用户名: 密码: 验证码:
直线阵潜艇噪声源高分辨定位识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜艇的声隐身性能是衡量潜艇的安全性和作战性能的重要指标。辐射噪声是各种无源声呐和声学武器探测潜艇的主要目标信息,是破坏其声隐身性能的主要因素,自噪声则直接影响本艇声呐站的工作性能,因此降低潜艇水下噪声具有重要意义。为了有针对性地开展噪声控制,同时为潜艇声学设计中的噪声指标提供实际依据,开展噪声源识别分离技术研究,查找系统中的主要噪声源及确定各类噪声源的贡献具有重要意义。随着减振降噪技术的发展,以往的噪声源定位识别方法和分析手段已无法有效获得噪声源信息,因此研究适用于潜艇大尺寸、复杂系统,同时便于工程实施的噪声源近场定位识别方法,成为潜艇噪声控制和减振降噪技术的关键。
     本文首先阐述了近场声聚焦技术在噪声源定位识别方面的优势,在回顾近场声聚焦技术理论发展及其工程应用研究的基础上,以线列阵近场声聚焦技术在潜艇噪声源定位识别上的应用为研究背景,对测量面为平面和柱面的噪声源近场高分辨定位识别方法、及能抑制基阵灵敏度误差和相位误差的稳健噪声源近场定位识别方法等方面进行了系统、全面的理论和试验研究。
     本文首先以基阵近场理论为基础,从理论上阐述了近场声聚焦的基本原理,并给出均匀线列阵聚焦空间分辨率的计算公式,分析测量距离和基阵孔径等参数对聚焦空间分辨率的影响,并针对近场聚焦的空间混叠问题提出了定位模糊判决方法,可以用于指导基阵的阵形设计。
     本文针对常规近场聚焦波束形成和MVDR近场聚焦波束形成等定位识别方法的不足,重点研究了基于幅度相位联合补偿的MVDR、MUSIC近场聚焦波束形成方法。该方法可以实现噪声源相对强度估计,且在一定条件下可以有效降低信号频段和测量距离对算法性能的限制,提高基阵在低频段的聚焦空间分辨率,在高频段具有更强抑制空间混叠能力,具有更低的旁瓣级,及更强的抗干扰能力,更小的声源强度估计误差,更高的定位精度。针对极值搜索类算法不适用于相干源近场定位识别问题,提出了基于最大似然估计相干源近场高分辨定位识别方法,并利用遗传算法寻求最大似然估计全局最优解。该方法具有较高定位精度,且仅利用小孔径基阵就可实现相干源近场高分辨定位,同时不受阵列几何结构的限制。针对近场声聚焦技术难以实现端射方向噪声源定位识别问题,提出了基于虚拟旋转变换技术的端射方向噪声源近场定位识别方法,分析虚拟阵列孔径、测量距离、信噪比、观测区间等参数对算法性能的影响,并给出该方法的具体应用条件。
     本文针对潜艇辐射噪声的宽带连续谱成份,研究了基于子带分解和聚焦变换技术的宽带噪声源近场高分辨定位识别方法。该方法将子带分解和聚焦变换技术,与幅度相位联合补偿的极值搜索类算法有效结合,从而可实现宽带非相干源和相干源的相对强度估计和声源空间位置估计,并对上述方法的空间谱特性、定位性能和聚焦空间分辨率进行了对比分析。
     本文研究了适用于潜艇模型的测量面为柱面的噪声源近场高分辨定位识别方法,并对算法的性能进行详细分析。为解决线列阵近场定位中的左右舷模糊问题,提出矢量声压组合基阵的柱面近场高分辨定位识别方法,该方法通过在声压基阵中配置单只矢量水听器,将矢量水听器与柱面高分辨近场定位识别方法的优势成功结合,在实现水下噪声源近场高分辨定位识别的同时,利用矢量水听器单边指向性,去除近场定位中的左右舷模糊,同时对算法的舷侧模糊压制能力、声源相对强度估计误差等性能进行对比分析。
     本文研究了阵列流形失配下的稳健噪声源近场定位识别方法,该方法可以准确获得所需要的对角加载值,抑制阵列流形失配对基于幅度补偿的MVDR近场聚焦波束形成性能的影响,提高定位识别方法的稳健性,对算法的性能进行了详细的对比分析。提出了基于单辅助矢量水听器的基阵误差校正方法,利用精确校正的单只矢量水听器作为辅助基阵,可以在远场或近场对声源空间位置和基阵误差进行无模糊联合估计,只需要参数的一维搜索,运算量小不存在参数联合估计的局部收敛问题,分析了信噪比、声源空间位置等参数对校正结果的影响。
     本文开展了消声水池试验和实艇海试测量试验,验证了本文算法的有效性,理论分析结果和试验数据处理结果基本一致,为噪声源近场高分辨定位识别方法下一步的实际工程应用提供了试验基础。
The acoustic stealthy performance of the submarine is a important index arm for judging its safety and operational performances.Radiated noise is the main target information of various passive sonar and detecting submarines with acoustic weapons,and is the most important factor for damaging stealthy performance.And self-noise is directly affecting its own sonar station working performance.So reducing submarine underwater noise has an important significance.For pertinently carrying out to control noises, as well as providing the actual basis for noise indicators of the acoustic design for submarines,it has a significant meaning to carry out studying the technology of noise source identification separation, find the main noise sources in the system and determine the contribution of various noise sources.With the development of the damp vibration and noise reduction technology, previous methods of the noise source location identification and analysis tools have been unable to effectively receive informations of noise sources,so researching a facilitate engineering implementation method for locating and identifying near-field noise source to apply to the large-size submarine, complex systems,which is the key of the submarine noise control and damp vibration and noise reduction technology.
