:921-946.
    [52] Atkins, H.L. Continued development of discontinuous Galerkin method for computationalaeroacoustics applications[C]. AIAA PAPER97-1.581.
    [53] Wells, V.L. and Renaut, R.A. Computing aerodynamically generated noise[J]. Annu. Rev. Fluid.Mech.29:161-199.
    [54] Tam,C.K.W. and Webb, J.C. Dispersion-relation-preserving finite difference schemes forcomputational acoustics[J]. J. Comput. Phys.107:262-281.
    [55] Lele, S. K. Compact Finite Difference Schemes with Spectral-Like Resolution[J]. Journal ofComputational Physics,1992,103:16-42.
    [56] Hixon, R. Prefactored Small-Stencil Compact Schemes[J]. Journal of Computational Physics,2000,165(2):522-541.
    [57] Zingg, D.W., Lomax, H. and JurgeNS, H.M. An optimized finite-difference scheme for wavepropagation problems[C]. AIAA PAPER93-0459.
    [58] Hixon, R. On increasing the accuracy of MacCormack schemes for aeroacoustic applications[C].AIAA PAPER97-1586.
    [59] Lockard, D.P., Brentner, K.S. and Atkins, H.L. High-accuracy algorithms for computationalaeroacoustics[J]. AIAA J.33(2),246-251.
    [60] Thomas, J.P. and Roe, P.L. Development of non-dissipative numerical schemes for computationalaeroacoustics[C]. AIAA PAPER93-3382.
    [61] Hu, F. Q., Hussaini, M. Y., and Manthey, J. Low-Dissipation and Low-Dispersion Runge-KuttaSchemes for Computational Acoustics[R]. NASA CR-195022,1994.
    [62] Bayliss, A., Turkel, E. Radiation boundary conditions for wave-like equations[J]. Communications onPure and Applied Mathematics,33(1980):708–725.
    [63] Tam, C.K., Webb, J.C. Dispersion-relation-preserving finite difference schemes for computationalacoustics[J]. Journal of Computational Physics,107(1993):262–281.
    [64] Thompson K W. Time dependent boundary conditions for hyperbolic systems[J]. J ComputationalPhysics,1987,68:1-24
    [65] Thompson K W. Time dependent boundary conditions for hyperbolic systems II[J]. J ComputationalPhysics,1990,89:439-461.
    [66] Rod-L C. The application of nonreflecting boundary to2-D unsteady computations on curvilineargrids[J]. AIAA1990,28:1587-1595
    [67] Kim J W, Lee D J. Generalized characteristic boundary conditions for computational aeroacoustics[J].J AIAA,2000,38,2040-2049
    [68] Giles, M. B. Nonreflecting boundary conditions for Euler equation calculations[J]. J AIAA,1990,28:2050-2058
    [69] Colonius T, Lele S K. Main P. Boundary conditions for direct computation of aerodynamic soundgeneration[J]. J AIAA,1993,31:37
    [70] Hixon R, Shih S H, Mankbadi R R. Evaluation of boundary conditions for com putationalaeroacoustms[J]. J AIAA,1995.33:2006-2012
    [71] Hixon, R., Shih, S.-H., Mankbadi, R.R. Evaluation of boundary conditions for the gust-cascadeproblem[J]. Journal of Propulsion and Power,16(2000):72–78.
    [72] Mankbadi, R.R., Hixon, R., Shih, S.-H., Povinelli, L.A. Use of linearized Euler equations forsupersonic jet noise prediction[J]. American Institute of Aeronautics and Astronautics Journal,36(1998):140–147.
    [73] Berenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal ofComputational Physics114(1994):185–200.
    [74] Hu, F.Q. On Absorbing boundary conditions of linearized Euler equations by a perfectly matchedlayer[J]. Journal of Computational Physics129(1996):201–219.
    [75] Arbabanel, S., Gottlieb, D., Hesthaven, J.S. Well-posed perfectly matched layers for advectiveacoustics[J]. Journal of Computational Physics154(1996):266–283.
    [76] Hu, F.Q. A stable, perfectly matched layer for linearized Euler equations in unsplit physicalvariables[J]. Journal of Computational Physics173(2001):455–480.
    [77] Wasistho, B., Guerts, B.J., Kuerten, J.G.M. Simulation techniques for spatially evolving instabilitiesin compressible flow over a flat plate[J]. Computers and Fluids7(1997):713–739.
    [78] Collis, S.S., Lele, S.K. A computational approach to swept leading-edge receptivity[C]. AmericanInstitute of Aeronautics and Astronautics PAPER1996-0180.
    [79] Freund, J.B. Proposed inflow/outflow boundary conditions for direct computation of aerodynamicsound[J]. American Institute of Aeronautics and Astronautics Journal,35(1997):740–742.
