UWB系统中时钟电路的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带系统由于其本身的突出优点,具有广阔的应用前景。本论文以应用于多边带正交频分复用超宽带无线接收机的频率综合器为出发点,从几个方面对频率综合器进行了深入的研究。
     本论文首先回顾了超宽带无线通信系统的发展历史,对多边带正交频分复用超宽带系统做了基本的介绍,推导了该协议对于频率综合器的性能要求,对各种频率综合器体系结构的优缺点进行了分析和比较,并在此基础上确定了最适合的体系结构为双锁相环路结构。
     其次介绍了频率综合器系统中四阶锁相环路的系统设计,给出了锁相环路系统模型及系统参数设计流程,讨论了环路的稳定性与环路带宽的关系,给出了锁相环路的各模型噪声模型及总的输出相位噪声,并提出了一个应用在锁相环中的自适应频率校准电路的设计方法。
     接着对应用在分数分频锁相环中的ΣΔ调制器进行了较为深入的理论分析,内容包括了量化噪声分析,环路带宽要求,电荷泵电流失配对输出相位噪声的影响,以及减小ΣΔ调制器量化噪声的方法。这里给出的分析对电路设计者具有较强的指导作用。
     然后对锁相环路中最主要的电路模块,即压控振荡器的设计进行了各方面的分析和讨论。内容主要包括以下几个方面,即电路构成,性能参数,螺旋电感与可变电容,相位噪声模型,相位噪声优化技术,并给出了压控振荡器正交信号的产生方法。
     论文最后给出了一个应用于MB-OFDM超宽带系统中“模式一”3子带快速跳频频率综合器的设计,并采用0.13μm CMOS工艺进行流片,给出了芯片照片和测试结果,测试结果表明2.112GHz和3.96GHz两个锁相环输出参考频率杂散均小于-60dBc,在1MHz频偏处的点相位噪声均小于-110dBc/Hz,频率综合器输出带内杂散小于-50dBc,带外杂散小于-30dBc,而且其它各项输出测试性能均满足系统指标要求。在此基础上又给出了一个8子带快速跳频频率综合器的系统构架和电路实现。
The ultra-wideband (UWB) system has expansive market applications due to itsoutstanding advantages.A deep research of monolithic CMOS frequency synthesizerfor MB-OFDM UWB receiver is presented in several aspects in this thesis.
     Firstly,a review of the history about UWB communication development is given.The fundamentals of MB-OFDM UWB system are introduced.The designspecifications of the frequency synthesizer are deduced.Based on the analysis andcomparison of different architectures,the dual-PLL architecture is selected to be themost approximate one.
     Secondly,system design of the fourth-order phase-locked loop is introduced.ThePLL system model and parameter design flow are given.The relationship of the loopstability and open loop bandwidth is discussed.Each individual noise model of thePLL building blocks and the overall phase noise at the PLL output are presented.Anadaptive frequency calibration (AFC) design method for PLL is proposed.
     Thirdly,the profound theoretical analysis of theΣΔmodulator for thefractional-N PLL is presented,which includes theΣΔquantization noise,therequirement of the PLL bandwidth,the impact of the charge pump current mismatchto phase noise,and the method of suppressing theΣΔquantization noise.The analysisgiven here has a strong guidance to the circuit designers.
     Fourthly,the design of the voltage-controlled oscillator,which is the mostimportant building block in PLL,is analyzed and discussed.The content incorporatesthe circuit architecture,performance parameters,spiral inductor and varactor,thephase noise model,and the phase noise optimizing technique.Then the quadraturesignal generation technique is given.
     Finally,the design of a fast hopping CMOS frequency synthesizer for“mode 1”MB-OFDM UWB system in 0.13μm CMOS process is presented.The die photographis given.The experimental results show that the reference sidebands of both PLLs(2.112GHz and 3.96GHz) are smaller than -60dBc.The spot phase noise is betterthan -ll0dBc/Hz on 1MHz frequency offset.The in-band spur is smaller than-30dBc and the out-of-band spur is smaller than -50dBc.Other measurementperformances also meet the design specifications.Then the system architecture andcircuit design of another fast hopping 8-band frequency synthesizer are presented.
引文
[1] B.Razavi,T.Aytur,C.Lam,et al.,“A UWB CMOS transceiver,” IEEE J.Solid-State Circuits,vol.40,no.12,pp.2555-2561,Dec.2005.