     This paper describes the advantage of the near-field acoustic focused technology in the noise source location identification.In the basic of reviewing the theory development of the near field acoustic focusing technology and its engineering application, based on the linear array near-field acoustic focus technology applying on locating and identifying submarine noise sources, the paper progresses a systemic comprehensive theory research and experimental research on high-resolution near-field noise source location identification method whose measurement surface is flat and cylindrical,and the stability near-field noise source location identification method which can inhibit the array sensitivity error and phase error.
     Firstly based on near-field basic matrix theory, the paper describes the basic principles of the near-field sound focused technology, and gives the calculation formula of uniform linear array focused spatial resolution, analyse the effect of measuring distance, arrays aperture and other parameters on the focused spatial resolution.For the near-field focused spacel aliasing,advance a position fuzzy sentence method to guide designing the base matrix's form.
     In this paper, focusing on the lack of the conventional beamforming,MVDR near-field focused beamforming and other location identification methods, significantly researching MVDR, MUSIC near-field focused beamforming methods in the basic of the combination compensation of the amplitude and the phase.This method can implement the relative intensity estimate for noise sources, and in certain conditions it can reduce the signal frequency and restrictions of the measuring distance on the algorithm performance, increase the focused spatial resolution when the basic array works at the low frequency, make it have better capacity to inhibit space aliasing at high frequencies, with lower side lobe level, stronger anti-interference ability, smaller estimation error of sound source intensity, higher positioning accuracy.For the problem that the class algorithm of extremum seeking does not apply to coherent sources near-field location and identification, give a coherent sources near-field high-resolution location identification method based on maximum likelihood estimation,and find a global optimal solution of maximum likelihood estimation with the heredity algorithm.The method has high positioning accuracy, and only with a small aperture arrays it can achieve coherent sources near-field high-resolution location, while not subject to restrictions on the geometry structure of the array.Because near-field sound focused technology is difficult to locate and identify the noise source at the end-fire direction, the paper raise a end-fire direction near-field noise source location identification method based on the virtual rotation transformation technology to analyse that the aperture of the virtual array,the measurement distance, SNR, the observation intervaland and other parameters affect the algorithm performance, and give its specific application conditions.
     For components of the broadband continuum spectrum of a submarine radiated noise, the paper studies a wideband noise source high-resolution near-field location identification method based on sub-band decomposition and focused transformation technology.The method effectively combines sub-band decomposition and transformation technology with the extremum seeking algorithm by using the amplitude and phase compensation, which enables broadband non-coherent sources and coherent sources to achieve the relative intensity estimation and the spatial location estimation of sound sources,also compare and analyse the the characteristics of thespacial spectrum, the location performance and focused spatial resolution by this method.
