两相材料结构低噪声设计理论与优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构振动声辐射是噪声的主要来源,随着人们对生存环境噪声问题关注度的增加,结构振动噪声控制技术越来越受到重视。经过数十年的相关研究,传统的噪声控制技术已经发展到一个成熟阶段,继续发展的空间已经非常小,因此需要更有效的设计方法来解决结构噪声辐射控制问题。两相材料结构正逐渐成为减振降噪领域一个新的研究方向,研究两相材料结构低噪声设计理论和优化方法,将结构声辐射问题融入到产品设计中,使振动结构成为一个弱辐射体,成为解决结构低频噪声问题的根本方法。
     本文分析了国内外结构声辐射理论与优化设计方法的研究现状,将结构动力学、声学和优化等学科融为一体,从噪声源的角度出发,将结构声辐射作为一项指标融入到产品设计阶段,对两相材料结构低噪声设计理论与优化方法进行了深入的研究。建立了基于格林函数的外部声辐射问题的预测模型,对多频激励下结构声辐射理论进行了研究,提出了两相材料结构各向正交惩罚材料密度法(SIMP)插值模型,建立了关于结构辐射声功率的声学设计灵敏度分析模型,提出了基于拓扑优化方法的结构低噪声设计方法,最后对所提出方法的有效性进行了试验验证。
     本文主要在以下几个方面进行了相关的研究:
     对外部声辐射问题在三维空间的Helmholtz边界积分方程做了基本回顾,提出了采用非等参单元变换解决积分方程奇异性问题,给出了角点系数的数值计算方法,同时针对解的非唯一性问题采用CHIEF方法做出了相应处理,最后应用高斯积分方法,给出了Helmholtz边界积分方程的数值计算方法。
     提出了声阻抗矩阵的概念,对多频激励下结构声辐射理论以及声学灵敏度分析进行了研究。建立了关于辐射声功率的声学设计灵敏度分析模型,并将其表示为结构动力学灵敏度和阻抗矩阵灵敏度两部分,以简支薄板为例通过数值算例详细分析了结构辐射声功率关于激励频率、薄板厚度等设计变量的声学设计灵敏度,给出了结构声学设计灵敏度的变化趋势,为产品的低噪声设计提供优化方向和量化依据。
     对两相材料插值理论和算法进行了研究,在单相材料结构SIMP插值模型的基础上,提出了两相材料结构SIMP插值模型,推导了基于两相材料结构SIMP插值理论的优化准则算法,并以此为基础,建立了两相材料结构单约束问题的拓扑优化模型,分析讨论了不同优化参数对最终拓扑优化结果的影响,数值结果表明,通过合理选择各个优化参数能够得到理想的拓扑优化结果。
     提出了基于拓扑优化理论的两相材料结构低噪声设计方法,以结构单元的体积密度为设计变量,以结构表面辐射声功率最小为设计目标,建立了两相材料结构声辐射问题的拓扑优化模型,数值结果表明优化结果具有弱辐射特性,中低频段的降噪效果尤为明显。
     对本文所提出的结构低噪声设计方法进行试验研究,通过与数值计算结果的对比,验证了本文所提出的两相材料结构低噪声设计理论和优化方法的有效性,同时展示了该方法在实际中的可行性。
Structure noise is one of the main noise sources. With more and more concerned about the living environment noise, noise and vibration control technology attracts more attention. After decades of research, traditional noise control technology has been developed to a mature stage and has little development space. So it is necessary to develop a more effective noise control technology. A bi-material structure is becoming a new research direction in noise and vibration reduction field. A bi-material low noise design theory and method will be the fundamental method to solve the problem of structure noise.
     This paper analyzes the domestic and international development on sound radiation theory and optimization design methods. The method links the disciplines of structural dynamics, acoustics and optimization into a unified methodology. The structural sound radiation is taken into the product design stage as a design index. A bi-material low noise design theory and method has been researched in-depth.
     The external sound radiation prediction model based on the green function is established. Theory of acoustic radiation under multi-frequency excitation has been studied, and an acoustic design sensitivity analysis method and Two-materials SIMP (the Solid Isotropic Material with Penalization) material interpolation model are given. Using topology optimization method, a bi-material low noise design theory and method is presented. The proposed theory and optimization method about bi-material structure low noise design is validated by testing method.
