神经信息处理的简单模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算神经科学是一门跨领域的交叉学科,把实验神经科学和理论研究科学联系在一起,运用物理,数学以及工程学的概念和分析工具来科学地研究大脑的工作原理。近年来,随着实验技术的发展,实验数据的不断累积,大脑的研究工作越来越需要计算模型的方法,从系统,跨层次的角度来探讨大脑的工作机制。然而,神经系统极其复杂,它是一个典型的高维,多尺度,非线性的动态系统。计算神经科学的一个目标就是发展简单的计算模型,一方面它能抓住生物系统的关键特征,另一方面使得定量的分析成为可能。本文根据在突触,环路层面发现的实验现象,建立了一些符合生物事实的简单的模型,从理论上分析这些模型的计算意义。我们着重回答以下几个计算问题:1)实验现象背后的生物物理机制;2)从神经网络角度的来看,这些现象的计算意义是怎样的。本文的工作主要在以下三个方面:
     首先,基于实验上发现的兴奋性和抑制性输入在胞体上的整合计算公式,发展了一个简单的基于树突信息整合的单神经元模型,并详细的分析了分流抑制的生物物理机制。模型的分析结果在很多方面与实验现象一致。进一步的,基于简化的单神经元模型,我们分析了突触信息的整合公式在网络计算中的作用。特别地,我们探讨了分流抑制项的计算功能。通过计算模拟仿真,我们发现分流抑制可以介导神经元低水平的持续性放电活动。另外,分流抑制可以实现网络动力学的除法归一化操作。
     其次,系统地分析了一个普遍存在于感觉系统初级通路的神经环路,如嗅觉系统和视觉系统。该环路存在突触短时程衰减和突触前抑制两个显著的机制。以嗅觉系统为例,我们首先通过模型模拟的方法考察了该环路处理空域信息的能力,仿真发现该环路可以实现实验上观察到的神经元输入输出函数的输入性增益控制。进一步地,我们发现该环路可以实现气味身份信息的不变性表达,而气味的浓度信息由神经元群的瞬态反应编码。然后,我们分析了该环路处理时序信息的特点,发现该环路可以等效为一个自适应的微分计算器,而且,对突变信号的瞬态反应幅值满足Weber-Fechner法则。神经环路的这些特性有利于神经信息的高效处理。
     最后,系统地分析了果蝇嗅觉系统的稀疏编码网络。稀疏编码是神经系统普遍采用的信息编码机制,它可以有效的减小刺激模式之间的相关性。在果蝇的嗅觉系统中,蘑菇体中的Kenyon cell以稀疏表示的方式编码天线叶中小球的气味信息。然而,实验上发现天线叶的小球中平均有3个姊妹细胞。这些姊妹细胞接收的突触输入相同,相互之间以电突触的方式相互耦合,这样,姊妹细胞电活动反应在任何时刻都是高度相关的。嗅觉系统为什么需要这些信息冗余的姊妹细胞,目前还不清楚。为此,我们建立了一个前向传输网络模型来研究姊妹细胞对神经信息的处理的功用,特别是它们对于下级神经元Kenyoncell的稀疏码表示有什么影响。理论分析表明:1)姊妹细胞可以有效的提升Kenyon cell稀疏表示对噪声的鲁棒性,当姊妹细胞数为4-5个时,系统对噪声的鲁棒性趋于饱和;2)基于经济连接,能量最省,信息保真传输等原则,模型预测了Kenyon cell与投射神经元的平均连接数,约10个左右,这与实验数据高度吻合。
Computational neuroscience is an interdisciplinary science that applies concepts andanalytical tools from physics, mathematics, and engineering to explore the underlyingmechanisms of brain functions, with a strong emphasis on the interaction of experimentsand theories. In recent years, as the development of experimental neuroscience, a hugeamount of date has been accumulated. The brain research is in urgent need of computa-tional modeling method, to investigate the working mechanisms of brain in terms of anintegrated system. Nevertheless, nervous system is an extremely complicated system, itinvolves multiple nonlinear interactions in a high-dimensional dynamical system. A goalin theoretical neuroscience is to develop simple models which, on one hand, capture thefundamental features of the real biologic systems, and on the other hand, allow us to pur-sue analytical treatment unveiling the general principle of brain function. Based on theexperimental fndings in synapses and neural circuits, we build some biophysically realis-tic simple models to theoretically investigate their roles in neural information processing.In particular, we are concentrated on answering these computational problems:1)Thebiophysical mechanisms behind experimental fndings;2)The computational meanings ofthese experimental evidences, especially in terms of neural networks. The main works inthis thesis are listed as follows:
     (1) The experimental study has found that the integration of excitatory and inhibito-ry currents at the soma of a neuron can be expressed as a simple arithmetic rule. Basedon this simple arithmetic rule, we carry out a biophysical motivated derivation of a singlecompartment model that integrates the nonlinear efects of shunting inhibition, wherean inhibitory input on the route of an excitatory input to the soma cancels or “shunts”the excitatory potential. Our results agree with the experimental fndings. Using ournew simplifed formulation, we devise a spiking network model where inhibitory neuronsact as global shunting gates, and show that the network exhibits persistent activity ina low fring regime. We further build a continuous attractor neural network model andshow that shunting inhibition could be well approximated as an operation of divisivenormalization in the network dynamics.