     In this paper, study a noise source near-field high-resolution location identification method for the submarine model's measurement surface being cylindrical, and particularly analysis the performance of this algorithm.To distinguish the larboard and starboard at the near field line array positioning, propose a cylindrical near-field high-resolution location identification method with combination basic arrays, which successfully combines the advantages of the hydrophone and the cylindrical high-resolution near-field location identification method by configuring a single vector hydrophone in the sound pressure basic array, while achieving the underwater noise source near-field high resolution location identification,use the unilateral directive property of vector hydrophone to remove the confusion of the larboard and starboard in near-field location, at the same time compare and analyse the performances of the hull fuzzy suppression ability and the relative intensity estimation errors of the sound source.
     This paper research the stability noise source near-field location identification method at the array manifold mismatch. It can accurately obtain the required load values of across corners, inhibit that the array manifold mismatch affects performances of MVDR near-field focused beamforming rate based on the amplitude compensation, improve the solidity property of location identification methods, compare and analyse the performance of the algorithm in detail.Proposed a arrays error correction methods based on a single auxiliary vector hydrophone, use a single vector hydrophone by correcting precisely as an auxiliary basic array,which can progress a no confusion combination estimation in the far field or near-field to the spatial location of sound source arrays and the basic error, only need one-dimensional parameter search, computational load is not existed the local convergence issue at the parameters associated estimation, analyse the effect of the SNR, spatial location of the sound source and other parameters on the calibration results.
     This paper carries out anechoic pool and the measurement trial for the submarine on the sea, verify the effectiveness of the algorithm, theoretical analysis results and the trial results by treated are nearly the same, which provides the trial basis for further more practical engineering application of the noise source high-resolution near-field location identification method.
引文
[1]王之程,陈宗岐,于沨,刘文帅.舰船噪声测量与分析.国防工业出版社,2004
    [2]胡家雄,伏同先.21世纪常规潜艇声隐身技术发展动态.船舶科学技术,2001,1(4):1-5页
    [3]高守勇.潜艇辐射噪声测量研究.哈尔滨工程大学硕士学位论文.2006
    [4]刘伯胜,雷家煌.水声学原理.哈尔滨船舶工程学院出版社,1993:220-229贝
    [5](美)R.J.尤立克.水声原理.洪申译.哈尔滨船舶工程学院出版社,1990:258-269页
    [6]吴国清.舰船噪声识别(Ⅱ)—线谱稳定性和唯一性.声学学报,1999,24(1):6-11页
    [7]廖风云.潜艇辐射噪声测量及被动测距研究.哈尔滨工程大学硕士学位论文.2007
    [8]杨德森.水下航行器噪声分析及主要噪声源识别.哈尔滨工程大学博士学位论文.1998
    [9]张宝成,徐雪仙.舰艇水下噪声源贡献的分析.舰船力学情报,1994,(10):40-46页
    [10]孙大军.合成孔径声呐技术研究综述.哈尔滨工程大学学报,2000,21(1):51-56贝
    [11]蒋国建,任克明,马杰等.噪声抵消法估计和抑制声呐部位主要自噪声.声学学报,1996,21(4):289-296页