    [2] Federal Communications Commission,“Revision of Part 15 of the commission's rules regarding ultrawideband transmission systems,FIRST REPORT AND ORDER,” ET Docket 98-153,FCC 02-48,pp.1-118,Febuary 14,2002.
    [3] IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a),IEEES02.15.3a [Online].Available:http://www.ieee802.org/15/pub/TG3a.html.
    [4] A.Batra et al.,“Multi-Band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a,” doc.IEEE P802.15-03/268r3,Mar.2004.
    [5] Chien-Chih Lin, Chorng-Kuang Wang, “A Regenerative Semi-Dynamic Frequency Divider for Mode-1 MB-OFDM UWB Hopping Carrier Generation,” in IEEE Int.Solid-State Circuits Conf..(ISSCC) Dig.Tech.Papers,Feb.2005,pp.206-207.
    [6] Zheng Yongzheng,Li Weinan,Xia Lingli,et al.,“A 3.96GHz Phase-Locked Loop for Mode-1 MB-OFDM UWB Hopping Carrier Generation,” Chinese Journal of Semiconductor,2009.
    [7] Zheng Yongzheng,Xia Lingli,Li Weinan,et al.,“A Fast-Hopping 3-Band CMOS Frequency Synthesizer for MB-OFDM UWB System,” Chinese Journal of Semiconductor,2009.
    [8] A.Rokita,“Direct analog synthesis modules for an X-band frequency source,” International Conference on Microwaves and Radar,vol.1,pp.63-68,May 1998.
    [9] A.Madisetti,A.Kwentus,and A.Willson,“A 100-MHz,16-b,direct digital frequency synthesizer with 100-dBc spurious-free dynamic range,” IEEE J.Solid-State Circuits,vol.34,pp.1034-1043,Aug.1999.
    [10] D.Calbaza and Y.Savaria,“Direct digital frequency synthesis of low-jitter clocks,” IEEE J.Solid-State Circuits,vol.36,pp.570-572,Mar.2001.
    [11] F.Gardner,“Charge-pump phase-lock loops,” IEEE Trans.on Commun.,vol.28,pp.1849-1858,Nov.1980.
    [12] T.Riley,M.Copeland,and T.Kwasniewski,“Delta-sigma modulation in fractional-N frequency synthesis,” IEEE J.Solid-State Circuits,vol.28,pp.553-559,May 1993.
    [13] Volodymyr Kratyuk,Pavan Kumar Hanumolu,Un-Ku Moon,et al.,“A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy,” IEEE Trans.on Circuits and Systems II:Express Briefs,vol.54,no.3,pp.247-251,Mar.2007.
    [14] G.Chien and P.Gray,“A 900MHz local oscillator using a DLL-based frequency multiplier for PCS applications,” IEEE J.Solid-State Circuits,vol.35,pp.1996-1999,Dec.2000.
    [15] D.Foley and M.Flynn,“CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer and temperature-compensated tunable oscillator,” IEEE J.Solid-State Circuits,vol.36,pp.417-423,Mar.2001.
    [16] Cicero S.Vaucher,“An adaptive PLL tuning system architecture combing high spectral purity and fast settling time,” IEEE J.Solid-State Circuits,vol.35,pp.490-502,Apr.2000.
    [17] Hui Zheng and Howard C.Luong,“A 1.5 V 3.1 GHz-8 GHz CMOS Synthesizer for 9-Band MB-OFDM UWB Transceivers,” IEEE J.Solid-State Circuits,vol.42,no.6,pp.1250-1260,Jun.2007.
    [18] Geum-Young Tak,Seok-Bong Hyun,Tae Young Kang,et al.,“A 6.3-9-GHz CMOS Fast Settling PLL for MB-OFDM UWB Applications,” IEEE J.Solid-State Circuits,vol.40,no.8,pp.1671-1679,Aug.2005.
    [19] D.Leenaerts et al.,“A SiGe BiCMOS 1 ns fast hopping frequency synthesizer for UWB radio,” in IEEE Int.Solid-State Circuits Conf.(ISSCC) Dig.Tech.Papers,Feb.2005,pp.202-203.
    [20] Remco C.H.van de Beek et al.,“A Fast-Hopping Single-PLL 3-Band MB-OFDM UWB Synthesizer,” IEEE J.Solid-State Circuits,vol.41,no.7,pp.1522-1529,Jul.2006.