     This paper studied the following particular aspects:
     A detailed derivation of external sound radiation boundary element method based on the second Green equation is presented. The numerical method for calculating corners' coefficient is presented, facilitating numerical computation. Non-isoparametrical element transformation is given to deal with function singular integration. Gauss numerical integration method for solving the equations is given, while CHIEF method is simultaneously implemented to deal with the nonuniqueness of Helmholtz integral equation.
     Acoustic impedance matrix is introduced for studying the sound radiation theory under multi-frequency excitation and acoustic sensitivity analysis. The model of acoustic sensitivity subjected to the sound power is established. The sound radiation can be translated to the analysis of structure dynamic sensitivity and impedance matrix sensitivity. Taking a simple supported plate as a example, the trend of the acoustic sensitivity is given. It provides direction for structure low noise design.
     Bi-matrial interpolation theory, algorithm and model based on SIMP are given. Then topological optimization model of continuous structure with single constraint for minimal compliance is presented. Discussion is given for the topological optimization result using different optimization parameters. The numerical results shows, ideal topological results can be obtained through properly selecting individual optimization parameters.
     A study of low noise design method about bi-material structure based on the topology optimization theory is given. The element volume density and minimization of sound power are taken as design variable and design objective function respectively. Numerical results show that the optimization result possess low radiation property. The structural low noise design method proposed in this chapter provides a set of product design method for acoustic designers.
     Experimental study of the proposed method is given and compared with numerical results. The proposed theory and optimization method about bi-material structure low noise design is validated.
引文
[1]马大猷.噪声控制学.北京:科学出版社,1987.
    [2]赵玉芳,何作镛.声学理论基础.北京:国防工业出版社,1981.
    [3]黄其柏.工程噪声控制学.武汉:华中科技大学出版社,1999.
    [4]杜功焕,朱哲民,龚秀芬.声学基础.南京:南京大学出版社,2001.
    [5]黄振吕,邵汝椿.机械噪声及其控制.广州:华南理工大学出版社,1997.
    [6]徐世荣.电机的噪声控制与低噪声设计.东方电气评论.1990,4(1):1-8.
    [7]张重超.机电设备噪声控制工程学.北京:轻工业出版社,1989.
    [8]师汉民.机械振动系统.武汉:华中科技大学出版社,1990.
    [9]Denli H. Structural-acoustic optimization of sandwich structures with cellular cores for minimum sound radiation. Journal of Sound and Vibration.2007,301:93-105.
    [10]Ruzzene M. Vibration and sound radiation of sandwich beams with honeycomb truss core. Journal of Sound and Vibration.2004,277:741-763.
    [11]Chertock G. Sound Radiation from Vibrating Surfaces. The Journal of the Acoustical Society of America.1964,36(7):1305-1313.
    [12]Ro J, Baz A. Control of sound radiation from a plate into an acoustic cavity using active constrained layer damping. Smart Mater. Struct.1999.
    [13]何作镛.结构振动与声辐射.哈尔滨:哈尔滨工程大学出版社,2001.
    [14]翁智远.圆柱薄壳容器的振动与屈曲.上海:上海科学技术出版社,2006.
    [15]Halkjer S, Sigmund O, Jensen J. Maximizing band gaps in plate structures. Structural and Multidisciplinary Optimization.2006,32(4):263-275.
    [16]Larsen A, Laksafoss B, Jensen J, et al. Topological material layout in plates for vibration suppression and wave propagation control. Structural and Multidisciplinary Optimization.2008.
    [17]Akl W, El-Sabbagh A, Al-Mitani K, et al. Topology optimization of a plate coupled with acoustic cavity. International Journal of Solids and Structures.2008, In Press, Corrected Proof.
    [18]Krog L A, Olhoff N. Optimum topology and reinforcement design of disk and plate structures. Computers and Structures.1999,72:535-563.
    [19]Boroomand B, Barekatein A. On topology optimization of linear and nonlinear plate problems. the Ⅲ European Conference on Computational Mechanics.2008.