     (2) Systematically analyze a canonical neural circuit which is widely existed in theearly pathway of sensory systems, e.g., visual system and olfactory system. The circuit is endowed with mechanisms, namely short term synaptic depression and presynapticinhibition. We frst investigate how spatial information is processed in this circuit. Simu-lation results reveal that it can input gain control of a single neuron’s IO function, whichis observed in experiment. Moreover, the circuit could achieve concentration invariantrepresentations to odorant stimuli, while the odor concentration information is encodedin the network transient dynamics. Second, we explore the power of the circuit to processtemporal information. We fnd that the circuit could be approximated as a adaptive dif-ferentiator, with its transient response obeying the Weber-Fechner law. These propertiesare of great importance for the circuit to efciently process neural information.
     (3) Analyze the sparse coding network in the olfactory system of drosophila. Sparsecoding is a common coding mechanism in the brain to achieve efcient pattern separation.In the olfactory system of the fy drosopohila melangaster, projection neurons (PNs)in the antennal lobe (AL) convert a dense activation of glomeruli into a sparse fringpattern of Kenyon cells (KCs) in the mushroom body (MB). A sparse code of odorqualities has the advantage to achieve efcient decorrelation of the representation ofsimilar odors. While the sparseness of a code is directly related to its decorrelationproperties, too low fring probabilities might result in other disadvantages for the brain.We here investigate the structure of the sparse projection from the antennal lobe to themushroom body in regard to faithful information transmission and robustness to extrinsicand intrinsic noise. In particular, we emphasize on understanding the role of the highlycorrelated homotypic projection neurons found in the glomeruli of fies which receiveidentical information from their ORN input but target randomly diferent KCs. We fndthat a certain number of sister cells is crucial for the robustness of the sparse KC codeto noise. Our analysis predicts that4-5sister cells per glomerulus would be sufcient,which is in good anatomical agreement in fies. Moreover, we estimate how many PNsshould optimally connect to a single KC, and found that values around10would sufceto guarantee both, robust information transmission and a very sparse odor representationin MB.
引文
[1] T. J. Sejnowski, C. Koch, and P. S. Churchland,“Computational neuroscience,”Science, vol.241, no.4871, p.1299,1988.
    [2] L. Abbott,“Theoretical neuroscience rising,” Neuron, vol.60, no.3, pp.489–495,2008.
    [3] L. Lapicque,“Recherches quantitatives sur l’excitation′electrique des nerfs trait′eecomme une polarization,” J. Physiol. Pathol. Gen, vol.9, pp.620–635,1907.
    [4] W. S. McCulloch and W. Pitts,“A logical calculus of the ideas immanent in nervousactivity,” Bulletin of mathematical biology, vol.5, no.4, pp.115–133,1943.
    [5] A. L. Hodgkin and A. F. Huxley,“A quantitative description of membrane cur-rent and its application to conduction and excitation in nerve,” The Journal ofphysiology, vol.117, no.4, p.500,1952.
    [6] J. J. Hopfeld,“Neural networks and physical systems with emergent collectivecomputational abilities,” Proceedings of the national academy of sciences, vol.79,no.8, pp.2554–2558,1982.
    [7] W. Rall,“Core conductor theory and cable properties of neurons,” ComprehensivePhysiology,1977.