    [12]Maynard J. D, Williams E. G, and Y. Lee. Nearfiled acoustic holography Ⅰ. Theory of generalized holography and development to NAH. J. Acoust. Soc. Am,1985, 78(4):1395-1413P
    [13]Veronesi W. A, Maynard J. D. Nearfiled acoustic holography (NAH) Ⅱ. Holographic reconstruction algorithms and computer implementation. J. Acoust. Soc. Am.1987, 81(5):1307-1322P
    [14]何元安,何祚镛,商德江.基于平面声全息的全空间场变换:Ⅱ.水下大面积平面发射声基阵的近场声全息实验,2003,28(1),46-51
    [15]何元安,何祚镛,基于平面声全息的全空间场变换:Ⅰ.原理与算法,2002,27(6),507-512
    [16]章林柯,何琳,朱石坚.潜艇主要噪声源识别方法研究.噪声与振动控制,2006, (4):7-10页
    [17]W. F. King, Ⅲ and D. Bechert. On the sources of wayside noise generated by high-speed trains. Journal of Sound and Vibration.1979,66(3):311-332P
    [18]B. Barsikow, W. F. King, Ⅲ and E. Pfizen Maier. Wheel/rail noise generated by a high-speed train investigated with a line array of microphones. Journal of Sound and Vibration,1987,118(1):99-122P
    [19]B. Barsikow. Experiences with various configurations of microph one arrays used to locate sound sources on railway trains operated by the DB AG, Journal of sound and Vibration,1996,193(1):172-182
    [20]H. Kook, G. B. Moeds, P. Davies and J. S. Bolton, An efficient procedure for visualizing the sound field radiated by vehicles during standardized passbv tests, Journal of Sound and vibratin,2000,233(1):137-156
    [21]Christensen J. J, Hald J. Beamforming. B&K Technical Review,2004, No.1:1-48
    [22]Hald J. Combined NAH and beamforming using the same array. B&K Technical Review,2005:No.1:11-39
    [23]Hans Rudolf Graf. Deconvolution techniques for improved array resolution. Sixth international congress on sound and vibration.5-8 July 1999, Copenhagen, Denmark:829-836P
    [24]Marinus M. Boone. Array technology for sound analysis and sound reproduction. Sixth international congress on sound and vibration.5-8 Julyl999, Copenhagen, Denmark:907-912P
    [25]S. Bruhl and A. Roder. Acoustic noise source modeling based on microphone array measurements. Journal of Sound and Vibration.2000,231(3):611-617P
    [26]F. Poisson, J. C. Valiere and P. Herzog. High speed sound sources localization using bilinear time-frequency transformation. Applied Acoustic, Vol.53, No.1-3, 1998:1-13P
    [27]Brian G. Ferguson and Barry G. Quinn. Application of the short-time Fourier transformation and the Wigner-Ville distribution to the acoustic localization of aircraft. J. Acoust. Soc. Am.1994,96(2):821-826P
    [28]K.-L. Du, A. K. Y. Lai, K. K. M. Cheng, M. N. S. Swamy. Neural methods for antenna array signal processing:a review. Signal Processing.2002, 82:547-561P
    [29]孙长瑜,潘学宝.二维频域波束形成法,应用声学,1997,16(2):28-31
    [30]贾智骏,蒋伟康.基于传声器阵列的电泵噪声源识别研究,噪声与振动控制, 2004,6:49-51
    [31]郭祺丽,孙超,杨益新.宽带波束形成中近场补偿的实验研究.西北工业大学学报,2007,25(5):743-746页
    [32]惠娟,胡丹,惠俊英,殷敬伟.聚焦波束形成声图测量原理研究.声学学报.2007,32(4):356-361页
    [33]梅继丹,惠俊英,惠娟.水平阵聚焦波束形成声图定位算法研究.哈尔滨工程大学学报.2007,28(7):773-778页
    [34]邵怀宗,林静然,彭启琮,居太亮,徐异凌.基于麦克风阵列的声源定位研究.云南民族大学学报(自然科学版).2004,13(4):256-258页
    [35]林志斌,徐柏龄.基于传声器阵列的声源定位.电声技术.2004(5):19-23页
    [36]王冬霞,殷福亮.基于近场波束形成的麦克风阵列语音增强方法.电子与信息学报.2007,29(1):67-70页
    [37]时洁,杨德森,刘伯胜.基于虚拟时间反转镜的噪声源近场定位方法研究.兵工学报.2008,29(10):1215-1219页