    [20]Panigrahi S N, Jog C S, Munjal M L. Multi-focus design of underwater noise control linings based on finite element analysis. Applied Acoustics.2008, ⅹⅹⅹ(ⅹⅹⅹ).
    [21]Lim Y, Gopinathan S V, Varadan V V, et al. Finite element simulation of smart structures using an optimal output feedback controller for vibration and noise control. Smart Materials and Structures.1999,8:324-337.
    [22]Hirsch S M, Sun J Q. Control signal scheduling for active noise control systems. Smart Materials and Structures.1999,8:315-323.
    [23]德国标准化学会.声学.低噪声机械和设备推荐设计惯例.第2部分:低噪声设计的物理学说明.
    [24]英国标准学会.声学.低噪声机械和设备的设计推荐规程.低噪声设计的物理学说明.
    [25]孙林.国内外汽车噪声法规和标准的发展.汽车工程.2000,3(22):154-158.
    [26]Lyon R H. noise reduction by design an alternative to machinery noise control. Inter-Noise 78 Prodedings.1978:33-44.
    [27]Joshua Israelsonn.噪声与低噪声设计的探讨(上篇).电子设计技术.2004.
    [28]Joshua Israelsohn.噪声与低噪声设计的探讨(下篇).电子设计技术.2004.
    [29]柯兵,周进华.低噪声管路系统设计研究.舰船科学技术.2006,28:117-120.
    [30]方华,李盛成,谷艳华等.用有限元法进行柴油机气门室罩的低噪声设计.汽车技术.2002.
    [31]张维智.低噪声排风扇叶片的设计和研制.杭州应用工程技术学院学报.1999,11(4):32-35.
    [32]王宝兴.机床主传动系统的噪声试验及低噪声主传动系统的设计.郑州大学学报(工学版).1990,11(2):67-71.
    [33]舒国良.潜艇低噪声空调系统的研究与设计.舰船科学技术.1980.
    [34]Lyon R M. Power flow between linearly coupled oscillators. The Journal of Acoustical Society of America.1962,34:623-639.
    [35]Smith P W. Response and radiation of structural modes excited by sound. The Journal of Acoustical Society of America.1962,34:761-779.
    [36]Smith P W. Coupling of sound and panel vibration below the critical frequency. The Journal of Acoustical Society of America.1964,36:1516-1520.
    [37]Burroughs C B, Fischer R W, Kern F R. An introduction to statistical energy analysis. The Journal of Acoustical Society of America.1997,101(4):1779-1789.
    [38]Yan H, Parrett A, Nack W. Statistical energy analysis by finite elements for middle frequency vibration. Finite Elements in Analysis and Design.2000,35(4):297-304.
    [39]Kim M J, Kim H S, Sohn J Y. Prediction and evaluation of impact sound transmission in apartment building structures by statistical energy analysis (SEA. Applied Acoustics.2001,62(6):601-616.
    [40]Langley R S, Smith J, Fahy F J. Statistical energy analysis of periodically stiffened damped plate structures. Journal of Sound and Vibration.1997,208(3):407-426.
    [41]Hopkins C. Statistical energy analysis of coupled plate systems with low modal density and low modal overlap. Journal of Sound and Vibration.2002,251(2): 193-214.
    [42]Cotoni V, Langley R S, Shorter P J. A statistical energy analysis subsystem formulation using finite element and periodic structure theory. Journal of Sound and Vibration.2008,318(4-5):1077-1108.
    [43]Renji K, Nair P S, Narayanan S. Acoustic response behaviour of panels mounted with equipment and its prediction using statistical energy analysis. Journal of Sound and Vibration.2006,289(4-5):851-870.
    [44]H. G. D. Goyder, R. G. White. Vibration power flow from machines into built-up structures. Part Ⅰ:Introduction and approximate analyses of beam and plate-like foundations. Journal of sound and vibration.1980,68(1):59-75.
    [45]Park D H, Hong S Y, Kil H G, et al. Power flow models and analysis of in-plane waves in finite coupled thin plates. Journal of Sound and Vibration.2001,244(4): 651-668.
    [46]Li T Y, Zhang X M, Zuo Y T, et al. Structural power flow analysis for a floating raft isolation system consisting of constrained damped beams. Journal of Sound and Vibration.1997,202(1):47-54.