    [8] D. Marr and A. Vision,“A computational investigation into the human represen-tation and processing of visual information,” WH San Francisco: Freeman andCompany,1982.
    [9] D. E. Rumelhart, G. E. Hintont, and R. J. Williams,“Learning representations byback-propagating errors,” Nature, vol.323, no.6088, pp.533–536,1986.
    [10] S. Wu and P. Liang,“Computational neuroscience in china,” SCIENCE CHINALife Sciences, vol.53, no.3, pp.385–397,2010.
    [11]顾凡及,“计算神经科学,”科学, vol.47, no.6, pp.11–14,1995.
    [12] R. Wehner and R. Menzel,“Do insects have cognitive maps?” Annual review ofneuroscience, vol.13, no.1, pp.403–414,1990.
    [13]“http://www.nytimes.com/2008/08/05/science/05angier.html.”
    [14] P. Dayan and L. F. Abbott, Theoretical neuroscience. MIT press Cambridge, MA,2001, vol.31.
    [15] E. D. Adrian and Y. Zotterman,“The impulses produced by sensory nerve-endingspart ii. the response of a single end-organ,” The Journal of physiology, vol.61, no.2, pp.151–171,1926.
    [16] D. H. Hubel and T. N. Wiesel,“Receptive felds, binocular interaction and func-tional architecture in the cat’s visual cortex,” The Journal of physiology, vol.160,no.1, p.106,1962.
    [17] A. Parker and W. Newsome,“Sense and the single neuron: probing the physiologyof perception,” Annual review of neuroscience, vol.21, no.1, pp.227–277,1998.
    [18] M. J. Schnitzer and M. Meister,“Multineuronal fring patterns in the signal fromeye to brain,” Neuron, vol.37, no.3, pp.499–511,2003.
    [19] M. Abeles, H. Bergman, E. Margalit, and E. Vaadia,“Spatiotemporal fring patternsin the frontal cortex of behaving monkeys,” Journal of Neurophysiology, vol.70, no.4, pp.1629–1638,1993.
    [20] Y. Ikegaya, G. Aaron, R. Cossart, D. Aronov, I. Lampl, D. Ferster, and R. Yuste,“Synfre chains and cortical songs: temporal modules of cortical activity,” ScienceSignalling, vol.304, no.5670, p.559,2004.
    [21] R. S. Johansson and I. Birznieks,“First spikes in ensembles of human tactile afer-ents code complex spatial fngertip events,” Nature neuroscience, vol.7, no.2, pp.170–177,2004.
    [22] E. Fishilevich and L. Vosshall,“Genetic and functional subdivision of the drosophilaantennal lobe,” Current Biology, vol.15, no.17, pp.1548–1553,2005.
    [23] A. Goldman, W. Van der Goes van Naters, D. Lessing, C. Warr, and J. Carlson,“Coexpression of two functional odor receptors in one neuron,” Neuron, vol.45, no.5, pp.661–666,2005.
    [24] M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience: Exploring the brain.Lippincott Williams&Wilkins,2006.
    [25] A. Couto, M. Alenius, and B. Dickson,“Molecular, anatomical, and functional or-ganization of the drosophila olfactory system,” Current Biology, vol.15, no.17, pp.1535–1547,2005.
    [26] L. Vosshall, A. Wong, R. Axel et al.,“An olfactory sensory map in the fy brain,”Cell, vol.102, no.2, pp.147–159,2000.
    [27] R. Stocker, M. Lienhard, A. Borst, K. Fischbach et al.,“Neuronal architecture ofthe antennal lobe in drosophila melanogaster.” Cell and tissue research, vol.262,no.1, p.9,1990.
    [28] H. Kazama and R. Wilson,“Origins of correlated activity in an olfactory circuit,”Nature neuroscience, vol.12, no.9, pp.1136–1144,2009.
    [29] G. Laurent,“A systems perspective on early olfactory coding,” Science, vol.286,no.5440, pp.723–728,1999.
    [30] H. Kazama and R. Wilson,“Homeostatic matching and nonlinear amplifcation atidentifed central synapses,” Neuron, vol.58, no.3, pp.401–413,2008.
    [31] M. Shipley and M. Ennis,“Functional organization of olfactory system,” Journalof neurobiology, vol.30, no.1, pp.123–176,1996.