    [38]时洁,杨德森,刘伯胜,宋海岩.基于MVDR聚焦波束形成的辐射噪声源近场定位方法.大连海事大学学报.2008,34(3):55-58页
    [39]杨德森,时洁,刘伯胜.矢量阵相干宽带MVDR聚焦波束形成.系统仿真学报.2010,22(2):473-477页
    [40]时洁,杨德森,时胜国.子带分解MVDR高分辨宽带聚焦波束形成算法研究.声学技术.2008,27(5):416-417页
    [41]Shi Jie, Liu Bosheng, Song Haiyan. Radiated noise sources location based on MVDR near-field focused beamforming. IEEE Conference on Industial Electronics and Applications.2008:849-852P
    [42]SHI Jie, LIU Bosheng, SONG Haiyan. Research on technique to improve accuracy in SBL locating systems. Journal of Marine Science and Application.2008,7(1): 59-64P
    [43]杨德森,时洁,刘伯胜.基于倒谱分析的水声信号被动定位时延估计算法研究[J].系统仿真学报.2009,21(2):610-612页
    [44]何祚镛,赵玉芳.声学理论基础.国防工业出版社,1981
    [45]孙超.水下多传感器阵列信号处理.西北工业大学出版社,2007
    [46]余赟.浅海多途信道中声聚焦与声屏蔽技术研究.哈尔滨工程大学硕士学位论文.2009
    [47]龚亨铱.基于相位干涉仪阵列多组解模糊的波达角估计算法研究[J].电子与信息学报,2006,28(1):55-59页
    [48]司伟建,崔冬魁,司赐才.阵列测的多值模糊问题研究[J].导箭与制导学报,2004,24(4):359-263页
    [49]张云峰,钟子发,史英春.阵列测向模糊判决算法研究[J].现代防御技术,2008,36(2):111-114页
    [50]Kundu D. Modified MUSIC algonthm for estimating DOA of signals[J]. Signal Processing,1996,48(1):85-90P
    [51]Wax M. Anu Y. IEEE Trans, on Signal Processing 1996,44(4):928-937P
    [52]赵辉,王昌明,焦君圣,何云峰.基于舷侧阵的MVDR波束形成算法研究[J].船舶工程,2006,28(6):41-43页
    [53]田坦,齐娜,孙大军.矢量水听器波束域MVDR方法研究[J].哈尔滨工程大学学报[J].2004,25(3):259-263页
    [54]刘宏清,廖桂生,张杰.稳健的Capon波束形成[J].系统工程与电子技术,2005,27(10):1669-1673页
    [55]Williams R T, Prasad S, Mahalanbis S K, Sibul L H. An improved spatial smoothing technique for bearing estimation in multipath environment. IEEE Trans. On ASSP, 1988,36(4):425-432P
    [56]Pillai S U, Kwon B H. Performance analysis of MUSIC-type high resolution estimators for direction finding in correlated and coherent scenes. IEEE Trans. On ASSP,1989,37(8):1176-1189P
    [57]Rao B D, Hari K V. On spatial smoothing and weighted subspace methods.In Proc.24th Aslimar Conf. Signals Syst,1990,936-940P
    [58]Moghaddamjoo A. Transforming-basd covariance differencing approach to the array with spatially nontationary noise. IEEE Trans. On signal processing,1991,39(1):219-221P
    [59]Di A. Multiple sources location-a matrix decomposition approach. IEEE Trans. ASSP,1985,33(4):1086-1091P
    [60]Cadzow J A, Kim Y S, Shiue D C. General direction-of-arrival estimation:a signal subspace approach. IEEE Trans. On AES,1989,25(1):31-46P
    [61]Schmidt R O. Multiple emitter location signal parameter estimation. IEEE Trans. On AP,1986,34(3):276-280P
    [62]Schw eppe F C. Sensor array data processing for multiple signal sources. IEEE Trans Inform Theory,1968,14(3):294-305P
    [63]Zhu Z D, Haykin S, Radar detection using array processing. Chap 2 in Array Signal Processing, S Haylin, Englewood Cliffs, NJ:Prentice-HALL,1984
    [64]Ziskind I, Wax M, Maxinum likelihood localization of multiple sources by alternating projection. IEEE Trans Acoust, Speech, Signal Processing,1988, 36(10):1553-1560P
    [65]Kuncheva L I. Fitness functions in editiong K-NN reference set by genetic algorithms. Pattern Recognition,1997,30(6):1041-1049P
    [66]张明辉,王尚锦.自适应搜索的改进遗传算法及其应用.西安交通大学学报,2002,36(3):226-229页
