用户名: 密码: 验证码:
双时间尺度的随机偏微分方程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然科学和工程中的一些复杂系统可以由多时间尺度的随机常微分方程或随机偏微分方程来刻画.这类随机系统的定性分析引起了研究者广泛的兴趣.本文研究双时间尺度的随机偏微分方程,主要包含两个方面的内容:双时间尺度随机偏微分方程的强收敛意义下的平均化原理和双时间尺度随机偏微分方程的随机惯性流形.
     本文的安排如下:
     在第一章中,介绍一些随机过程理论和随机动力系统理论中的基本的概念,定义,以及著名的Ito公式.
     在第二章中,研究由加性噪声驱动的随机FitzHugh-Nagumo系统.在耗散性条件下,可以证明快运动方程对应的“固定”方程存在惟一满足指数混合性的不变测度.由此,通过“平均化“慢运动方程的漂移系数,可以导出一个慢运动方程的有效方程.接下来,通过估计慢运动方程的解过程和有效方程的解过程在适当空间中的偏差,可以证明强收敛意义的随机平均化原理成立.
     在第三章中,考虑一个有界开区间上的双时间尺度随机抛物方程.这类模型源于状态空间被噪声扰动的物理系统,且此处所考虑的乘性噪声对快慢两个运动都有扰动.应用类似于第二章中的技巧,证明强收敛意义下的平均化原则对于这类随机抛物方程是成立的,由于考虑更为一般的乘性噪声,因而其证明过程有所不同,且比较复杂.在适当的条件下,当固定慢变量时,可以得到快变量方程的一个“固定”方程,其指数混合性的不变测度是存在且唯一的.由此可以得到刻画慢运动性态的一个平均化方程.最后,应用Burkholder-Davis-Gundy不等式,可以证明当时间尺度参数趋于零时,慢运动方程的解过程强收敛于这个平均化方程的解过程.
     在第四章中,研究无穷维空间中双时间尺度的随机动力系统的不变流形,这类随机系统由一类耦合的快-慢随机发展方程所生成的,其具体的形式可以是耦合的随机偏微分方程,也可以是耦合的随机偏微分方程-常微分方程.在适当的条件下,可以证明上述的系统存在一个具有指数吸引性的随机不变流形.进一步还证明当时间尺度参数趋于零时,这个不变流形趋于一个所谓的慢流形.通过几个例子,上面的结论可以适用于耦合的抛物-双曲型偏微分方程,耦合的抛物-常微分方程以及耦合的双曲-双曲型偏微分方程.
     在最后一章中,对全文进行总结并指出本文需要改进的工作.
Some complex systems in science and engineering are described by stochastic ordinary differential equations (SODEs) or stochastic partial differential equations (SPDEs) with multiple time scales. The qualitative analysis for such stochastic sys-tems has been drawing more and more attention. This thesis mainly studies the asymp-totic behavior of SPDEs with two characteristic time-scales. It consists of two topics: the strong convergence in stochastic averaging principle for two time-scales SDPEs and the inertial manifolds reduction for two time-scales stochastic evolutionary sys-tems.
     This thesis is organized as follows:
     In Chapter 1, some primary definition, notion and the well-known It o formula in theory of stochastic processes and random dynamical systems is presented.
     In Chapter 2, the stochastic FitzHugh-Nagumo system subjected with additive noise is explored. Under the dissipative conditions, it can been shown that the "frozen" equation with respect to the fast motion has a unique invariant measure with exponen-tial mixing property. As a result, an effective equation for the slow motion can be de-rived by averaging its drift coefficient. And then, the strong convergence in stochastic averaging principle is proved by estimating the difference between the solution pro-cess of slow equation and that of the effective equation in suitable space.
     In Chapter 3, a stochastic parabolic equations with two time-scales on a bounded open interval is studied. The present model arise from some physical systems with noise perturbations to the state space. In this case, the noise is included in both fast motion and slow motion and it is of multiplicative type. The strong convergence in stochastic averaging principle for such stochastic parabolic equations is established by techniques similar to Chapter 2. But since more regular multiplicative noise is con-sider, the proof is thus modified and is of complexity. Under suitable conditions, the existence of an exponential mixing invariant measure for the fast equation with frozen slow variable is proved. As a consequence, the averaged equation which captures the dynamic of the slow motion can be obtained. Finally, with aid of the Burkholder- Davis-Gundy inequality, it is proved that the solution process of the slow equation strong convergence to the solution of the effective equation when the time scale pa-rameter tends to zero.