    [32] G. Murphy, D. Darcy, and J. Isaacson,“Intraglomerular inhibition: signaling mech-anisms of an olfactory microcircuit,” Nature neuroscience, vol.8, no.3, pp.354–364,2005.
    [33] R. I. Wilson and Z. F. Mainen,“Early events in olfactory processing,” Annu. Rev.Neurosci., vol.29, pp.163–201,2006.
    [34] G. Shepherd and C. Greer, Olfactory bulb. Oxford University Press,1998.
    [35] T. Margrie, B. Sakmann, and N. Urban,“Action potential propagation in mitralcell lateral dendrites is decremental and controls recurrent and lateral inhibition inthe mammalian olfactory bulb,” Proceedings of the National Academy of Sciences,vol.98, no.1, pp.319–324,2001.
    [36] P. Salin, P. Lledo, J. Vincent, and S. Charpak,“Dendritic glutamate autoreceptorsmodulate signal processing in rat mitral cells,” Journal of neurophysiology, vol.85,no.3, pp.1275–1282,2001.
    [37] J. Huang, W. Zhang, W. Qiao, A. Hu, and Z. Wang,“Functional connectivity and s-elective odor responses of excitatory local interneurons in drosophila antennal lobe,”Neuron, vol.67, no.6, pp.1021–1033,2010.
    [38] E. Yaksi and R. Wilson,“Electrical coupling between olfactory glomeruli,” Neuron,vol.67, no.6, pp.1034–1047,2010.
    [39] S. Olsen and R. Wilson,“Lateral presynaptic inhibition mediates gain control in anolfactory circuit,” Nature, vol.452, no.7190, pp.956–960,2008.
    [40] E. Hallem and J. Carlson,“Coding of odors by a receptor repertoire,” Cell, vol.125,no.1, pp.143–160,2006.
    [41] K. Nagel and R. Wilson,“Biophysical mechanisms underlying olfactory receptorneuron dynamics,” Nature neuroscience, vol.14, no.2, pp.208–216,2011.
    [42] G. Laurent, M. Wehr, and H. Davidowitz,“Temporal representations of odors inan olfactory network,” The journal of Neuroscience, vol.16, no.12, pp.3837–3847,1996.
    [43] M. Wehr, G. Laurent et al.,“Odour encoding by temporal sequences of fring inoscillating neural assemblies,” Nature, vol.384, no.6605, pp.162–166,1996.
    [44] O. Mazor and G. Laurent,“Transient dynamics versus fxed points in odor repre-sentations by locust antennal lobe projection neurons,” Neuron, vol.48, no.4, pp.661–673,2005.
    [45] M. Rabinovich, R. Huerta, and G. Laurent,“Transient dynamics for neural process-ing,” Science, vol.321, no.5885, pp.48–50,2008.
    [46] M. Stopfer, V. Jayaraman, and G. Laurent,“Intensity versus identity coding in anolfactory system,” Neuron, vol.39, no.6, pp.991–1004,2003.
    [47] M. Stopfer, G. Laurent et al.,“Short-term memory in olfactory network dynamics,”Nature, vol.402, no.6762, pp.664–668,1999.
    [48] B. Broome, V. Jayaraman, and G. Laurent,“Encoding and decoding of overlappingodor sequences,” Neuron, vol.51, no.4, pp.467–482,2006.
    [49] R. Wilson, G. Turner, and G. Laurent,“Transformation of olfactory representationsin the drosophila antennal lobe,” Science Signalling, vol.303, no.5656, p.366,2004.
    [50] R. Wilson and G. Laurent,“Role of gabaergic inhibition in shaping odor-evoked spa-tiotemporal patterns in the drosophila antennal lobe,” The Journal of neuroscience,vol.25, no.40, pp.9069–9079,2005.
    [51] M. Heisenberg,“Mushroom body memoir: from maps to models,” Nature ReviewsNeuroscience, vol.4, no.4, pp.266–275,2003.
    [52] M. Schwaerzel, M. Monastirioti, H. Scholz, F. Friggi-Grelin, S. Birman, and M.Heisenberg,“Dopamine and octopamine diferentiate between aversive and appet-itive olfactory memories in drosophila,” The Journal of neuroscience, vol.23, no.33, pp.10495–10502,2003.