    [67]王玲玲,方大纲.运用遗传算法结合FFT进行多单元失效阵列校准.电波科学学报,2005,20(5):561-565页
    [68]倪国熙.常用的矩阵理论和方法.上海科技出版社,1994
    [69]蒋飚,朱垫,孙长瑜等.一种宽带高分辨MVDR有效算法研究.系统工程与电子技术.2005,27(7):1186-1188页
    [70]张德明,郭良浩,张仁和.基于聚焦变换的宽带信号方位稳健估计.声学学报.2005,30(4):303-308页
    [71]肖国有,屠庆平.声信号处理及其应用.西北工业大学出版社,1994
    [72]Hung H, Kaveh M. Focusing matrices for coherent signal-subspace processing. IEEE Trans. On ASSP,1988,36 (8):1272-1281P
    [73]杨德森等.矢量水听器湖试报告.中国国防科学技术报告.哈尔滨工程大学水声研究所.1998.10
    [74]杨德森等.矢量水听器海试报告.中国国防科学技术报告.哈尔滨工程大学水声研究所.2000.9
    [75]孙贵青,杨德森,张揽月等.基于矢量水听器的水下目标低频辐射噪声测量方法研究.声学学报.2002,27(5):429-434页
    [76]孙贵青,杨德森,张林等.矢量水听器在水下目标低频辐射噪声测量中的应用.哈尔滨工程大学学报.2001,22(5):5-9,19页
    [77]杨德森等.低噪声水下目标辐射噪声测量的新方法研究.声学技术增刊.2001:245-247页
    [78]陈宗歧,于沨,刘文帅.利用矢量传感器测量舰船辐射噪声技术.舰船科学技术.2002,24(1):20-23页
    [79]B. M. Abraham. Low-cost dipole hydrophone for use in towed arrays. Proceedings of the Workshop on Acoustic Particle Velocity Sensors:Design, Performance and Applications, American Institute of Conference Proceedings,1996:189-201P
    [80]J. C. Shipps and B. M. Abraham. Vector sensors secure shore-based manufacturing plants, www.isa.org/intech,2004
    [81]P. A. Wlodkowsiki. Application of Acoustic Particle Velocity Sensors for port perimeter security. Homeland Security Seninar University of Marine.2003
    [82]B. M. Abraham and M. J. Berliner. Directional hydrophones in towed arrays. Proceedings from the Workshop on Directional Acoustic Sensors, Naval Undersea Warfare Center, Newport Rhode Island,2001:17-18P
    [83]G. L. D'Spain, W. S. Hodgkiss and G. L. Edmonds. Energetics of the deep ocean's infrasonic sound field. J. Acoust. Soc. Am.1991,89(3):1134-1158P
    [84]V. A. Shchurov, V. I. IIyichev, V. P. Kuleshov and M. V. Kuyanova. The interaction of energy flows of underwater ambient noise and a local source. J. Acoust. Soc. Am.1991,90(2):1002-1004P
    [85]M. Hawkes and A. Nehorai. Acoustic vector-sensor correlations in ambient noise. IEEE Journal Of Oceanic Engineering.2001,26(3):337-347P
    [86]A. Banner. Simple velocity hydrophone for bioacoustic application. J. Acoust. Soc. Am.1973,53(4):1134-1136P
    [87]V. A. Shchurov. Modern state and prospects for use of underwater acoustic intensity measurements. Preprint. Vladivostok:Pacific Oceanological Institude Far Eastern Branch of Russian Academy of Sciences.1998
    [88]V. A. Shchurov. Coherent and diffusive fields of underwater acoustic ambient noise. J. Acoust. Soc. Am.1991,90(2):991-1001P
    [89]V. A. Shchurov. Noise immunity of a combined hydroacoustic receiver. Acoust. Phys.2002,48(1):98-106P
    [90]G. L. D'Spain, W. S. Hodgkiss and G. L. Edmonds. Energetics of the deep ocean's infrasonic sound field. J. Acoust. Soc. Am.1991,89(3):1134-1158P
    [91]M. Hawkes and A. Nehorai. Acoustic vector-sensor correlations in ambient noise. IEEE Journal Of Oceanic Engineering.2001,26(3):337-347P
    [92]V. A. Shchurov, V. I. IIyichev, V. P. Kuleshov and M. V. Kuyanova. The interaction of energy flows of underwater ambient noise and a local source. J. Acoust. Soc. Am.1991,90(2):1002-1004P
    [93]V. A. Shchurov. Noise immunity of a combined hydroacoustic receiver. Acoust. Phys.2002,48(1):98-106P
