浅海多途信道中声聚焦与声屏蔽技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水声物理、信号处理和海洋环境的紧密结合是声纳技术发展的必然趋势。基于声场的相干性阐述了多途信道中声聚焦与声屏蔽的基本原理,前者是增强基阵对一个局部区域内噪声源的接收响应,是一空间滤波技术,而后者是与前者相对的概念,降低基阵对某个局部区域内噪声源的接收响应称为声屏蔽,两者均可以通过虚拟时间反转镜实现。
     声场中的聚焦效应分为两种机理:阵的聚焦和多途信道的聚焦。理想信道中阵的时反聚焦与近场的聚焦波束形成是异曲同工的。利用声场聚焦效应提出的声图测量技术可以实现近场目标的高精度定位和测量辐射噪声源在运动平台及其附近的空间分布图(声图),后者对发展安静型技术及降噪措施效果评估有重要意义,有望应用于舰船的故障诊断,也可以指导先进的被动式鱼雷声白导系统识别目标的要害部位。虚拟时间反转镜声图测量技术可以改善信道的多途效应对声图的污染。仿真与海试研究验证了声图测量技术的可行性与实用性。海试研究表明:在高频段,舰船在近场仍可以看作单亮点点源,双体船双桨同时工作时是双亮点的,说明高频段的亮点部位对应螺旋桨。
     针对传统的阵处理技术无法分辨同一方向上两个点源并且声聚焦技术无法检测淹没于强干扰中的期望声源,提出了声屏蔽技术。通过将接收的信号与干扰在频域通过一个屏蔽、聚焦权滤波器,在对干扰屏蔽的同时实现对目标的聚焦,该技术可在选定的局部区域内抑制其中的声源产生的相干干扰,从而改善对屏蔽区外目标的探测性能。针对目标尺寸较大,且距离较近,即不能被简化成点源的情况,讨论了两种展宽屏蔽区的方法:矩阵拓展法和递推法,前者简单明了,后者可以减小计算量。
     通过计算机仿真与水池实验研究分析了影响水平阵声聚焦和声屏蔽技术实现的因素,并验证了原理的正确性,方法的可行性与实用性。
One of the inevitable tendencies of sonar technology is the tight combination of physics of underwater acoustics, signal processing and ocean environment. The basic principles of the acoustic focusing and the acoustic covering, based on the coherence of the acoustic field, is proposed. The acoustic focusing is a spatial filtering technology, which enhances the array response to the local area of the targets, while the acoustic covering is an opposite concept, which reduces the array response to the local area of the noise, but both of which can be realized with time reversal mirror (TRM).
     There are two focusing mechanisms in the acoustic field, array focusing and multi-path focusing. Time reversal array focusing and focused beamforming can achieve the same effect, although they are different in the method. The acoustic image measurement technology utilizing focusing mechanisms can achieve high precision positioning for targets in the near field and get the distribution image of ship's radiated noise sources, the latter is helpful for developing quiet submarine, assessment of the noise reduction effect, diagnosing the malfunction of the ship and directing the advanced passive acoustic homing torpedo to attack the vital parts of the targets. The virtual time reversal mirror technology is adopted to suppress the multi-path interference of underwater acoustic channel, which may affect the quality of the source space distribution image measurement. Simulation and sea trial researches show that the acoustic image measurement technology is feasible and valid. The sea trials researches show that the general ship can be seen single highlight in near field in the high-frequency band, but the catamaran has double highlights when its two propellers work at the same time, in other words, the radiation part of highlight in the high-frequency band is corresponding to the propeller.
     Acoustic covering technology in multi-path channel is proposed for the sake of distinguishing two targets in the same bearing, which is impossible for the traditional technology of hydrophone array processing, and solving the problem that the targets under the heavy interference can't be detected only adopting the acoustic focusing technology. The signals received by every element, which contain the noise of undesirable targets and the signal transmitted by the targets in the same bearing, are weighted in the frequency domain according to their different channels, in this way, the focusing on the target and the covering to the noise can be achieved simultaneously. Coherent interference in a selected covering area can be suppressed, so the detection performance is improved to the targets outside the area. When the target is big in the size and in very near field, it can't be modeled as point source, so two methods for broadening the covering area, matrix extending method and recursive method, are discussed. The former has a brief expression, but the computational complexity of the latter is lower.