    [53] M. Garc′a-Sanchez and R. Huerta,“Design parameters of the fan-out phase of sen-sory systems,” Journal of Computational Neuroscience, vol.15, no.1, pp.5–17,2003.
    [54] R. Huerta, T. Nowotny, M. Garc′a-Sanchez, H. Abarbanel, and M. Rabinovich,“Learning classifcation in the olfactory system of insects,” Neural computation,vol.16, no.8, pp.1601–1640,2004.
    [55] P. Kanerva, Sparse distributed memory. MIT press,1988.
    [56] J. Perez-Orive, O. Mazor, G. Turner, S. Cassenaer, R. Wilson, and G. Laurent,“Os-cillations and sparsening of odor representations in the mushroom body,” Science,vol.297, no.5580, pp.359–365,2002.
    [57] G. Turner, M. Bazhenov, and G. Laurent,“Olfactory representations by drosophilamushroom body neurons,” Journal of neurophysiology, vol.99, no.2, pp.734–746,2008.
    [58] M. Carandini,“From circuits to behavior: a bridge too far?” Nature neuroscience,vol.15, no.4, pp.507–509,2012.
    [59] S. Olsen, V. Bhandawat, and R. Wilson,“Divisive normalization in olfactory pop-ulation codes,” Neuron, vol.66, no.2, pp.287–299,2010.
    [60] V. Bonin, V. Mante, and M. Carandini,“The suppressive feld of neurons in lateralgeniculate nucleus,” The Journal of neuroscience, vol.25, no.47, pp.10844–10856,2005.
    [61] M. Carandini, D. Heeger, and J. Movshon,“Linearity and normalization in simplecells of the macaque primary visual cortex,” The Journal of Neuroscience, vol.17,no.21, pp.8621–8644,1997.
    [62] D. Heeger,“Normalization of cell responses in cat striate cortex,” Visual neuro-science, vol.9, no.02, pp.181–197,1992.
    [63] S. Lyu,“Divisive normalization: Justifcation and efectiveness as efcient codingtransform,” Advances in neural information processing systems, vol.21,2010.
    [64] S. Lyu and E. P. Simoncelli,“Nonlinear extraction of independent components ofnatural images using radial gaussianization,” Neural computation, vol.21, no.6, pp.1485–1519,2009.
    [65] M. Carandini and D. Heeger,“Normalization as a canonical neural computation,”Nature Reviews Neuroscience, vol.13, no.1, pp.51–62,2011.
    [66] N. Y. Masse, G. C. Turner, G. S. Jeferis et al.,“Olfactory information processingin drosophila,” Current Biology, vol.19, no.16, pp.700–713,2009.
    [67] J. Martin, A. Beyerlein, A. Dacks, C. Reisenman, J. Rifell, H. Lei, and J. Hilde-brand,“The neurobiology of insect olfaction: sensory processing in a comparativecontext,” Progress in neurobiology,2011.
    [68] B. B. Averbeck, P. E. Latham, and A. Pouget,“Neural correlations, populationcoding and computation,” Nature Reviews Neuroscience, vol.7, no.5, pp.358–366,2006.
    [69] K. Padmanabhan and N. Urban,“Intrinsic biophysical diversity decorrelates neu-ronal fring while increasing information content,” Nature neuroscience, vol.13, no.10, pp.1276–1282,2010.
    [70] K. MacLeod and G. Laurent,“Distinct mechanisms for synchronization and tem-poral patterning of odor-encoding neural assemblies.” Science,1996.
    [71] M. Bazhenov, M. Stopfer, M. Rabinovich, R. Huerta, H. Abarbanel, T. Sejnows-ki, and G. Laurent,“Model of transient oscillatory synchronization in the locustantennal lobe,” Neuron, vol.30, no.2, p.553,2001.
    [72] M. Bazhenov, M. Stopfer, M. Rabinovich, H. Abarbanel, T. Sejnowski, and G. Lau-rent,“Model of cellular and network mechanisms for odor-evoked temporal pat-terning in the locust antennal lobe,” Neuron, vol.30, pp.569–581,2001.
    [73] M. Patel, A. Rangan, and D. Cai,“A large-scale model of the locust antennal lobe,”Journal of computational neuroscience, vol.27, no.3, pp.553–567,2009.