    [80] Colonius, T., Lele, S.K., Moin, P. Boundary conditions for direct computation of aerodynamicsound[J]. American Institute of Aeronautics and Astronautics Journal,31(1993):1574–1582.
    [81] Ta’asan, S., Nark, D.M. An Absorbing buffer zone technique for acoustic wave propagation[C].American Institute of Aeronautics and Astronautics PAPER95-0164.
    [82] Bailly, C. and Bogey, C. Contributions of CAA to jet noise research and prediction[J]. InternationalJournal of Computational Fluid Dynamics,2004,18(6):481-491.
    [83] Envia, E., Wilson, A.G., and Huff, D.L. Fan noise: a challenge to CAA[J]. International Journal ofComputational Fluid Dynamics,2004,18(6):471-480.
    [84] Singer, B. and Guo, Y. Development of CAA tools for airframe noise calculations[J]. InternationalJournal of Computational Fluid Dynamics,2004,18(6):455-469.
    [85] Takeda, K. and Shieh, C.M. Cavity tones by CAA[J]. International Journal of Computational FluidDynamics,2004,18:439-454
    [86] Li, X.D., Xue, L.P., Yan, J.P., Thiele, F. Parallel Computation of Duct Acoustics by ComputationalAcoustics Approach[C]. AIAA-99-1819.
    [87] Li, X. D., Schemely, C., Michelz, U., Thiele, F. ON THE AZIMUTHAL MODE PROPAGATION INAXISYMMETRIC DUCT FLOWS[C].8th AIAA/CEAS Aeroacoustics Conference&Exhibit,17-19June2002, Breckenridge, Colorado, AIAA2002-2521
    [88] Li, X. D., Richter, C. and Thiele, F. Time-Domain Impedance Boundary Conditions for surfaces withsubsonic mean flows[J]. J. Acoust. Soc. Am.,2006,119(5):2665-2676.
    [89]李晓东,高军辉.亚、超音喷管中声传播的数值模拟[J].航空动力学报,2003,18(1):15-19
    [90]李晓东,段传波,于潮.三维FW-H方程与CAA数值模拟匹配技术研究[J].工程热物理学报,2005,26(1):51-54
    [91] Sun X.F., Du, L., Yang, V. A homotopy method for determining the eigenvalues of locally or non-locally reacting acoustic liners in flow ducts[J]. Journal of Sound and Vibration,303(2007):277–286.
    [92]孙晓峰.王晓宇.一种新的膜结构消声器理论模型[J].北京航空航天大学学报,2006,32(10)
    [93]王晓宇.杜林.孙晓峰.考虑变截面影响的航空发动机短舱声学模型及数值结果[J].航空学报2006,27(6)
    [94]景晓东,孙晓峰.微圆孔非线性声阻抗及声整流现象的实验研究[J].工程热物理学报,2001,22(2):171-174
    [95]景晓东,孙晓峰.穿孔板切向流效应的理论和实验研究[J].航空学报,2002,23(5):405-410
    [96] Qiao W.Y.,Michel U.,Study on flap side-edge noise based on the fly-over measurements with a planarmicrophone array[J].Chinese Journal of Aeronautics,2000,13(3)
    [97] Qiao W.Y.,Michel U.,Landing noise of aircraft based on the fly-over measurements with a planarmicrophone array[J].Chinese Journal of Acoustics,2002,21(1)
    [98] Wang, T. Q. and Zhou, S. Investigation on sound field model of propeller aircraft-the effects of rigidfuselage boundary[J]. Journal of Sound and Vibration,1998,207.