    [21 ] Jri Lee,“A 3-to-8-GHz Fast-Hopping Frequency Synthesizer in 0.18-μm CMOS Technology,” IEEE J.Solid-State Circuits,vol.41,no.3,pp.566-573,Mar.2006.
    [22] A.Ismaii and A.Abidi,“A 3.1- to 8.2-GHz Zero-IF Receiver and Direct Frequency Synthesizer in 0.18-μm SiGe BiCMOS for Mode-2 MB-OFDM UWB Communication,” IEEE J.Solid-State Circuits,vol.40,no.12,pp.2573-2582,Dec.2005.
    [23] Che-Fu Liang,Shen-Iuan Liu,Yen-Homg Chen,et al.,“A 14-band Frequency Synthesizer for MB-OFDM UWB Application,” in IEEE Int.Solid-State Circuits Conf.(ISSCC) Dig.Tech.Papers,Feb.2006.
    [24] Tai-You Lu,Wei-Zen Chen,et al.,“A 3-to-10GHz 14-Band CMOS Frequency Synthesizer with Spurs Reduction for MB-OFDM UWB System,” in 1EEE lnt.Solid-State Circuits Conf.(ISSCC) Dig.Tech.Papers,Feb.2008.
    [25] Chinmaya Mishra, Alberto Valdes-Garcia, Faramarz Bahmani, et al.,“Frequency Planning and Synthesizer Architectures for Multiband OFDM UWB Radios,” IEEE Trans.On Microwave Theory and Tech.,vol.53,no.12,pp.3744-3756,Dec.2005.
    [26] A.Batra,J.Balakrishnan,G.Roberto Aiello,et al.“Design of a Multiband OFDM System for Realistic UWB Channel Environments” IEEE Trans.on Microwave Theory and Tech.,vol.52,no.9,pp.2123-2138,Sep.2004.
    [27] Kari Stadius et al.,“Multitone Fast Frequency-Hopping Synthesizer for UWB Radio,” IEEE Trans.Microw.Theory Tech.,vol.55,no.8,pp.1633-1641.
    [28] Hamid R.Rategh,Hirad Samavati,and Thomas H.Lee,“A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5-GHz Wireless LAN Receiver,” IEEE J.Solid-State Circuits,vol.35,no.5,pp.780-787,May 2000.
    [29] Y.Akamine,M.Kawabe,K.Hori,et al.,"ΔΣ PLL Transmitter With a Loop-Bandwidth Calibration System,“ IEEE J.Solid-State Circuits,vol.43,no.2,pp.497-506,Feb.2008.
    [30] Dean Banerjee,”PLL performance,Simulation,and Design [DB/OL],“ Fourth Edition,2006.
    [31] Pavan Kumar Hanumolu,Merrick Brownlee,Kartikeya Mayaram,et al.,”Analysis of Charge-Pump Phase-Locked Loops,“ IEEE Trans.On Circuits and Systems-l:regular papers,vol.51,no.9,pp.1665-1674,Sep.2004.
    [32] Lin Jia,Kiat Seng Yeo,Jian Guo Ma,et al.,”Noise transfer characteristics and design techniques of a frequency synthesizer,” Analog Integr Circ Sig Process (2007) 52:pp.89-97.
    [33] Paul R.Gray,Paul J.Hurst,Stephen H.Lewis,and Robert G.Meyer,Analysis and Design of Analog Integrated Circuits,4th Edition,John Wiley & Sons,Inc.2001.
    [34] C.Lain and B.Razavi,“A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-μm CMOS technology,” IEEE J.Solid-State Circuits,vol.35,pp.788-794,May 2000.
    [35] Ting Wu,P.Hanumolu,K.Mayaram,et al.,“Method for a Constant Loop Bandwidth in LC-VCO PLL Frequency Synthesizers,” IEEE J.Solid-State Circuits,vol.44,no.2,pp.427-435,Feb.2009.
    [36] Woogeun Rhee,“Design of high performance CMOS charge pumps in phase locked loop,” Proc.IEEE Int.Symp.Circuits and Systems,1999,vol.1,pp.545-548.
    [37]毕查德·拉扎维著,陈贵灿,程军,张瑞智译.模拟CMOS集成电路设计.西交通大学出版社,2002.