    [74] A. Herz, T. Gollisch, C. Machens, and D. Jaeger,“Modeling single-neuron dynamicsand computations: A balance of detail and abstraction,” Science, vol.314, pp.80–85,2006.
    [75] H. R. Wilson and J. D. Cowan,“Excitatory and inhibitory interactions in localizedpopulations of model neurons,” Biophysical journal, vol.12, no.1, pp.1–24,1972.
    [76] N. Brunel,“Dynamics of sparsely connected networks of excitatory and inhibitoryspiking neurons,” Journal of computational neuroscience, vol.8, no.3, pp.183–208,2000.
    [77] T. P. Vogels and L. Abbott,“Gating multiple signals through detailed balance ofexcitation and inhibition in spiking networks,” Nature neuroscience, vol.12, no.4,pp.483–491,2009.
    [78] Z. Mainen and T. Sejnowski,“Infuence of dendritic structure on fring pattern inmodel neocortical neurons,” Nature, vol.382, no.6589, pp.363–366,1996.
    [79] L. J. Borg-Graham, C. Monier, Y. Fregnac et al.,“Visual input evokes transient andstrong shunting inhibition in visual cortical neurons,” Nature, vol.393, no.6683,pp.369–372,1998.
    [80] M. London and M. H¨ausser,“Dendritic computation,” Annu. Rev. Neurosci., vol.28, pp.503–532,2005.
    [81] Z. Huang, G. Di Cristo, and F. Ango,“Development of GABA innervation in thecerebral and cerebellar cortices,” Nature Reviews Neuroscience, vol.8, no.9, pp.673–686,2007.
    [82] J. Barrett and W. Crill,“Specifc membrane properties of cat motoneurones,” TheJournal of physiology, vol.239, no.2, pp.301–324,1974.
    [83] S. Blomfeld,“Arithmetical operations performed by nerve cells,” Brain research,vol.69, no.1, pp.115–124,1974.
    [84] C. Koch, Biophysics of computation: information processing in single neurons. Ox-ford University Press, USA,2004.
    [85] E. M. Izhikevich, Dynamical systems in neuroscience: the geometry of excitabilityand bursting. MIT press,2006.
    [86] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, popula-tions, plasticity. Cambridge university press,2002.
    [87] D. McLaughlin, R. Shapley, M. Shelley, and D. Wielaard,“A neuronal networkmodel of macaque primary visual cortex (v1): Orientation selectivity and dynamicsin the input layer4cα,” Proceedings of the National Academy of Sciences, vol.97,no.14, pp.8087–8092,2000.
    [88] X. Wang,“Probabilistic decision making by slow reverberation in cortical circuits,”Neuron, vol.36, no.5, pp.955–968,2002.
    [89] M. J. Rasch, K. Schuch, N. K. Logothetis, and W. Maass,“Statistical comparisonof spike responses to natural stimuli in monkey area v1with simulated responses ofa detailed laminar network model for a patch of v1,” Journal of neurophysiology,vol.105, no.2, pp.757–778,2011.
    [90] L. Abbott,“Realistic synaptic inputs for model neural networks,” Network: Com-putation in Neural Systems, vol.2, no.3, pp.245–258,1991.
    [91] J. Gold and M. Shadlen,“Neural computations that underlie decisions about sensorystimuli,” Trends in cognitive sciences, vol.5, no.1, pp.10–16,2001.
    [92] C. Koch, T. Poggio, V. Torres, C. Koch, T. Poggio, and V. Torres,“Retinal ganglioncells: a functional interpretation of dendritic morphology,” Philosophical Transac-tions of the Royal Society of London. B, Biological Sciences, vol.298, no.1090, pp.227–263,1982.
    [93] J. Hao, X. Wang, Y. Dan, M. Poo, and X. Zhang,“An arithmetic rule for spatialsummation of excitatory and inhibitory inputs in pyramidal neurons,” Proceedingsof the National Academy of Sciences, vol.106, no.51, pp.21906–21911,2009.
    [94] D. Zhou, S. Li, X.-h. Zhang, and D. Cai,“Phenomenological incorporation of nonlin-ear dendritic integration using integrate-and-fre neuronal frameworks,” PloS one,vol.8, no.1, p. e53508,2013.
    [95] J. Hopfeld,“Neurons with graded response have collective computational propertieslike those of two-state neurons,” Proceedings of the national academy of sciences,vol.81, no.10, pp.3088–3092,1984.