     The effect factors of the acoustic focusing and the acoustic covering technology in the multi-path acoustic channel are analyzed by computer simulation and water-tank experimental researches, which also validate the technology's correctness, feasibility and practicability.
引文
[1]朱石坚.舰艇减振降噪系统中的混沌隔振技术研究.国防科学技术大学博士论文.2006:1-2页
    [2]朱从云.主动吸声降噪理论与方法研究.华中科技大学博士论文.2005:1-8页
    [3]栾经德,李启虎,刘文化等.一种最佳空问滤波器的实现.声学学报.2004,29(2):143-148页
    [4]冯杰,杨益新,孙超.自适应空域矩阵滤波器设计和目标方位估计.系统仿真学报.2007,19(20):4798-4802页
    [5]余华兵,孙长瑜,李启虎.探潜先锋——拖曳线列阵声纳.物理.2006,35(4):420-423页
    [6]刘孟庵.拖曳线列阵声呐技术发展综述.声学与电子工程.2006,3:1-5页
    [7]杨坤德,马远良,邹士新.匹配场噪声抑制——一种波束域方法.压电与声光.2006,28(1):102-105页.
    [8]张宾,孙长瑜.拖船干扰抵消的一种新方法研究.仪器仪表学报.2006,27(6):1355-1357页
    [9]马远良,鄢社锋,杨坤德.匹配场噪声抑制:原理及对拖曳线列阵的应用.科学通报.2003,48(12):1274-1278页
    [10]姜达.基于矢量水听器自适应本舰噪声抵消技术的研究.西北工业大学硕士论文.2006:44-48页
    [11]L.C.Godara,Posterbeamformer interference canceller with improved performance,J.Acoust.Soc.Am.1989,85:202-213P
    [12]L.C.Godara.A Robust Adaptive Array Process.IEEE Transaction on Circuits and Systems,1987,34(7):721-730P
    [13]从卫华.自适应拖船噪声抵消技术研究.哈尔滨工程大学博士学位论文.1999
    [14]马远良,刘孟庵,张忠兵,童立.浅海声场中拖曳线列阵常规波束形成 器对本舰噪声的接收响应.声学学报.2002,27(6):481-486页
    [15]R.J.Urick.洪申译.第3版.水声原理.哈尔滨船舶工程学院出版社.1990:137-144页
    [16]Paul C.Etter.蔡志明等译.第3版.水声建模与仿真.电子工业出版社.2005:106-108,177-180页
    [17]惠俊英,生雪莉.第2版.水下声信道.国防工业出版社.2007:37-40页
    [18]何培忠,夏荣民,段世梅等.一种新的超声成像方法—振动声成像.声学技术.2005,24(1):34-38页
    [19]胡爱明,钱盛友,杨林.HIFU治疗中媒质特性对声聚焦影响的研究.中国医学物理学杂志.2008,25(1):496-505页
    [20]吴立顺.高强度聚焦超声焦域温度场特性的数值仿真研究.天津医科大学硕士论文.2008:1-6页
    [21]胡爱明.HIFU治疗中媒质特性及声的非线性对声聚焦影响的研究.湖南师范大学.2007:3-8页
    [22]Hayes M P and Gough P T.Broad-band synthetic aperture sonar.IEEE Journal of Oceanic Engineering.1992,17(1):80-94P
    [23]孙宝申,张凡,沈建中.合成孔径聚焦声成像时域算法研究.声学学报1997,22(1),42-49页
    [24]张建军,潘恒超,李浩.超声成像测井工作原理与影响因素.声学与电子工程.2001,2:32-36页
    [25]惠娟,胡丹,惠俊英,殷敬伟.聚焦波束形成声图测量原理研究.声学学报.2007,32(4):356-361页
    [26]梅继丹,惠俊英,惠娟.聚焦波束形成声图近场被动定位技术仿真研究.系统仿真学报.2008,20(5):1328-1333页
    [27]梅继丹,惠俊英,惠娟.水平阵聚焦波束形成声图定位算法研究.哈尔滨工程大学学报.2007,28(7):773-778页
    [28]魏炜.超声时间反转法自适应聚焦性能研究.博士论文
    [29]M Fink,C Prada,F Wu,D Cassereau.Self focusing in inhomogeneous media with "time reversal" acoustic mirrors.IEEE Ultrason.Symp,1989, 2: 681-686P
    [30] M Fink. Time reversal of ultrasonic fields-Part I: Basic principles. IEEE Trans. Ultrason, Ferroelec, Freq. Contr, 1992, 39(5): 555-566P
    [31] F Wu, J-L Thomas, M Fink. Time reversal of ultrasonic fields-Part II:Experimental results. IEEE Trans. Ultrason, Ferroelec, Freq. Contr,1992, 39(5): 567-578P
    
    [32] M Fink. Time reversed acoustics. Scientific American, 1999, 9: 91-97P
    [33] N Chakroun, M Fink, F Wu. Time reversal processing in nondestructive testing. IEEE Trans. Ultrason, Ferroelec, Freq. Contr, 1995, 42(6):1087-1098P
    [34] N Charkroun, M Fink, F Wu. Ultrasonic nondestructive testing with Time Reversal Mirrors.IEEE Ultrasonic Symp, 1992,2: 809-814P