    [38] A.V.Oppenehim,A.S.Willsky,and S.H.Nawab,Signals and Systems,2nd ed.Englewood Cliffs,N J:Prentice-Hall,1997,p.205.
    [39] H.Arora,N.Klemmer,“Phase-Noise Driven System Design of Fractional-N Frequency Synthesizers and Validation With Measured Results,” IEEE Computer Society Annual Symposium on VLSI,2007.ISVLSI '07.
    [40] Floyd M.Gardner,PHASELOCK TECHNIQUES,3rd Edition,New York:Wiley,2004,p.374.
    [41] Han-il Lee,Je-Kwang Cho,Kun-Seok Lee,et al.,“A Fractional-N Frequency Synthesizer Using a Wide-Band Integrated VCO and a Fast AFC Technique for GSM/GPRS/WCDMA Applications,” IEEE J.Solid-State Circuits,vol.39,no.7,pp.1164-1169,Jul.2004.
    [42] Tsung-Hsien Lin and Yu-Jen Lai,“An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS PLL,” IEEE J.Solid-State Circuits,vol.42,no.2,pp.340-349,Feb.2007.
    [43] Che-Fu Liang,Shin-Hua Chen,and Shen-Iuan Liu,“A Digital Calibration Technique for Charge Pumps in Phase-Locked Systems,” IEEE J.Solid-State Circuits,vol.43,no.2,pp.390-398,Feb.2008.
    [44] Verilog-A Language Reference Manual:Analog Extensions to Verilog-HDL,version 1.0. Open Verilog International, 1996. Available at:http://www.eda.org/verilog-ams.
    [45] Brian Miller,and Robert J.Conley,“A Multiple Modulator Fractional Divider,” IEEE TRANSACTIONS ON INSTR UMENTA TION AND MEASUREMENT,vol.40,no.3,pp.578-583,Jun.1991.
    [46] K.Shu et al.,“A comparative study of digital ΣΔ modulators for fractional-N synthesis,” in Proc.IEEE Int.Conf.Electron.,Circuits Syst.,2001,pp.1391-1394.
    [47] Woogeun Rhee,Bang-Sup Song and Akbar Ali,“A 1.1-GHz CMOS Fractional-N Frequency Synthesizer with a 3-b Third-Order ΔΣ Modulator,” IEEE J.Solid-State Circuits,vol.35,no.10,pp.1453-1460,Oct.2000.
    [48] Manoj Gupta and Bang-Sup Song,“A 1.8-GHz Spur-Cancelled Fractional-N Frequency Synthesizer With LMS-Based DAC Gain Calibration,” IEEE J. Solid-State Circuits,vol.41,no.12,pp.2842-2851,Dec.2006.
    [49] Bram De Muer,and Michiel S.J.Steyaert,“On The Analysis of ΔΣ Fractional-N Frequency Synthesizers for High-Spectral Purity,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: ANALOG AND DIGITAL SIGNAL PROCESSING,vol.50,no.11,pp.784-793,Nov.2003.
    [50] Yu-Che Yang,Shih-An Yu,Yu-Hsuan Liu,et al.,“A Quantization Noise Suppression Technique for ΔΣ Fractional-N Frequency Synthesizers," IEEE J.Solid-State Circuits,vol.41,no.11,pp.2500-2511,Nov.2006.
    [51 ] Behzad Razavi,“RF Microelectronics,” New York:Prentice Hall,1998,pp.271.
    [52] Hyungki Huh,Yido Koo,Kang-Yoon Lee,et al.,“Comparison Frequency Doubling and Charge Pump Matching Techniques for dual-Band ΔΣ Fractional-N Frequency Synthesizer,” IEEE J.Solid-State Circuits,vol.40,no.11,pp.2228-2235,Nov.2005.
    [53] S.Pamarti,L.Jansson,and I.Galton,“A wideband 2.4 GHz Delta-Sigma fractional-N PLL with 1 Mb/s in-loop modulation,” IEEE J.Solid-State Circuits,vol.39,no.1,pp.49-62,Jan.2004.
    [54] E.Temporiti et al.,“A 700-kHz bandwidth ΣΔ fractional synthesizer with spurs compensation and linearization techniques for WCDM Aapplications,” IEEE J.Solid-State Circuits,vol.39,no.9,pp.1446-1454,Sep.2004.