    [99] Wang, T. Q., Yang, B. and Guan, Y. A Study on the Prediction of the Ducted Fan Noise[C].11thAIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference)23-25May2005,Monterey, California AIAA2005-3069
    [100]罗柏华,刘宇陆.适用于气动学问题的DRP类有限差分方法[J].空气动力学学报,2004,22(3),357-360
    [101]罗柏华,王泽晖,刘宇陆.非等距网格高精度差分方法用于气动声学问题计算[J].上海大学学报:自然科学版,2004,10(1):59-63
    [102]罗柏华.用于波动方程计算的高阶精度紧致差分方法[J].上海大学学报:自然科学版,2009,15(2):134-141
    [103]罗柏华.用于线性波动方程的高精度显式差分算法性能分析[J].上海大学学报,2006,12(3):278-282
    [104]杨爱玲,谢翠丽,陈康民.气动声学直接数值模拟的空间差分格式分析[J].航空动力学报,2004,19(5):630-635
    [105]陈二云,赵改平,杨爱玲,卓文涛.计算气动声学中的高阶Nodal-DG方法研究[J].振动与冲击,2012,3(31):168-171
    [106]居鸿宾,沈孟育.计算气动声学的问题,方法与进展[J].力学与实践,1995,17(5):l-10
    [107]居鸿宾,钟芳源.剪切流动中涡,声,热模式划分及相互作用的弱非线性分析[J].应用数学和力学,1996,17(3):205-211
    [108]居鸿宾,沈孟育.涡,声干扰研究的某些进展[J].力学进展,1997,27(3):358-371
    [109]居鸿宾.气动声学数值模拟中无反射边界处理及声源模型的建立[J].上海交通大学学报,1998,32(7):36-39
    [110] Ju,H., Fung, K.Y.Time-domain impedance boundary conditions with mean flow effects[J]. AIAAjoumal,2001,39(9):1683-1690
    [111]柳占新,黄其柏,胡溧,袁骥轩.计算气动声学中的高精度紧致差分格式研究[J].航空动力学报,2009,24(1):83-90
    [112] Liu,Z.X., Huang, Q.B., Hu,L., Yuan,J.X. Optimized compact filtering schemes for computationalaeroacoustics[J]. International Journal for Numerical Methods in Fluids2009,60(8):827-845
    [113] Tyler, J.M., and Sofrin, T.G., Axial Flow Compressor Noise Studies[J]. SAE transactions,1962,70:309-332.
    [114] Morse, P. M., and Ingard, K. U. Theoretical acoustics[M]. McGraw-Hill,1986.
    [115] Homicz, G., and Lordi, J. A note on the radiative directivity patterns of duct acoustics modes[J].Journal of Sound and Vibra tion,1974,41(3):283–290.
    [116] Lansing, D., and Zorumski, W. Effects of wall admittance changes on duct transmission and radiationof sound[J]. Journal of Sound and Vibration,1973,27(1):85–100.
    [117] Kempton, A. J. Ray-theory to predict the propagation of broadband fan noise[C]. in6th AIAAAeroacoustics Conference, Hartford, C T,4-6June1980, AI AA-80-0968.
    [118] Kempton, A. J. Ray-theory and mode-theory predictions of intake-liner performance: A comparis onwith engine measurements[C]. in8th AIAA Aeroacoustics Conference, Atlanta, GA,11-13April1983,AIAA-83-0711.
    [119] Rienstra, S. Acoustic radiation from a semi-infinite annular duct in a uniform subsonic mean flow[J].Journal of Sound and Vibration,94(2):267-288
    [120] Nayfeh, A.H, Kaiser, J.E, and Telionis, D.P. Acoustics of aircraft engine-duct systems[J]. AIAAJournal,1975,13(2):130-153.
    [121] Rice, E.J. Multimodal Far-field acoustic radiation pattern using mode cutoff ratio[J].AIAAJournal,1978,16:906-911.
    [122] Rice, E.J., and Heidmann, M.F. Modal propagation angles in a cylindrical duct with flow and theirrelation to sound radiation[C]. AIAA PAPER79-0183,1979
    [123] Heidmann, M.F., Saule, A.V., and McArdle,J.G. Analysis of radiation patterns of interaction tonesgenerated by inlet rods in the JT15D engine[C]. AIAA PAPER79-0581,1979
    [124] Eversman, W. Mapped infinite wave envelope elements for acoustic radiation in a uniformly movingmedium[J]. Journal of Sound and Vibration,1999,224(4):665–687.
    [125] Astley, R. J., Macaulay, G. J., Coyette, J.-P., and Cremers, L. Three-dimensional wave-envelopeelements of variable order for ac oustic radiation and scattering. Part I. Formulation in the frequencydomain[J]. Journal of the Acoustical Society of America,1998,103(1):49–63.
    [126] Astley, R. J., and Hamilton, J. A. Modelling tone propagation from turbofan inlets-the Effect ofextended lip liners[C]. in8th AIAA/CEAS Aeroacoustics Conference,Breckenridge, CO,17-19June,AIAA-2002-2449.
    [127] Antwepen, B. V., Leneveu, R., Caro, S., and Ferrante, P. New advances in the use of Actran/T M fornacelle simulations[C]. in14th AIAA/CEAS Aeroacoustics Conference, Vanc ouver, Canada,5-7May2008, AIAA-2008-2827.
    [128] Astley, R., and Eversman,W. Wave envelope and infinite element schemes for fan noise radiationfrom turbofan inlets[J]. AIAA Journal,1984,22:1719-1726.
    [129] Parret, A.V., and Eversman,W. Wave envelope and finite element approximations for turbofan noiseradiation in flight[J]. AIAA Journal,1986,24:753-760.
    [130] Meyer, H.D. Effect of inlet reflections on fan noise radiation[C]. AIAA PAPER93-4427,1993
    [131] Eversman, W., A Finite Element Formulation for Aft Fan Duct Radiation[C]. AIAA PAPER No.97-1648.