     In Chapter 4, invariant manifolds for infinite dimensional random dynamical sys-tems with two time-scales is studied. Such a random system is generated by a coupled system of fast-slow stochastic evolutionary equations, which could be coupled SPDEs, or coupled SPDEs-SODEs. Under suitable conditions, it is proved that an exponen-tially tracking random invariant manifold exists, eliminating the fast motions for this coupled system. It is further shown that if the time scale parameter tends to zero, the invariant manifold tends to a slow manifold which captures long time dynamics. As examples the results are applied to a few systems of coupled parabolic-hyperbolic partial differential equations, coupled parabolic partial differential-ordinary differen-tial equations and coupled hyperbolic-hyperbolic partial differential equations.
     In the final chapter, a summary of this thesis is made and some questions that need to be improved and perfected in the future study are raised.
引文
[1]Ito K. Stochastic integral. Proc. Imp. Acad. Tokyo,1944,20:519~524
    [2]Gikhman I. I. A method of constructing random process. Dokl. Akad. Nauk SSSR,1947,58: 961-964
    [3]Kalman R. E, Bucy R. S. New results in linear filtering and prediction theory. Transactions of the ASME. Series D. Journal of Basic Engineering,1961,83:95~108
    [4]Black F, Scholes M. The pricing of options and corporate liabilities. J. Political Economy,1973, 81:637~654
    [5]王伟.无穷维随机动力系统的动力学:[博士学位论文].南京:南京大学,2005
    [6]Bensoussan A, Teman R. Equations aux derivees partielles stochastiques non lineaires. Israel J. Math.,1972,11:95~129
    [7]Pardoux E. Equations aux derivees partielles stochastiques non Lineaires monotones:[PHD The-sis]. Paris:Universite Paris,1975
    [8]Pardoux E. Stochastic partial differential equations and filtering of diffusion processes. Stochas-tics,1979,3:127-167
    [9]Walsh J. B. An Introduction to Stochastic Partial Differential Equations, Berlin:Springer,1986
    [10]Dalang R. C. Extending the martingale measure stochastic integral with applications to spatially homogeneous SPDEs. Electronic Journal of Probability,1999,4:1-29
    [11]Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions, Cambridge:Cambridge University Press,1992
    [12]Da Prato G, Zabczyk J. Ergodicity for Infinite dimensional Systems. Cambridge:Cambridge University Press,1996
    [13]Rozowskii B. Stochastic Evolution Systems. Dordrecht:Kluwer Academic Publishers Group, 1990
    [14]Prevot C, Rockner M. A Concise Course on Stochastic Partial Differential Equations. Berlin: Springer,2007
    [15]Cerrai S. Second Order PDE's in Finite and Infinite Dimension. Berlin:Springer,2001
    [16]Liu K. Stability of Infinite Dimensional Stochastic Differential Equations with Applications. New York:Chapman-Hall/CRC,2006
    [17]Budhiraja A, Dupuis P, Maroulas V. Large deviations for infinite-dimensional stochastic dynam-ical systems. Ann. Probab.,2008,36:1390~1420
    [18]Ren J, Zhang X. Freidlin-Wentzell's large deviations for stochastic evolution equations.J. Funct. Anal.,2008,254:3148~3172
    [19]Quer Sardanyous L, Sanz Sole M. Absolute continuity of the law of the solution to the three dimensional stochastic wave equaiton.J. Funct. Anal.,2004,206:1~32
    [20]Duan J, Lu K, Schmalfuβ B. Invariant manifolds for stochastic partial differential equations. Ann. Probab.,2003,31:2109~2135
    [21]Duan J, Lu K, Schmalfuβ B. Smooth stable and unstable manifolds for stochastic evolutionary equations.J. Dynam. Differential Equations,2004,16:949~972
    [22]Crauel H, Flandoli F. Attractor for random dynamical systems. Proba. Theory Related Fields, 1994,100:365~393
    [23]Crauel H, Flandoli F. Random attractors.J. Dynam. Differential Equations,1995,9:307~341
    [24]Bates P. W, Lu K, Wang B. Random attractors for stochastic reaction-diffusion equations on unbounded domains.J. Differential Equations,2009,246:845~869