    [35] N Charkroun, F Wu, M Fink. Improvement of time reversal mirror in detection of small cracks and metallurgical defects in sample with ultrasonic speckle noise level. IEEE Ultrasonic Symp, 1993, 2: 705-710P
    [36] J-L Thomas, F Wu, M Fink. Self focusing on extended objects with time reversal mirror, applications to lithotripsy. IEEE Ultrasonic Symp, 1994,3: 1809-1813P
    [37] J-L Thomas, M Fink. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Trans.Ultrason, Ferroelec, Freq. Contr, 1996, 43(6): 1122-1129P
    [38] P Roux, M Fink. Vorticity measurements with an acoustic time-reversal mirror. IEEE Ultrasonic Symp, 1996, 2: 1249-1254P
    [39] M Fink. Time reversal and phase conjugation with acoustic waves: industrial and medical applications. IEEE Lasers and lectro-Optics Conf, 2005, 3:2334-2335P
    [40] Fink, M. Time reversal and phase conjugation with acoustic waves:industrial and medical applications. IEEE Conference on Lasers and Electro-Optics, 2005, 3: 2334-2335P
    [41] S Catheline, M Fink. Acoustic source localization model using in-skull reverberation and time reversal. Applied Physics Letters, 2007, 90(6):063902.1-063902.3P
    [42] Fink M, Cassereau D, Derode A et al. Time reversed acoustic. Rep. Prog,Phys, 2000(63): 1993-1995P
    [43] Darrell R Jackson, David R Dowling. Phase conjugation in underwater acoustics. J. Acoust. Soc. Am., 1991, 89(1): 171-181P
    [44] Michael R Dungan, David R Dowling. Computed narrow-band azimuthal time-reversing array retrofocusing in shallow water. J. Acoust. Soc. Am.,2001, 110(4): 1931-1942P
    
    [45] Michael R Dungan, David R Dowling. Orientation effects on linear time-reversing array retrofocusing in shallow water. J. Acoust. Soc. Am.,2002, 112(5): 1842-1852P
    
    [46] Sunny R Khosla, David R Dowlinga. Time-reversing array retrofocusing in noisy environments. J.Acoust. Soc.Am., 2001, 109(2): 538-546P
    [47] Karim G Sabra, Sunny R Khosla, David R Dowling. Broadband time-reversing array retrofocusing in noisy environments. J. Acoust. Soc.Am., 2002, 111(2): 823-830P
    [48] David R Dowling, Darrell R Jackson. Narrow-band performance of phase-conjugate arrays in dynamic random media. J. Acoust. Soc. Am.,1992, 91(6): 3257-3277P
    [49] David R Dowling. Phase-conjugate array focusing in a moving medium. J.Acoust. Soc.Am., 1993, 94(3): 1716-1718P
    [50] Sunny R Khosla, David R Dowling. Time-reversing array retrofocusing in simple dynamic underwater environments. J. Acoust. Soc. Am., 1998,104(6): 3339-3350P
    [51] Michael R Dungan , David R Dowling. Computed narrow-band time-reversing array retrofocusing in a dynamic shallow ocean. J. Acoust.Soc.Am., 2000, 107(6): 3101-3112P
    [52] Karim G Sabra, David R Dowling. Broadband performance of a moving time reversing array. J.Acoust. Soc.Am., 2003, 114(3): 1395-1405P