    [132] ACTRAN-TM2005Users’Mannual[M]. Free Field Technologies, Louvain-la-Neuve, Belgium,2005.
    [133] Astley, R. J., Sugimoto, R., Gabard, G., and Tsuchiya, N. Finite element models for predicting thepropagation and radiation of fan noise from turbofan engines[C]. in Inter-Noise,International congresson Noise Control Engineering,Honolulu,HI,3-6Dec2006.
    [134] Hsu,C.-H.,Spence,P.L.,and Farassat,F.Ducted fan noise prediction based on a hybrid aerodynamic-aeroacoustic technique[C]. CEAS/AIAA PAPER95-075,1995
    [135] Rumsey, C.L., Biedron, R.T., Farassat, F. and Spence, P.L., Ducted Fan Engine AcousticPredictions Using a Navier Stokes Code[J]. Journal of Sound and Vibration,1998,213(4):643-664.
    [136] Myers, M.K., Boundary Integral Formulations for Ducted Fan Radiation Calculations[C]. CEAS-AIAA PAPER No.95-076, June1995.
    [137] Dunn, M. H., TBIEM3D: A Computer program for Predicting Ducted Fan Engine Noise[R].Version1.1, NASA CR-97-206232, Sept.,1997.
    [138] Lidoine, S., Batard, H., and Delnevo, A. Acoustic radiation modelling of aeroengine intake,comparison between analytical and numerical methods[C]. in7th AIAA/CEAS AeroacousticsConference, Maastricht, The Netherlands,28-30May2001, AI AA-2001-2140.
    [139] Montetagaud, F., and Montoux, S. Negatively scarfed intake: design and acoustic performance[C]. in11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA,23-25May2005, AIAA-2005-2944.
    [140] Dougherty, R.P. A wave splitting technique for nacelle acoustic propagation[C]. in3rd AIAA/CEASAeroacoustics Conference, Atlanta, GA,12-14May1997, AIAA-1997-1652.
    [141] Nark, D.M., Farassat, F., Pope, D.S., and Vatsa, V. The development of the ducted fan noisepropagation and radiation code CDUCT-LARC[C]. in9th AIAA/CEAS AeroacousticsConference,Hilton Head,SC,12-14May2003,AIAA-2003-3242.
    [142] Ozyoruk, Y., and Long, L. Computation of sound radiation from engine inlets[J]. AIAA Journal,1996,34(5):894–901.
    [143] Ahuja, V., Ozyoruk, Y., and Long, L. N. Computational simulations of fore and aft radiation fromducted fans[C].in6th AIAA/CEAS Aeroacoustic Conference, June2000. AIAA2000-1943.
    [144] Richards, S.K., Chen, X.X., and Zhang, X. COMPUTATION OF MODE RADIATION FROM AGENERIC AEROENGINE INTAKE[C]. European Congress on Computational Methods in AppliedSciences and Engineering, ECCOM AS2004
    [145] Richards, S. K., Chen, X., and Zhang, X. Parallel computation of3D acoustic radiation from anengine intake[C]. in11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA,23-25May2005,AI AA-2005-2947.
    [146] Huang, X., Zhang, X., and Richards, S. K. Adaptive Mesh Refinement Computation of AcousticRadiation from an Engine Intake[J]. Aerospace Science and Technology,2008,12:418-426.
    [147] Tam, C. K. W., Parrish,S.A., Envia,E., and Chien,E.W. Physics of Acoustic Radiation from Jet EngineInlets[C]. in18th AIAA/CEAS Aeroacoustics Conference,04-06June2012, Colorado Springs,CO,AIAA2012-2242
    [148] Stanescu, D., Ait-Ali-Yahia, D., Habashi, W.G., and obichaud, M. Multidomain SpectralComputations of Sound Radiation from Ducted Fans[J]. AIAA Journal,1999,37:296-302.
    [149] Ait-Ali-Yahia, D., Stanescu, D., Robichaud, M.R and Habashi, W.G., Spectral Element GridGeneration and Nonlinear Computations for Noise Radiation from Aircraft Engines[C]. AIAA PAPER99-1832,1999.
    [150] Gabard, G. and Astley, R., Theoretical model for sound radiation from annular jet pipes: FAR-andnear-field solutions[J]. Journal of Fluid Mechanics,2006,549:315-341.
    [151] Munt, R. M. The interaction of sound with a subsonic jet issuing from a semi-infinite cylindricalpipe[J]. J. Fluid Mechanics,1977,83(4):609-640.
    [152] Munt, R. M. Acoustic transmission properties of a jet pipe with subsonic jet flow: I. the cold jetreflection coefficient[J]. J. Sound Vib.,1990,142(3).