    [25]Caraballo T, Langa J. A, Robinsion J. C. A stochastic pitchfork bifurcation in a reaction diffusion equation. Proc. R. Soc. Lond. A,2001,457:2041-2061
    [26]文成林.多尺度动态建模理论及应用.北京:科学出版社,2007
    [27]Blomker D, Hairer M, Pavliotis G. A. Multiscale analysis for stochastic partial differential equa-tions with quadratic nonlinearities. Nonlinearity,2007,20:172~1744
    [28]Cao Y, Gillespie D, Petzold L. Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems.J. Comput. Phys.,2005,206:395~411
    [29]Cerrai S. A Khasminkii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab.,2009,19:899~948
    [30]Cerrai S, Freidlin M. I. Averaging principle for a class of stochastic reaction-diffusion equations. Proba. Theory Related Fields,2009,144:137~177
    [31]Eckhaus E. Matched Asymptotic Expansions and Singular Perturbations. Amsterdam:North-Holland Publishing Company,1973
    [32]Lagerstrom P. A. Matched Asymptotic Expansions. New York:Springer-Verlag,1988
    [33]Kevorkian J. K, Cole J. D. Multiple Scale and Singular Perturbation Methods. Berlin:Springer-Verlag,1996
    [34]Oono Y. Renormalization and Asymptotics. RIMS Kokyuroku,2000,1134:1-18
    [35]Schmalfuβ B, Schneider R. Invariant manifolds for random dynamical systems with slow and fast variables. J. Dynam. Differential Equations,2008,20:133-164
    [36]Bogoliubov N. N, Mitropolsky Y. A. Asymptotic Methods in the Theory of Nonlinear Oscilla-tions. New York:Gordon & Breach Science Publishers,1961
    [37]Gikhman I.I. On a theorem of N. N. Bogoliubov. Ukrain. Math. Zhurn,1952,4:215~219
    [38]Volosov V. M. Averaging in systems of ordinary differential equations. Russian mathematical surveys,1962,17:1~126
    [39]Besjes J. G. On the asymptotic methods for non-linear differential equations. J. Mecanique,1969, 8:357~373
    [40]Khasminskii R. Z. Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theory Probab. Appl.,1963,8:1-21
    [41]Khasminskii R. Z. On the principle of averaging the Ito stochastic differential equations. kiber-netika,1968,4:260-279
    [42]Freidlin M. I, Wentzell A. D. Random Perturbation of Dynamical Systems.2nd ed. New York: Springer-Verlag,1998
    [43]Freidlin M. I, Wentzell A. D. Long-time behavior of weakly coupled oscillators. J. Stat. Phys., 2006,123:1311-1337
    [44]Golec J, Ladde G. Averaging principle and systems of singularly perturbed stochastic differential equations. J. Math. Phys.,1990,31:1116~1123
    [45]Golec J. Stochastic averaging principle for systems with pathwise uniqueness. Stochastic Anal. Appl.,1995,13:307~322
    [46]Arnold L. Random Dynamical Systems. Berlin:Springer-Verlag,1998
    [47]Foias C, Sell G. R, Teman R. Inertial manifolds for nonlinear evolutionary equations. J. Differ-ential Equations,1988:73309-353
    [48]Hadamard J. Sur l'iteration et les solutions asymptotiques des equations differentielles. Bull. Soc. Math. France,1901,29:224~228
    [49]Lyapunov A. M. Probleme general de la stabilite du mouvement. Ann. of Math. Stud.,1947, vol. 17 (originally published in Russian,1892)
    [50]Perron O. Uber Stabilitat und asymptotisches Verhalten der Integrale von Differentialgle-ichungssystemen. Math. Z,1928,29:129~60
    [51]Lu K, Schmalfuβ B. Invariant foliations for stochastic partial differential equations. Stochastics and Dynamics,2008,8:505~518
    [52]Mohammed S. E. A, Zhang T, Zhao H. The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations. Mem. Amer. Math. Soc.,2008, 196:1-105
    [53]Bensoussan A, Flandoli F. Stochastic inertial manifold. Stochastics Rep.,1995,53:13~39
    [54]Caraballo T, Chueshov I, Langa J. A. Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations. Nonlinearity,2005,18:747~767
    [55]Chueshov I. Approximate inertial manifolds of exponential order for semilinear parabolic equa-tions subjected to additive white noise. J. Dynam. Differential Equations,1995,7:549~566
    [56]Chueshov I, Schmalfuβ B. Master-slave synchronization and invariant manifolds for coupled stochastic systems. J. Math. Phys.,2010,51:(102702)