    [47]Xiong Y P, Xing J T, Price W G. A general linear mathematical model of power flow analysis and control for integrated structure-control systems. Journal of Sound and Vibration.2003,267(2):301-334.
    [48]Li T Y, Zhang W H, Liu T G. Vibrational power flow analysis of damaged beam structures. Journal of Sound and Vibration.2001,242(1):59-68.
    [49]Lee H J, Kim K J. Multi-dimensional vibration power flow analysis of compressor system mounted in outdoor unit of an air conditioner. Journal of Sound and Vibration. 2004,272(3-5):607-625.
    [50]Li T Y, Zhang T, Liu J X, et al. Vibrational wave analysis of infinite damaged beams using structure-borne power flow. Applied Acoustics.2004,65(1):91-100.
    [51]Wong W O, Wang X Q, Cheng L. Modal power flow analysis of a damaged plate. Journal of Sound and Vibration.2009,320(1-2):84-100.
    [52]Bernhard R J, Huff J E. Structural-acoustic design at high frequency using the energy finite element method. Journal of Vibration and Acoustics-Transactions of the ASME. 1999,121(3):295-301.
    [53]Mace B R, Shorter P J. Energy flow models from finite element analysis. Journal of Sound and Vibration.2000,233(3):369-389.
    [54]Vlahopoulos N, Zhao X, Allen T. An approach for evaluating power transfer coefficients for spot-welded joints in an energy finite element formulation. Journal of Sound and Vibration.1999,220(1):135-154.
    [55]Zhang W G, Wang A M, Vlahopoulos N, et al. High-frequency vibration analysis of thin elastic plates under heavy fluid loading by an energy finite element formulation. Journal of Sound and Vibration.2003,263(1):21-46.
    [56]Wang S. Theory and applications of a simplified energy finite element method and its similarity to SEA. Noise Control Engineering Journal.2002,50(2):63-72.
    [57]Borlase G A, Vlahopoulos N. An energy finite element optimization process for reducing high-frequency vibration in large-scale structures. Finite Elements in Analysis and Design.2000,36(1):51-67.
    [58]Zhang W G, Wang A M, Vlahopoulos N, et al. A vibration analysis of stiffened plates under heavy fluid loading by an energy finite element analysis formulation. Finite Elements in Analysis and Design.2005,41(11-12):1056-1078.
    [59]邵敏,王勖成.有限单元法基本原理和数值方法.北京:清华大学出版社,2003.
    [60]Huang D H, Breazeale M A. A Gaussian finite-element method for description of sound diffraction. The Journal of Acoustical Society of America.1999,106(4Part 1): 1771-1781.
    [61]Treyssede F, Gabard G, Ben Tahar M. A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description. The Journal of Acoustical Society of America.2003,113(2):705-716.
    [62]Papadopoulos C I. Redistribution of the low frequency acoustic modes of a room:a finite element-based optimisation method. Applied Acoustics.2001,62(11): 1267-1285.
    [63]Kampanis N A. A finite element method for the parabolic equation in aeroacoustics coupled with a nonlocal boundary condition for an inhomogeneous atmosphere. Journal of Computational Acoustics.2005,13(4):569-584.
    [64]T. W. Wu. Boundary Element Acoustics:Fundamentals and Computer Codes. WIT press, Southanpton, Boston,2000.
    [65]赵志高.结构声辐射的机理与数值方法研究.华中科技大学,2005.
    [66]Tai K, Fenner R T. Optimum shape and topology design using the boundary element method. International Journal of Solids and Structures.1999(36):2021-2040.
    [67]Hao Cheng J Y C Y. A multi-domain boundary element formulation for acoustic frequency sensitivity analysis. Engineering Analysis with Boundary Elements.2008.
    [68]Dong J, Choi K K. Sensitivity Analysis and Optimization Using Energy Finite Element and Boundary Element Methods. AIAA.2007,45(6).
    [69]Seybert A F, Jia Z H, Wu T W. Solving knife-edge scattering problems using singular boundary elements. The Journal of the Acoustical Society of America.1992,91(3): 1278-1283.