    [153] Rienstra, S. Acoustic radiation from a semi-infinite annular duct in a uniform subsonic mean flow[J].J. Sound Vib.,1984,94(2):267-288.
    [154] Bailly, C., and Juve, D. Numerical solution of acoustic propagation problems using linearized Eulerequations[J]. AIAA J.,2000,38(1):22-29.
    [155] Bogey, C., Bailly, C., Juve, D. Computation of flow noise using source terms in linearized Euler'sequations[J]. AIAA Journal,2002,40:235-243.
    [156] Zhang, X., Chen X X, Morfey C L, Nelson P A. Computation of fan noise radiation from a realisticengine exhaust geometry with flow[C].9th AIAA/CEAS Aeroacoustics Conference, AIAA PAPER2003-3267,2003.
    [157] Richards, S.K., Chen, X.X., Huang, X., and Zhang, X. Computation of fan noise radiation through anengine exhaust geometry with flow[J]. Aeroacoustics,2007,6(3):223-241.
    [158] Hu F Q, Li X D, Li X Y, Jiang M. Time Domain Wave Packet method and suppression of instabilitywaves in aeroacoustic computations[C]. AIAA PAPER2011-2891,2011
    [159] Desquesnes, G. Euler Equations in Perturbation2.5-D: a New System for Acoustic ModalPropagation[C].14th AIAA/CEAS Aeroacoustics Conference5-7May2008, Vancouver, BritishColumbia Canada,AIAA2008-2822
    [160] Redonnet, S., Mincu, C., Manoha, E. Computational aeroacoustics of realistic co-axial engines[C].AIAA PAPER (2008)2008–2826
    [161] Agarwal A, Morris P, Mani R. The calculation of sound propagation in nonuniform flows: suppressionof instability waves[J]. AIAA Journal,2004,1(42):80-88.
    [162] Pierce A D. Wave Equation for Sound in Fluids with Unsteady Inhomogeneous Flow[J]. Journal of theAcoustical Society of America,1990,6(87):2292-2299.
    [163] Agarwal, A., Morris, P., and Mani, R., Calculation of sound propagation in nonuniform flows:Suppression of instability waves[J]. AIAA Journal,2004,42:80-88.
    [164] Zhao, Y., and Morris, P.J. The prediction of fan exhaust noise propagation[C].in11th AIAA/CEASAeroacoustic Conference,Monterey,CA,23-25May2005,AIAA-2005-2815
    [165] Rao, P.P., and Morris, P.J. Use of finite element methods in frequency domain aeroacoustics[J]. AIAAJournal,2006,44(7):1643-1652.
    [166] Ozyoruk, Y., Alpman, E., Ahuja, V., and Long, L.N. Frequency-domain prediction of turbofan noiseradiation[J]. Journal of Sound and Vibration,2004,270:933-950.
    [167] Lan, J.H., Guo, Y., and Breard, C. Validation of acoustic propagation code with JT15D static andflight test data[C].in10th AIAA/CEAS Aeroacoustic Conference,Manchester,UK,10-12May2004,AIAA-2004-2986
    [168] Lan, J.H., and Breard, C.Validation of3D acoustic propagation code with analytical and experimentalresults[C].in11th AIAA/CEAS Aeroacoustic Conference,Monterey,CA,23-25May2005,AIAA-2005-2901
    [169] Nark, D. M., Pope, D. S., and Farassat, F. The development of the ducted fan noise propagation andradiation code CDUCT-LARC[C]. In:9th CEAS/AIAA Aeroacoustics Conference and exhibit, HiltonHead, South Carolina,12-14May2003, AIAA PAPER2003-3242, pp.1-16.
    [170] Mendoza, J. M. and Lan, J. Prediction of aft fan duct lining attenuation for a turbofan engine[C]. In:9th CEAS/AIAA Aeroacoustics Conference and exhibit, Hilton Head, South Carolina,12-14May2003, AIAA PAPER2003-3241, pp.1-11.
    [171] Manera, J., Leneveu, R., Caro, S., and Mardjono, J. BroadBand turbomachinery noise: exhaust noisecomputations with ACTRAN/TM and ACTRAN/DGM[C]. in15th AIAA/CEAS AeroacousticsConference, M iami, FL,11-13May2009, AIAA-2009-3292.
    [172] Schiltz, B., Leneveu, R., Caro, S., Druon, Y., and Mosson, A. Exhaust noise prediction of realistic3Dlined turbofans submitted to strong shear layers[C]. in15th AIAA/CEAS Aeroacoustics Conference,Miami, FL,11-13May2009, AIAA-2009-3416.
    [173] Leneveu, R., Schiltz, B., Laldjee, S., and Caro, S. Performance of a DGM scheme for LEE andapplications to aircraft engine exhaust noise[C]. in14th AIAA/CEAS Aeroacoustics Conference,Vancouver, Canada,5-7M ay2008, AIAA-2008-2884.