    [53] Karim G Sabra, David R Dowling. Effect of ocean currents on the performance of a time-reversing array in shallow water. J. Acoust. Soc. Am.,2003, 114(6): 3125-3135P
    [54] Karim G Sabra, David R Dowling. Effects of time-reversing array deformation in an ocean wave guide. J. Acoust. Soc. Am., 2004, 115(6):2844-2847P
    [55] Dowling D R. Acoustic pulse compression using passive phase-conjugate processing. J.Acoust. Soc.Am., 1994, 95(3): 1450-1458P
    [56] Karim G Sabra, David R Dowling. Blind deconvolution in ocean waveguides using artificial time reversal. J. Acoust. Soc. Am., 2004,116(1): 262-271P
    [57] Kuperman W A, Hodgkiss W S, Hee Chun Song, et al. Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror. J. Acoust. Soc. Am., 1998, 103(1): 25-40P
    [58] H C Song, W A Kuperman, W S Hodgkiss. A time-reversal mirror with variable range focusing. J.Acoust.Soc.Am., 1998, 103(6): 3234-3240P
    [59] W S Hodgkiss, H C Song, W A Kuperman. A long-range and variable focus phase-conjugation experiment in shallow water. J. Acoust. Soc. Am.,1999, 105(3): 1597-1604P
    [60] H C Song, W A Kuperman, W S Hodgkiss, et al. Iterative time reversal in the ocean. J.Acoust. Soc.Am., 1999, 105(6): 3176-3184P
    [61] Seongi Kim, G. F Edelmann, W A Kuperman, et al. Spatial resolution of time-reversal arrays in shallow water. J. Acoust. Soc. Am., 2001, 110(2):820-829P
    [62] Seongil Kim, W A Kuperman, W S Hodgkiss, et al. Robust time reversal focusing in the ocean. J.Acoust.Soc.Am., 2003, 114(1): 145-157P
    [63] H Song, W A Kuperman, W S Hodgkiss, et al. Demonstration of a high-frequency acoustic barrier with a time-reversal mirror. IEEE J. Oceanic Eng, 2003, 28(2): 246-249P
    [64] W J Higley, Philippe Roux, W A Kuperman, et al. Synthetic aperture time-reversal communications in shallow water Experimental demonstration at sea.J.Acoust.Soc.Am.,2005,118(4):2365-2372P
    [65]H C Song,W S Hodgkiss,W A Kuperman,et al.Spatial diversity in passive time reversal communications.J.Acoust.Soc.Am.,2006,120(4):2067-2076P
    [66]汪承灏,魏炜.改进的时间反转法用于有界时超声目标探测的鉴别.声学学报,2002,27(3):193-197页
    [67]张碧星,吴吴,汪承灏.Time Reversal Selg-Focusing in a Solid-Plate Waveguide.Chinese Physics Letters(中国物理快报:英文版),2004,21(2):337-340页
    [68]魏炜,汪承灏.有平界面存在时时间反转法的自聚焦性能.应用声学,1999,18(3):1-5页
    [69]魏炜,刘晨,汪承灏.固体中时间反转法的声束自聚焦.声学学报,2000,25(4):340-344页
    [70]张碧星,陆铭慧.用时间反转法在水下波导介质中实现自适应聚焦的研究.声学学报,2002,27(6):541-548页
    [71]吴昊,张碧星,汪承灏.声波在固体板中的多径传播及其时间反转声场.声学学报,2005,30(3):215-221页
    [72]陆铭慧,张碧星,汪承灏.时间反转法在水下通信中的应用.声学学报,2005,30(4):349-354页
    [73]生雪莉,惠俊英,梁国龙.矢量反转镜时空滤波技术研究.声学学报,2005,30(4):349-354页
    [74]生雪莉,惠俊英,梁国龙.时间反转镜用于被动检测技术的研究.应用声学,2005,30(3):271-278页
    [75]赵航芳,宫先仪.时反处理抑制混响提高信混比实验室波导实验研究.声学技术,2005,24(z1):57-58页
    [76]汪素萍,宫先仪,杜栓平.主动时间反转聚焦技术.声学与电子工程,2005,3:12-14 27页
    [77]L Pautet,A Tesei,P Guerrini,E Pouliquen.Target echo enhancement using a single-element time reversal mirror.IEEE J.Oceanic Eng.,2005, 30(4): 912-920P