    [70]Wu T W, Li W L, Seybert A F. An efficient boundary element algorithm for multi-frequency acoustical analysis. The Journal of the Acoustical Society of America. 1993,94(1):447-452.
    [71]Visser R. A Boundary Element Approach to Acoustic Radiation and Source Identification-book. Annual Report Engineering Mechanics.2004:28-29.
    [72]Li W L, Wu T W, Seybert A F. A Half-Space Boundary Element Method for Acoustic Problems With a Reflecting Plane of Arbitrary Impedance. Journal of Sound and Vibration.1994,171(2):173-184.
    [73]Seybert A F, Cheng C Y, Wu T W. The solution of coupled interior/exterior acoustic problems using the boundary element method. The Journal of the Acoustical Society of America.1990,88(3):1612-1618.
    [74]Seybert A F, Wu T W, Wu X F. Radiation and scattering of acoustic waves from elastic solids and shells using the boundary element method. The Journal of the Acoustical Society of America.1988,84(5):1906-1912.
    [75]Kane J H, Mao S, Everstine G C. A boundary element formulation for acoustic shape sensitivity analysis. Journal of the Acoustical Society of America.1991,90(1): 561-573.
    [76]Wu T W, Ciskowski R D, Seybert A F. Vectorization and parallelization of the acoustic boundary element code BEMAP on the IBM ES/3090 VF. Engineering Analysis with Boundary Elements.1992,10(1):17-26.
    [77]Chen L H, Schweikert D G. Sound radiation from an arbitrary body. The Journal of Acoustical Society of America.1963(35):1626-1632.
    [78]Chertock G. Sound radiation from vibration surface. The Journal of Acoustical Society of America.1964(36):1305-1313.
    [79]Copley L G. Integral equation method for radiation from vibrating bodies. The Journal of Acoustical Society of America.1967(41):807-816.
    [80]Schenck H A. Improved integral formulation for a acoustic radiation problems. The Journal of Acoustical Society of America.1968(44):41-58.
    [81]Waterman P C. New formulation of acoustic scattering. The Journal of Acoustical Society of America.1969(45):1417-1429.
    [82]Burton A J, Miller G F. The application of integral eqation methods to the numerical solutions of some exterior boundary value problems. Preceedings of Royal Society of London.1971(323):201-210.
    [83]Seybert A F, Herrin D W. The prediction of sound radiation from real structures.1998.
    [84]Cheng C Y, Seybert A F, Wu T W. A multidomain boundary element solution for silencer and muffler performance prediction. Journal of Sound and Vibration.1991, 151(1):119-129.
    [85]Herrin D W, Martinus F, Wu T W, et al. A New Look at the High Frequency Boundary Element and Rayleigh Integral Approximations. Society of Automotive Engineers.2003, NVC-114.
    [86]Herrin D W, Martinus F, Wu T W, et al. An assessment of the high frequency boundary element and Rayleigh integral approximations. Applied Acoustics.2006, 67(8):819-833.
    [87]Seybert A F, Rengarajan T K. The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equations. The Journal of the Acoustical Society of America.1987,81(5):1299-1306.
    [88]Demkowicz L, Ihlenburg F. Analysis of a coupled finite-infinite element method for exterior Helmholtz problems. Numerische Mathematik.2001,88(1):43-73.
    [89]Li L X, Sun J S, Sakamoto H. A modified infinite element method for acoustic radiation. Journal of Computational Acoustics.2002,10(1):113-121.
    [90]Yang R L, Zhu C X, Fan X W, et al. Finite element/infinite element method for acoustic scattering problem.2009 International Conference on Measuring Technology and Mechatronics Automation.2009:810-812.
    [91]Autrique J C, Magoules F. Analysis of a conjugated infinite element method for acoustic scattering. Computer & Structures.2007,85(9):518-525.
    [92]Yang R L, Fan X W. Finite/infinite element method for the acoustic radiating problem. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory.2004: 131-134.
    [93]Zhengbong Ma, Ichiro Hagiwara.Sentivity Analysis Methods for Coupled Acoustic Structural System, Part I:Modal Sentivity. AIAAjournal,1991,29(5):113-125.