    [174] Sugimoto, R., and Astley, R.J. Modelling of flow effects on propagation and radiation from bypassducts[C]. AIAA paper2005-3011,11'th AIAA/CEAS Aeroacoustics Conference,23-25May2005Monterey, CA,2005.
    [175] Sugimoto, R. and Astley, R. Validation and Application of a Hybrid Prediction Scheme for BypassDuct Noise[C].12th AIAA/CEAS Aeroacoustics Conference,8-10May2006, Cambridge, MA, USA,2005, AIAA pap er2006-2520.
    [176] Sugimoto, R., Astley, R. J., Gabard, G., and Tsuchiya, N. Three-dimensional effects of geometries andacoustic treatments on bypass-duct noise[C]. in13th AIAA/CEAS AeroacousticsConference,Rome,Italy,7-9May2007,AIAA2007-3549
    [177] McAleer, C., Astley, R. J., Holland, K., Sugimoto, R., and Kempton, A. Fan noise propagation withincurved bypass ducts with3D features[C]. in14th AIAA/CEAS Aeroacoustics Conference, Vancouver,Canada,5-7May2008, AIAA-2008-2878.
    [178] Ewert, R., and Schr der, W., Acoustic Perturbation Equations Based on Flow Decomposition viaSource Filtering[J]. Journal of Computational Physics,2003,188(2):365–398.
    [179] Bauer, M., Dierke, J., and Ewert, R. Application of a discontinuous Galerkin method to predictairframe noise[C]. AIAA PAPER2009-3175,15th AIAA/CEAS Aeroacoustics Conference, Miami,USA,2009.
    [180] Huang X, Chen X X, Ma Z K, Zhang X. Efficient computation of spinning modal radiation through anengine bypass duct[J]. AIAA Journal,2008,6(46):1413-1423.
    [181] Rice, E. J., Acoustic Liner Optimum Impedance for Spinning Modes with Mode Cutoff Ratio asDesign Criterion[C]. AIAA PAPER76-516,1979.
    [182] Watson, W. R., and Robinson, J. H., Design and Attenuation Properties of Periodic CheckerboardLiners[C]. AIAA PAPER2003-3309,2003.
    [183] Motsinger, R. E., Kraft, R. E., and Zwick, J. W. Design of optimum acoustic treatment for rectangularducts with flow[J]. American Society of Mechanical Engineers,1976, no.76-GT-113,15–20.
    [184] Hamilton J. A., and Astley, R. J., Theoretical Optimisation of an Intake Lip Liner for a A320/CFM56Flight Tests[R]. Technical Report D1.2-3.5-11, SILENCER Consortium, November2002.
    [185] Lafronza, L., McAlpine, A., Keane, A.J., and Astley, R.J. Response surface method optimization ofuniform and axially segmented duct acoustics liners[J]. Journal of Aircraft,2006,43(4):1089-1102.
    [186] Lafronza, L., McAlpine, A., Keane, A. J., and Astley, R. J. Computer-aided liner optimisation forbroadBand noise[C]. in10th AIAA/CEAS aeroacoustics conference, Manchester, United Kingdom,10-12May2004, AIAA-2004-3029.
    [187] Robinson, J., and Watson, W. Performance of a checkerboard liner with uncertain impedances[C]. in11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA,23-25May2005, AIAA-2005-2850.
    [188] Law, T., and Dowling, A. Optimization of traditional and blown liners for a silent aircraft[C]. in12thAIAA/CEAS Aeroacoustics Conference, Cambridge, MA,8-10, May2006, AIAA-2006-2525.
    [189] Law, T. R., and Dowling, A. P. Optimisation of annular and cylindrical liners for mixed exhaust aeroengines[C]. in13th AIAA/CEAS Aeroacoustics Conference, Rome, Italy,7-9May2007, AIAA-2007-3546.
    [190] Copiello, D., and Ferrante, P. Multi-objective optimization of ‘true’ zero-SPLice liners for aero-engineintakes[C]. in15th AIAA/CEAS Aeroacoustics Conference, Miami, FL,11-13M ay2001, AIAA-2009-3107.
    [191] Brooks, C.J. Prediction and control of sound propagation in turbofan engine bypass ducts[D]. EngDThesis,Institute of Sound and Vibration Research,University of Southampton,UK,September2007
    [192] Law, T.R., and Dowling, A.P. Reduction of Aeroengine tonal noise using scattering from a multi-segmented liner[C]. in14th AIAA/CEAS Aeroacoustic Conference,Vancouver,Canada,5-7May2008,AIAA-2008-2978
    [193] Watson, W.R., Robinson, J.H., Jones, M.G., and Parrott, T.L. Computational study of optimum andoff-design performance of checkerboard liners[C]. in10th AIAA/CEAS AeroacousticConference,Manchester,UK,10-12May2004,AIAA-2004-3030.