    [78] Gabriel Montaldo, Micka Tanter, Mathias Fink. Revisiting iterative time reversal processing: Application to detection of multiple targets. J. Acoust.Soc.Am., 2004, 115(2): 776-784P
    [79] Thomas Folegot, Julien de Rosny, Claire Prada, Mathias Fink. Adaptive instant record signals applied to detection with time reversal operator decomposition. J.Acoust. Soc.Am., 2005, 117(6): 3757-3765P
    [80] Karim G. Sabra, Philippe Roux, Hee-Chun Song, et al. Experimental demonstration of iterative time-reversed reverberation focusing in a rough waveguide. Application to target detection. J. Acoust. Soc. Am., 2006,120(3): 1305-1314P
    [81] S Kim, W A Kuperman, W S Hodgkiss, et al. Echo-to-reverberation enhancement using a time-reversal mirror. J. Acoust. Soc. Am., 2004, 115(4):1525-1531P
    [82] J F Lingevitch, H C Song, W A Kuperman. Time reversed reverberation focusing in a waveguide. J. Acoust. Soc. Am., 2002, 111(6):2609-2614P
    [83] J S Kim, W S Hodgkiss, W A Kuperman, H C Song. Null-broadening in a waveguide. J.Acoust. Soc.Am., 2002, 112(1): 189-197P
    [84] H C Song, S Kim, W S Hodgkiss, W A Kuperman. Environmentally adaptive reverberation nulling using a time reversal mirror. J. Acoust. Soc.Am., 2004, 116(2): 762-768P
    [85] H C Song, W S Hodgkiss, W A Kuperman, et al. Experimental demonstration of adaptive reverberation nulling using time reversal. J.Acoust. Soc.Am., 2005, 118(3): 1382-1387P
    [86] Rouseff D, Jackson D R, Fox W L J, et al. Underwater acoustic communication by passive-phase conjugation: Theory and experimental results. IEEE J. Oceanic Eng., 2001, 26(4): 821-831P
    [87] T C Yang. Temporal resolutions of time-reversal and passive-phase conjugation for underwater acoustic communications. IEEE J. Oceanic Eng.,2003, 28(2): 229-245P
    [88]T C Yang.Differences between passive-phase conjugation and decision-feedback equalizer for underwater acoustic communications.IEEE J.Oceanic Eng.,2004,29(2):472-487P
    [89]John A Flynn,James A Ritcey,Daniel Rouseff,Warren L J Fox.Multichannel equalization by decision-directed passive phase conjugation:experimental results.IEEE J.Oceanic Eng.,2004,29(3):824-836P
    [90]Hursky P,Porter M B,Rice J A,et al.Passive phase-conjugate signaling using pulse-position modulation.OCEANS 2001 MTS/IEEE Conference and Exhibition,2001,4:2244-2249P
    [91]Paul Hursky,Michael B Porter,Martin Siderius.Point-to-point underwater acoustic communications using spread-spectrum passive phase conjugation.J.Acoust.Soc.Am.,2006,120(1):247-257P
    [92]范敏毅.水下声信道的仿真与应用研究.哈尔滨工程大学博士学位论文,2000:26-46页
    [93]余赞,惠俊英等.聚焦波束形成声图定位算法稳健性仿真研究.全国博士生学术论坛船舶与海洋工程.哈尔滨.2007
    [94]徐复,惠俊英等.多途条件下聚焦波束近程定位.声学技术.2007,26(6):1101-1107页
    [95]Simon haykin著.自适应滤波器原理.第三版.电子工业出版社,1998:365-385页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700