    [94]A. Banner. Simple velocity hydrophone for bioacoustic application. J. Acoust. Soc. Am.1973,53(4):1134-1136P
    [95]H. W. Chen, J. W. Zhao. Widebnad MVDR beamforming for acoustic vector sensor linear array. IEEE Proc. Radar Sonar Navig,2004,151(3):158-162P
    [96]H. W. Chen, J. W. Zhao. Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources. Signal Processing,2005, 85(1):837-847P
    [97]张揽月,杨德森.矢量水听器高分辨率波束形成.声学技术增刊.2002,21:437-438页
    [98]张揽月.矢量水听器阵列处理技术研究.哈尔滨工程大学博士学位论文,2005
    [99]肖卫国,高翔.基于AR谱的声矢量传感器阵方位估计.声学技术增刊,2004,23:250-252页
    [100]方尔正,崔凯.基于矢量水听器的一种时间方位历程目标跟踪方法.应用声学.2005,24(5):311-316页
    [101]白兴宇.基于联合信息处理的声矢量阵测向技术.哈尔滨工程大学博士生论文.2006
    [102]张揽月,杨德森.矢量水听器扩展孔径线阵方位估计技术.哈尔滨工程大学学报.2004,25(6):714-718页
    [103]余华兵,刘宏等.小尺度声传感器的指向性锐化技术研究.声学学报.2000,25(4):319-322页
    [104]陈华伟,赵俊渭.声矢量传感器阵宽带相干信号子空间最优波束形成.声学学报,2005,30(1):76-82页
    [105]O L Frost. An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE, AUG,1972, vol.60:926-935P
    [106]K M Buckley, L J Griffiths.An adaptive generalized sidelobe canellor weith derivative constraints. IEEE Transactions on Antennas and Propagation, March 1986, vol.34:311-319P
    [107]M H Er, A Cantoni.Derivative constraints for broad-band element space antenna array processors. IEEE Transactions on Acoustics,Speech,and Signal Processing, Dec,1983, vol.31:11378-1393P
    [108]B D Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerospace Election. Syst, July 1988, vol.24:379-401P
    [109]H Cox, R M Zeskind, M H Owen.Robust adaptive beamforming. IEEE Trans. Acoustics,Speech Signal Processing, Oct.1988, vol.35:1365-1376P
    [110]D D Feldman, L J Griffiths. A projection approach to robust adaptive beamforming. IEEE Trans. Signal processing, Apr,1994, vol.42:867-876P
    [111]L Chang, C C Yeth. Performance of DMI and eigenspae-based beamformers. IEEE Antennas Propagation, Nov.1992, vol.40:1336-1347P
    [112]R G Lorenz, S P Boyd. Robust minimum variance beamforming. IEEE Transactions on Signal Processing,2001, submitted
    [113]S Vorobyov, A B Gershman, Z-Q Luo. Robust adaptive beamforming using worst-case performance optimization:a solution to the signal mismatch problem. IEEE Trans. Signal Processing, Feb.2003, vol.51:313-324P
    [114]J Li, P Stoica, Z Wang. On robust Capin beamforming and diagonal loading. IEEE Transactions on Signal Processing, July 2003, vol.51(7):1702-1705P
    [115]J Li, P Stoica, Z Wang. Doubly constrained robust Capon buemformer. IEEE Transactions on Signal Processing,2004, to appear
    [116]Zhang M, Zhu Z D. DOA estimation with sensor gain,phase and position pertubations. Proceedings of the IEEE National Aerospace and Elecronics Conference, NAECO 1993,67-69P
    [117]Stavropoulos K, Manikas A. Array calibration in the presence of unknown sensor characteristics and mutual coupling. Proceedings of the European Signal Processing Conference, EUSIPO 2000,2000,3:1417-1420P
    [118]Fistas N, Manikas A. A new general global array calibration method. Proceedings of IEEE ICASSP'94,1994,4:73-76P