    [194] Reimann, C.A., Tinetti, A.F., and Dunn, M.H. Engine liner optimization using the fast scatteringcode[C].in13th AIAA/CEAS Aeroacoustics Conference,Rome,Italy,7-9May2007,AIAA-2007-3494.
    [195] Achunche. ACOUSTIC OPTIMISATION AND PREDICTION OF sound propagation in turbofanengine ducts[D]. EngD Thesis,Institute of Sound and Vibration Research,University ofSouthampton,UK, January2010
    [196] Zheng S, Zhuang M, Thiele F. Noise prediction and optimization system for turbofan engine inlet ductdesign[C].10th AIAA/CEAS Aeroacoustics Conference, AIAA2004-3031,2004.
    [197] Pan F L, Coupland J. An Integrated Optimization System for Low Noise Nacelle Design[C].11thAIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference)23-25May2005,Monterey, California, AIAA2005-2945.
    [198] Sugimoto R, Astley R J. Validation and application of a hybrid prediction scheme for bypass ductnoise[C].12th AIAA/CEAS Aeroacoustics Conference,8-10May2006, Cambridge, MA, USA,AIAA PAPER2006-2520.
    [199] McAleer C, Astley R J, Holland K, Sugimoto R, Kempton A. Fan Noise Propagation within CurvedBypass Ducts with3D Features[C].14th AIAA/CEAS Aeroacoustics Conference (29th AIAAAeroacoustics Conference)5-7May2008, Vancouver, British Columbia Canada, AIAA2008-2878.
    [200] Rumpfkeil M P, Zingg D W. A hybrid algorithm for Far-field noise minimization[J]. Computers&Fluids,2010,39:1516-1528.
    [201] Cao Y, Stanescu D. Shape optimization for noise radiation problems[J].Computers&Mathematicswith Applications,2002,44:1527,-1537.
    [202] Stanescu D, Mathelin L, Hussaini M Y. Optimal Acoustic Design of Fan inlets for Tone NoiseRadiation[C].9th AIAA/CEAS Aeroacoustics Conference and Exhibit12-14May2003, Hilton Head,South Carolina, AIAA2003-3269
    [203] Richards, S. K., Zhang, X., Chen,X. X., and Nelson, P. A., Evaluation of Non-Reflecting BoundaryConditions for Duct Acoustic Computation[J]. Journal of Sound and Vibration,2004,270(3):539–557.
    [204] Overden, N. C., Rienstra, S. W. Mode-matching strategies in slowly varying engine ducts[C]. AIAAPAPER2003–3139(2003)
    [205] Tam, C. K. W., and Kurbatskii, K. A. Multi-size-mesh Multi-time-step Dispersion-relation-preservingScheme for Multiple-Scales Aeroacoustics Problems[J]. International Journal of Computational FluidDynamics,2003,17(2):119-132.
    [206] Visbal, M. R., and Gaitonde, D. V. Very High-Order Spatially Implicit Schemes for ComputationalAcoustics on Curvilinear Meshes[J]. Journal of Computational Acoustics,2001,9(4):1259-1286.
    [207] Hixon, R., and Mankbadi, R. R. Validation of a High-Order Prefactored Compact Scheme onNonlinear Flows With Complex Geometries[R].3rd Computational aeroacoustics(CAA) Workshop onBenchmark Problems,2000.
    [208] Kennedy, C. A., and Carpenter, M. H., Comparison of Several Numerical Methods for Simulation ofCompressible Shear Layers[R]. NASA TP3484, Dec.1997.
    [209] Farassat, F. Introduction to Generalized Functions With Applications in Aerodynamics andAeroacoustics[R].NASA Technical PAPER3428,1997
    [210] di Francescantonio, P. A new boundary integral formulation for the prediction of sound radiation[J].Journal of Sound and Vibration,1997,2024:491–509
    [211] Farassat, F.&Succi, G.P.,1983, The prediction of helicopter discrete frequency noise[J]. Vertica,7:309-320.
    [212] GRESCHNER B, Yu C, ZHENG S, ZHUANG M, et al. Knowledge based airfoil aerodynamic andaeroacoustic design[C].11th AIAA/CEAS Aeroacoustics Conference. AIAA PAPER2005-2968;2005:1-11
    [213] Gaitonde, D. V., and Visbal, M. R.(1999). Further development of a Navier-Stokes solution procedurebased on higher-order formulas[C]. AIAA PAPER No.1999–0557.