    [55] A.Hajimiri and T.H.Lee,“Design issues in CMOS differential LC oscillators,” IEEE J.Solid-State Circuits,vol.34,pp.717-724,May 1999.
    [56] Y.K.Koutsoyannopoulos and Y.Papananos,“Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans.Circuits and Systems,II,Analog and Digital Signal Processing,vol.47,pp.699-713,Aug.2000.
    [57] J.R.Long and M.A.Copeland,“The modeling,characterization,and design of monolithic inductors for silicon RF IC's,” IEEE J.Solid-State Circuits,vol.32,pp.357-369,Mar.1997.
    [58] C.P.Yue,S.S.Wang,“On-chip spiral inductors with patterned ground shields for Si-based RF IC's,” IEEE J.Solid-State Circuits,vol.33,pp.743-751,May 1998.
    [59] Ryan Lee Bunch and Sanjay Raman,“Large-Signal Analysis of MOS Varactors in CMOS Gm LC VCOs,” IEEE J.Solid-State Circuits,vol.38,no.8,pp.1325-1332,Aug.2003.
    [60] D.B.Leeson,“A simple model of feedback oscillator noises spectrum,” Proceedings of the IEEE,vol.54,no.2,pp.329-330,1966.
    [61] J.J.Real,A.A.Abidi,“Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference,pp.569-572,2000.
    [62] A.Hajimiri and T.H.Lee,“A General Theory of Phase Noise in Electrical Oscillators” IEEEJ.Solid-State Circuits,vol.33,pp.179-194,Feb.1998.
    [63] A.Hajimiri and T.H.Lee,“Corrections to “A General Phase Noise Theory in Electrical Oscillators”,” IEEE J.Solid-State Circuits,vol.33,no.6,p.928,Jun.1998.
    [64] Emad Hegazi,Henrik Sj(?)land,and Asad A.Abidi,“A Filtering Technique to Lower LC Oscillator Phase Noise,” IEEE J.Solid-State Circuits,vol.36,no.12,pp.1921-1930,Dec.2001.
    [65] P.Andreani and H.Sj(?)land,“Tail current noise suppression in RF CMOS VCOs,” IEEEJ.Solid-State Circuits,vol.37,pp.342-348,Mar.2002.
    [66] M.Tiebout,“Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J.Solid-State Circuits,vol.36,no.7,pp.1018-1024,Jul.2001.
    [67] Jae-Hong Chang and Choong-Ki Kim,“A Symmetrical 6-GHz Fully Integrated Cascode Coupling CMOS LC Quadrature VCO,” IEEE MICRO WA VE AND WIRELESS COMPONENTS LETTERS,vol.15,no.10,pp.670-672,Oct.2005.
    [68] Gierkink S L J,Levantino S,Frye R C,et al.,“A low-phase-noise 5 GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J.Solid-State Circuits,vol.38,no.7,pp.1148-1154,Jul.2003.
    [69] Joonsuk Lee,and Beomsup Kim,“A Low-Noise Fast-Lock Phase-Locked Loop with Adaptive Bandwidth Control,” IEEE J.Solid-State Circuits,vol.35,no.8,pp.1137-1145,Aug.2000.
    [70] Joseph M.Ingino,Vincent R.von Kaenel,“A 4-GHz Clock System for a High-Performance System-on-a-Chip Design,” IEEE J.Solid-State Circuits,vol.36,no.11,pp.1693-1698,Nov.2001.
    [71] I.-C.Hwang,“Area-efficient and self-biased capacitor multiplier for on-chip loop filter,” Electron.Lett.,vol.42,pp.1392-1393,Nov.2006
    [72] Zhenbiao Li and Kenneth K.O,“A Low-Phase-Noise and Low-Power Multiband CMOS Voltage-Controlled Oscillator,” IEEE J.Solid-State Circuits,vol.40,no.6,pp.1296-1302,Jun.2005.
    [73] Changhua Cao,Yanping Ding,and Kenneth K.O,“A 50-GHz Phase-Locked Loop in 0.13μm CMOS,” IEEE J.Solid-State Circuits,vol.42,no.8,pp.1649-1656,Aug.2007.
    [74] J.Yuan and C.Svensson,“High-speed CMOS circuit technique,” IEEE J.Solid-State Circuits,vol.24,pp.62-70,Feb.1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700