    [57]Wang W, Roberts A. J. Slow manifold and averaging for slow-fast stochastic differential system, 2009, available at http://arxiv.org/abs/0903.1375
    [58]Wang W, Roberts A. J, Average and deviation for the stochastic FitzHugh-Nagumo system. J. ANZIAM,2008,50:292~307
    [59]黄志远.随机分析学基础.第二版.北京:科学出版社,2001
    [60]郭柏林,蒲学科.随机无穷维动力系统.北京:北京航空航天大学出版社,2009
    [61]Chueshov I. Monotone Random Dynamical Systems Theory and Applications. Berlin:Springer, 2002
    [62]Hodgkin A. L, Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol.,1952,117:500~544
    [63]Bell J. Some threshold results for models of myelinated nerves. Math. Biosci.,1981,54: 181~190
    [64]Fitzhugh R. Impulse and physiological states in models of nerve membrane. Biophys. J.,1961, 1:445~466
    [65]Makarov V. A, Nekorkin V. I, Velarde M. G. Spiking behavior in a noise-driven system combin-ing oscillatory and excitatory properties. Phys. Rev. Lett.,2001,86:3431~3434
    [66]Jackson D. E. Existence and regularity for the Fitzhugh-Nagumo equations with inhomogeneous boundary conditions. Nonlinear Analysis,1990,14:201~216
    [67]Lopes O. FitzHugh-Nagumo system:Boundedness and convergence to equilibrium. J. Differen-tial Equations,1982,44:400~413
    [68]Marion M. Finite-dimensional attractors associated with partly dissipative reaction-diffusion sys-tems. SIAM J. Math. Anal.,1989,20:816~844
    [69]Shao Z. Existence of inertial manifold for partly dissipative reaction-diffusion systems in higher space dimensions. J. Differential Equations,1998,144:1~43
    [70]Deng B. The existence of infinitemany travelling front and back waves in the FitzHugh-Nagumo equations. SIAM J. Math. Anal.,1991,22:1631-1650
    [71]Jones C. K. R. T. Stability of the travelling waves solution of the FitzHugh-Nagumo system. Trans. Amer. Math. Soc.,1984,286:431-469
    [72]Wang B. Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains. Nonlinear Analysis TMA,2009,71:2811-2828
    [73]Ball J. M. Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sci.,1997,7:475~502
    [74]Ball J. M. Global attractors for damped semilinear wave equations. Discrete Contin. Dyn. Syst., 2004,10:31-52
    [75]Lv Y, Wang W. Limit dynamics for the stochastic FitzHugh-Nagumo system. Nonlinear Analysis RWA,2010,11:3091~3105
    [76]Tessonea J, Wiob H. S. Stochastic resonance in an extended FitzHugh-Nagumo system:The role of selective coupling. Physica A,2007,374:46~54
    [77]Wu D, Zhu S. Stochastic resonance in FitzHugh-Nagumo system wtih time-delayed feedback. Phys. Lett. A,2008,372:5299~5304
    [78]Hasegawa H. Stochastic bifurcation in FitzHugh-Nagumo ensembles subjected to additive and/or multiplicative noises. Phys. D,2008,237:137~155
    [79]Veretennikov A. Y. On the Averaging principle for systems of stochastic differential equations. Mathematics of the USSR-Sbornik,1991,69:271-284
    [80]Veretennikov A. Y. On large deviations in the averaging principle for SDEs with full dependence. Ann. Probab.,1999,27:284~296
    [81]Givon D, Kevrekidis I. G, Kupferman R. Strong convergence of projective integration schemes for singular perturbed stochastic differential systems. Comm. Math. Sci.,2006,4:707~729
    [82]Givon D. Strong conergence rate for two-time-scale jump-difuusion stochastic differential sysytems. SIAM J. Multi. Model. Simul.,2007,6:577~594
    [83]Cerrai S. A Khasminkii type averaging principle for stochastic reaction-diffusion equations:the general case,2009, Preprint
    [84]McOwen R. C. Partial Differential Equations:Methods and Applications. New Jersey:Prentice Hall Inc,1996
    [85]Chow P. L. Stochastic Partial Differential Equations. New York:Chapman & Hall/CRC,2007
    [86]Cerrai S. Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reac-tion term. Probab. Theory Related Fields,2003,125:271~304
    [87](?)ksendal B. Stochastic Differential Equations.6th ed. Berlin:Springer,2003