    [214] Tam, C.K.W., Z. Dong. Wall boundary conditions for high-order finite-difference schemes incomputational aeroacoustics[J]. Theoretical and Computational Fluid Dynamics,1994,6(5):303-322.
    [215] Jameson A, Pierce N, Martinelli L. Optimum aerodynamic design using the Navier-Stokesequations[J]. Theor. Comput. Fluid Dyn.1998,1(10):213-237.
    [216] Nadarajah S K, Jameson A. Optimal control of unsteady flows using a time accurate method[C].AIAA PAPER2002-5436,2002.
    [217] Bailly, C., and Juve, C. Numerical Solution of Acoustic Propagation Problems Using linearizedEuler's Equations[C].AIAA-98-2267.
    [218] Nadarajah, S., Jameson, A., and Alonso, J. An Adjoint Method for the Calculation of RemoteSensitivities in Supersonic Flow[C]. AIAA,2002-0261,2002.
    [219] Nadarajah, S., Soucy, O., and Balloch, C. Sonic Boom Reduction via Remote Inverse AdjointApproach[C]. AIAA,2007-56,2007.
    [220] Reuther. J. Aerodynamic shape optimization using control theory. Ph. D. Dissertation, University ofCalifornia, Davis, Davis, CA, June1996.
    [221] Hicks, R. M. and Henne, P. A. Wing design by numerical optimization[J]. Journal of Aircraft,1978,15:407–412.
    [222] Burgreen, G.W., and Baysal, O. Three-dimensional aerodynamic shape optimization of wings usingsensitivity analysis[C]. In:32nd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January10-13,1994, AIAA PAPER94-0094, pp.1-12.
    [223] Gill, P. E., Murray, W., and Wright, M. H., editors. Practical Optimization[M]. Academic Press,1981.
    [224] Appel J.R. and Gunzburger M.D. Sensitivity calculation in flows with discontinuities[C].14th AIAAApplied Aerodynamics Conference, Vol.2, pp.721–729, AIAA–96–2471–CP. New OrleaNS, LA,17-20June1996.
    [225] Kim S., Alonso J.J., and Jameson A. A Gradient accuracy study for the adjoint-based Navier-Stokesdesign method[C]. AIAA PAPER99-0299,1999.
    [226] Nadarajah S. and Jameson A. A comparison of the continuous and discrete adjoint approach toautomatic aerodynamic optimization[C]. AIAA PAPER2000-0667,2000.
    [227] Kim S., Alonso J.J., and Jameson A. Design optimization of high-lift configuratioNS using a viscouscontinuous adjoint method[C]. AIAA PAPER2002-0844,2002.
    [228] Hu H. Development of a sensitivity derivative version of the FPX CFD code via automaticdifferentiation[J]. Advances in Engineering Software,1999,30(4):273–279.
    [229] Green L.L., Newman P.A., and Haigler K.J. Sensitivity derivatives for advanced CFD algorithm andviscous modeling parameters via Automatic Differentiation[J]. Journal of Computational Physics,1996,125(2):313–324.
    [230] Anderson W.K., Newman J.C., Whitfield D.L., and Nielsen E.J. Sensitivity analysis for Navier-Stokesequations on unstructured meshes using complex variables[J]. AIAA Journal,2001,39(1):56–63.
    [231] Baumeister, K. J., and Horowitz, S. J. Finite element-integral acoustic simulation of JT15D turbofanengine[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, Transactions of theASME,1984,106:405-413.
    [232] Lidoine, S., Batard, H., Troyes, S., Delnevo, A., and Roger, M., Acoustic radiation modelling ofAeroengine intake: comparison between analytical and numerical methods[C].7th AIAA/CEASAeroacoustics Conference, Maastricht (Netherlands),28-30May2001, AIAA PAPER2001-2140.
    [233] Arnold F, Tapken U, Bauers R, Zillmann J. Turbomachinery exhaust noise radiation experiments—Part1: polar directivity measurements[C].14th AIAA/CEAS Aeroacoustics Conference, Vancouver,Canada, AIAA2008-2857,2008.
    [234] Tapken U, Bauers R, Arnold F, Zillmann J. Turbomachinery exhaust noise radiation experiments—Part2: in-duct and Far-field mode analysis[C].14th AIAA/CEAS Aeroacoustics Conference,Vancouver, Canada, AIAA2008-2858,2008.
    [235] Iob A, Arina R, SchiPani C. Frequency-Domain Linearized Euler Model for Turbomachinery NoiseRadiation Through Engine Exhaust[J]. AIAA JOURNAL,2010,4(48):848-858.
    [236] Redonnet, S. Mincu, C. and Manoha, E. Computational aeroacoustics of realistic Co-Axialengines[C]. In:14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference),Vancouver, British Columbia Canada,5-7May2008, AIAA PAPER2008-2826, pp.1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700