    [94]Zhengdong Ma,lchiro Hagiwara. Sensitivity Analysis Methods for Coupled Acoustic-Structural System Part II:Direct Frequency Response and Its Sentivities. AIAAjournal,1991,29(6):56-67.
    [95]S.Wang.Design sensitivity analysis of noise, vibration and harshness of vehicle body
    structure. Mech.Struct.Mach,1999,27(3):317-336.
    [96]Jianhui Luo, Hae Chang Gea. Optimal Stiffener Design for Interior Sound Reduction Using a Topology Optimization Based Approach. Journal of Vibration and Acoustics, 2003,125(7):267-272.
    [97]Koo. Bu I J L B. Acoustic shape sensitivity analysis using the boundary integral equation. The Journal of Acoustical Society of America.1998,104:2851-2860.
    [98]A K. Acoustic design sensitivity for structural radiators. ASME Journal of Vibration and Acoustics.1992,114(2):178-186.
    [99]S. T. Christensen.-Design sensitivity analysis in structural acoustics. AIAA journal. 1998,36(2):474-482.
    [100]N. H. Kim, J. Dong and et. Design sensitivity analysis for sequential structural-acoustic problems. Journal of Sound and Vibration,2003,263(3):569-591.
    [101]Ma Z, Hagiwara I. Sentivity Analysis Methods for Coupled Acoustic Structural System Part I:Modal Sentivity. AIAA journal.1991,29(5):113-125.
    [102]Ma Z, Hagiwara L. Sensitivity Analysis Methods for Coupled Acoustic-Structural System Part II:Direct Frequency Response and Its Sentivities. AIAA journal.1991, 29(6):56-67.
    [103]K. A. Cunefare, G. H. Koopmann. Acoustic design sensitivity for structural radiators. Journal of Vibration and Acoustics,1992,11.4(2):178-186.
    [104]R. R. Salagame, A. D. Belegundu and G. H. Koopmann, Analytical sensitivity of acoustic power radiated from plates. Journal of Vibration and Acoustics,1995,117(2): 43-48.
    [105]Marburg S. Efficient optimization of a noise transfer function by modification of a shell structure geometry—Part Ⅰ:Theory. Struct Multidisc Optim,2001,24(5):51-59.
    [106]Tinnsten M, Esping B, Jonsson M. Optimization of acoustic response. Structural Optimization,1999,18(1):36-47..
    [107]Wang S, Lee J. Acoustic Design Sensitivity Analysis and Optimization for Reduced Exterior Noise. AIAA Journal,2001,39(4):1237-1245.
    [108]毛崎波姜哲.通过声辐射模态研究结构噪声的有源控制.江苏理工大学学报.2000,21(4):1-6.
    [109]Gardonio P. Smart panels for active structural acoustic control. Smart Materials and Structures.2004,13(6):1314-1336.
    [110]Doelman N. A unified control strategy for the active reduction of sound and vibration. Journal of Intelligent Material Systems and Structures.1991,2:558-580.
    [111]M.A.Lang and C.L.Dym, Optimal acoustic design of sandwich panels, Journal of the Acoustical Soeiety of Ameriea,1975,57:1481-1487.
    [112]J.S.Lmaaneusa, Geometric Optimization of internal combustion engine induction systems for minimum noise transmission, Journal of Sound and Vibration,1988, 127:303-318.
    [113]M.G.Milsted, T.Zhang and R.A.Hall, A numerical method for noise optimization of engine structures, Proceedings of the Mechanical Engineers,1993,207:135-143.
    [114]IUTAM International Symposium on Designing for Quietness.2000.
    [115]Constans E W, Koopmann G H. The use of modal tailoring to minimize the radiated sound power of vibrating shells Theory and experiment.1998.
    [116]Belegundu A D, Salagame R R, Koopmann. G H. A general optimization strategy for sound power minimization. Structural Optimization.1994,8:113-119.
    [117]Kenneth A C A G H. Acoustic design sensitivity for structural radiators. ASME Journal of Vibration and Acoustics.1992,114(2):178-186.
    [118]Naghshineh K, Koopmann G H. Material tailoring of structures to achieve a minimum radiation condition. The Journal of the Acoustical Society of America.1992,92(2).