    [88]Bensoussan A, Lions J. L, Papanicolaou G. Asymptotic Analysis for Periodic Structure. Amster-dam:North-Holland Pub. Co.,1978
    [89]Zhikov V. V, Kozlov S. M, Oleinik O. A, Averaging of parabolic operators. Trans. Mosc. Math. Soc.,1982,45:189~241
    [90]Mierczynski J, Shen W. X. Time averaging for nonautonomous/random linear parabolic equa-tions. Discrete Contin. Dyn. Syst. Ser. B,2008,9:661-699
    [91]Kouritzin M. A. Averaging for fundamental solutions of parabolic equations. J. Differential Equations,1997,36:35~75
    [92]Matthies K. Time-averaging under fast periodic forcing of parabolic partial differential equations: exponential estimates. J. Differential Equations,2001,174:133~180
    [93]Cerrai S. Normal deviations from the averaged motion for some reaction-diffusion equations with fast oscillating perturbation. J. Math. Pures Appl.,2009,91:614~647
    [94]Wang W, Roberts A. J. Average and deviation for slow-fast stochastic partial differential equa-tions,2009, available at http://arxiv.org/PS_cache/arxiv/pdf /0904 /0904.1462v1.pdf
    [95]Wang W, Roberts A. J, Duan J. Large deviations for slow-fast stochastic partial diffrential equa-tions,2009, available at http://arxiv.org/PS_cache/arxiv/pdf /1001 /1001.4826v1.pdf
    [96]Kifer Y. Diffusion approximation for slow motion in fully coupled averaging. Probab. Theory Related Fields,2004,129:157-181
    [97]Kifer Y. Another proof of the averaging principle for fully coupled dynamical systems with hyperbolic fast motions. Discrete Contin. Dyn. Syst.,2005,13:1187-1201
    [98]Hormander L. Linear Partial differential Operators. Berlin:Springer-Verlag,1963
    [99]Krylov N. V, Rozovskii B. L. Stochastic evolution equations. J. Soviet Math.,1981,16: 1233-1277
    [100]Revuz D, Yor M. Continuous Martingales and Brownian Motion.3rd ed. Berlin:Springer,2005
    [101]Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Berlin:Springer,1985
    [102]Ruelle D. Characteristic exponents and invariant manifolds in Hilbert space. Ann. Math.,1982, 115:243-290
    [103]Bates P. W, Lu K, Zeng C. Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space. Mem. Amer. Math. Soc.,1998,135:1-129
    [104]Chow S. N, Lu K, Lin X. B. Smooth foliations for flows in Banach space. J. Differential Equa-tions,1991,94:266~291
    [105]Chicone C, Latushkin Y. Center manifolds for infinite dimensional nonautonomous differential equations. J. Differential Equations,1997,141:365~399
    [106]Henry D. Geometric Theory of Semilinear Parabolic Equations. New York:Springer-Verlag, 1980
    [107]Waymire C, Duan J. Probability and Partial Differential Equations in Modern Applied Mathe-matics. Berlin:Springer,2005
    [108]Caraballo. T, Duan J, Lu K, et al. Invariant manifolds for random and stochastic partial differ-ential equations. Adv. Nonlinear Stud.,2010,10:23~52
    [109]Kunita H. Stochastic Flows and Stochastic Differential Equations. Cambridge:Cambridge Univ. Press,1990
    [110]Schmalfuβ B. A random fixed point theorem and random graph transformation. J. Math. Anal. Appl.,1998,225:91-113
    [111]Chow S. N, Lu K, Lin X. B. Invariant manifolds for flows in Banach space.J. Differential Equations,1988,74;285~317
    [112]Caraballo T, Kloeden P. E, Schmalfuβ B. Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optim.,2004,50:183~207
    [113]Chueshov I. A reduction principle for coupled nonlinear parabolic-hyperbolic PDEs. J. Evolu-tion Equations,2004,4:591-612
    [114]Chow P. L. Thermoelastic wave propagation in a random medium and some related problems. Int. J. Eng. Sci.,1973,11:253-971
    [115]K. Yosida. Functional Analysis. New York:Springer-Verlag,1968
    [116]Cronin J. Mathematical Aspects of Hodgkin-Huxley Neural Theory. Cambridge:Cambridge Univ. Press,1987
    [117]Najafi M, Sarhangi G. R, Wang H. Stabilizability of coupled wave equations in parallel under various boundary conditions. IEEE Transactions on Automatic Control,1997,42:1308-1312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700