    [119]Hung E. Matrix-construction calibration method for antenna arrays. IEEE Trans. On Aerospace and Elecronic Systems,2000,36(3):819-828P
    [120]Ng B C, Ser W. Array shape calibration using sources in known locations. Proceedings of Singapore ICCS/ISITA'92,19992,836-840P
    [121]游志刚.自校正通道相位不一致的研究.西安电子科技大学硕士学位论文,2001
    [122]Flanagan B P. Self calibration of antenna arrays with large perturbation errors. PhD. Thesis, George Mason University,2000
    [123]Flanagan B P, Bell K L. Improved array self-calibration with large sensor position errors for closed space sources. Proceedings of IEEE Sensor Array and Multichannel Workshop 2000,484-488P
    [124]Viberg M, Swindlehurst A L. A Bayesian Approach to Auto-Calibration for Parametric Array Signal Processing. IEEE Trans. On Signal Processing,1994,42(12):3495-3507P
    [125]See CMS, Poh B K. Parametric sensor array calibration using measured steering vectors uncertain locations. IEEE Trans. Signal Processing,1989,47(4):1133-1137P
    [126]Friedlander B, Weiss A J. Performance of direction-finding systems with sensor gain and phase uncertainties. Circuits, Syst. Signal processing,1993,12(1):3-33P
    [127]Jaffer A G. Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration.Proceedings of IEEE Radar Conferece 2002,294-297P
    [128]Svateeson T. Mutual coupling compensation using subspace fitting. Proceedings of IEEE Sensor Array and Multichannel Signal Processing Workshop,2000,494-498P
    [129]Svantesson T. The effects of mutual coupling using a linear array of thin diploes of finite length. Proceedings of the 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing,1998,232-235P
    [130]Weiss A J, Friedlander B. DOA and steering vector estimation using a partially calibated array. IEEE Trans, on AES.1996,32(3):1047-1057P
    [131]Wang Buhong, Wang Yongliang, Chen Hui. Array calibration of angularly dependent gain and pahse uncertainties with instumental sensors. IEEE international symposium phased array systems technology, Boston, Massachusetts, USA,22-27P
    [132]王布宏,王永良,陈辉.均匀线阵互藕条件下的鲁棒DOA估计及互藕自校正.中国科学E辑.2004,34(2):229-235页
    [133]王布宏,王永良,陈辉.相干信源波达方向估计的加权空间平滑算法.通信学报.2003,24(4):31-40页
    [134]俞靖,鲍明.用MUSIC法确定声源频率和方位时误差的校正方法.南京航空航天大学学报,1998,30(6):680-684页
    [135]吕利.智能天线实验系统接收算法的研究与实现.西安交通大学硕士学位论文,2002
    [136]王鼎,张莉,吴瑛.改进的阵列幅相误差和阵元位置误差自校正算法.数据采集与处理.2008,23(2):176-180页
    [137]王布宏,王永良,陈辉.均匀线阵互藕条件下的鲁棒DOA估计及互藕自校正.中国科学E辑.2004,34(2):229-240页
    [138]卓朔,孙超,冯杰.基于多级恒模阵的拖曳线阵拖转时的阵形自校准方法.声学学报,2006.31(3):263-268页
    [139]龚清勇,朱兆达.通道幅相误差快速校正算法在空时自适应处理中的应用.南京航空航天大学学报.2008,40(5):654-659页
    [140]邱晓辉,朱兆达.阵列互藕的近场校正方法.信号处理.1998,14(1):111-113页
    [141]王布宏,王永良,陈辉.方位依赖阵元幅相误差校正的辅助阵元法.中国科学E辑,2004,34(8):906-918页
    [142]Wang Buhong, Wang Yongliang, Chen Hui. Array calibration of angularly dependent gain and phase uncertainties with instrumental sensors, IEEE international symposium on phased array systems and technology, Boston, Massachusetts, USA,22-27, Oct,2003,182-186P
    [143]P Stoica, R L Moses. Introduction to Spectral Analysis. Englewood Cliffs, NJ: Prentice—HALL,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700