    [119]Sharp S J, Nelson P A, Koopmann G H. a theoretical investigation of optimal power absorption as a noise control technique. Journal of Sound and vibration.2002,251(2): 927-935.
    [120]G. H. Koopmann A D B. tuning a wine glass matearial tailoring-an application of method for optimal acoustic design. Journal of Sound and Vibration.2001,239(4): 665-678.
    [121]W.L.Li and H.J.Gibeling, Aeoustic radiation from a rectangular plate reinforced by springs at arbitrary locations, Journal of Sound and Vibration,1999,220(1):117-133.
    [122]A.Ratel and A.Berry, Use of genetic algorithms for the vibroacoustic optimization of a plate carrying point-masses, Journal of the Acoustical Society of America,1998,
    104(6):3358-3397.
    [123]汤加,朱梦周,张纪锁.产品低噪声的设计原理和方法.论降低机械噪声的根本途径.噪声与振动控制.1993(1).
    [124]丁渭平.车身结构的低噪声优化设计研究.机械设计与制造.2002.
    [125]郑孝元,卢镇华.低噪声结构设计.木工机床.2006,1:14-24.
    [126]Bendsoe M. P K N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering. 1988,71:197-224.
    [127]Mp B, Sigmund 0. Topology Optimization Theory Methods and Applications. Springer, Berlin Heidelberg New York,2003.
    [128]左孔天.连续体结构拓扑优化理论与应用研究.华中科技大学,2004.
    [129]Soto C. A. Structural topology optimization:from minimizing compliance to maximizing energy absorption. International Journal of Vehicle Design.2001,1/2(25): 142-163.
    [130]Sigmund O, Torquato S. Design of Materials with Extreme Elastic or Thermoelastic Properties Using Topology Optimization. Structural and Multidisciplinary Optimization.1998:233-244.
    [131]Rozvany G I, Sigmund O, Lewi T, et al. Exact optimal structural layouts for non-self-adjoint problems. Structural and Multidisciplinary Optimization.1993,5(3): 204-206.
    [132]Bendse M P, Olhoff N, Sigmund O. IUTAM Symposium on Topological Design Optimization of Structures,Machines and Materials.2005.
    [133]Jensen J, Sigmund O. Topology Optimization of Wave-Propagation Problems.2006.
    [134]Jensen J, Sigmund O. Phononic Band Gap Structures as Optimal Designs.2003.
    [135]Gea H C, Luo J. Topology optimization of structures with geometrical nonlinearities. Computers & Structures.2001,79(20-21):1977-1985.
    [136]Olhoff N, Du J. Topology Optimization of Vibrating Bi-Material Structures with Respect to Sound Radiation.2006.
    [137]Olhoff N, Du J. Topological Design for Minimum Sound Radiation from Structures Subjected to Forced Vibration. Portugal:2006.
    [138]Du J, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidisciplinary Optimization.2007,34(6):545.
    [139]Du J, Olhoff N. Minimization of sound radiation from vibrating bi-material structures using topology optimization. Structural and Multidisciplinary Optimization.2007, 33(4):305-321.
    [140]Mendonca F H, Silva O M, Neves M M, et al. Topology optimization of plate-like structures with respect to acoustic radiation.2007.
    [141]Maria D. Topology Optimization for Acoustic Problems.2006.
    [142]D M B, Jensen J S, Sigmund O. Acoustic design by topology optimization. Journal of Sound and Vibration.2008,317(3-5):557-575.
    [143]邓兆祥,高书娜,胡玉梅.基于拓扑优化的轿车车身低噪声设计.振动与冲击.2008.
    [144]李民,舒歌群,卫海桥.基于拓扑优化和形状优化的低噪声齿轮室罩盖设计.内燃机工程.2008,29(6):55-59.
    [145]方华,王天灵,李盛成.基于有限元和边界元法的油底壳低噪声结构设计.农业机械学报.2008.
    [146]Ewins D J. Modal testing theory and practice. Wiley, Hertfordshire:Research Studies Press, New York,1984.
    [147]Bends M P, Sigmund O. Material interpolation schemes in topology optimization. Structural and Multidisciplinary Optimization.1999,69(9):635-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700