    [96] C. K. Machens, R. Romo, and C. D. Brody,“Flexible control of mutual inhibition:a neural model of two-interval discrimination,” Science, vol.307, no.5712, pp.1121–1124,2005.
    [97] K.-F. Wong and X.-J. Wang,“A recurrent network mechanism of time integrationin perceptual decisions,” The Journal of neuroscience, vol.26, no.4, pp.1314–1328,2006.
    [98] H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu,“Interneurons of the neocortical inhibitory system,” Nature Reviews Neuroscience,vol.5, no.10, pp.793–807,2004.
    [99] M. Carandini and D. Heeger,“Summation and division by neurons in primate visualcortex,” Science, vol.264, no.5163, pp.1333–1336,1994.
    [100] F. S. Chance, L. Abbott, A. D. Reyes et al.,“Gain modulation from backgroundsynaptic input,” Neuron, vol.35, no.4, pp.773–782,2002.
    [101] C. Koch, T. Poggio, and V. Torre,“Nonlinear interactions in a dendritic tree: Lo-calization, timing, and role in information processing,” Proceedings of the NationalAcademy of Sciences, vol.80, no.9, pp.2799–2802,1983.
    [102] E. Cook and D. Johnston,“Active dendrites reduce location-dependent variabilityof synaptic input trains,” Journal of neurophysiology, vol.78, no.4, pp.2116–2128,1997.
    [103] H. Lai and L. Jan,“The distribution and targeting of neuronal voltage-gated ionchannels,” Nature Reviews Neuroscience, vol.7, no.7, pp.548–562,2006.
    [104] D. J. Amit and N. Brunel,“Model of global spontaneous activity and local struc-tured activity during delay periods in the cerebral cortex.” Cerebral Cortex, vol.7,no.3, pp.237–252,1997.
    [105] N. Brunel and X.-J. Wang,“Efects of neuromodulation in a cortical network modelof object working memory dominated by recurrent inhibition,” Journal of compu-tational neuroscience, vol.11, no.1, pp.63–85,2001.
    [106] A. Renart, P. Song, X.-J. Wang et al.,“Robust spatial working memory throughhomeostatic synaptic scaling in heterogeneous cortical networks,” Neuron, vol.38,no.3, pp.473–486,2003.
    [107] G. Mongillo, O. Barak, and M. Tsodyks,“Synaptic theory of working memory,”Science Signalling, vol.319, no.5869, p.1543,2008.
    [108] S. Amari,“Dynamics of pattern formation in lateral-inhibition type neural felds,”Biological cybernetics, vol.27, no.2, pp.77–87,1977.
    [109] R. Ben-Yishai, R. Bar-Or, and H. Sompolinsky,“Theory of orientation tuning invisual cortex,” Proceedings of the National Academy of Sciences, vol.92, no.9, pp.3844–3848,1995.
    [110] K. Zhang,“Representation of spatial orientation by the intrinsic dynamics of thehead-direction cell ensemble: a theory,” The journal of neuroscience, vol.16, no.6,pp.2112–2126,1996.
    [111] A. Samsonovich and B. McNaughton,“Path integration and cognitive mapping ina continuous attractor neural network model,” The Journal of Neuroscience, vol.17, no.15, pp.5900–5920,1997.
    [112] A. Georgopoulos, M. Taira, and A. Lukashin,“Cognitive neurophysiology of themotor cortex,” Science, vol.260, no.5104, pp.47–52,1993.
    [113] S. Deneve and P. Latham,“Reading population codes: A neural implementation ofideal observers,” Nature Neuroscience, vol.2, no.8, pp.740–745,1999.
    [114] S. Wu, S. Amari, and H. Nakahara,“Population coding and decoding in a neuralfeld: a computational study,” Neural Computation, vol.14, no.5, pp.999–1026,2002.
    [115] S. Wu, K. Hamaguchi, and S. Amari,“Dynamics and computation of continuousattractors,” Neural computation, vol.20, no.4, pp.994–1025,2008.
    [116] N. L. Golding, T. J. Mickus, Y. Katz, W. L. Kath, and N. Spruston,“Factors me-diating powerful voltage attenuation along CA1pyramidal neuron dendrites,” TheJournal of physiology, vol.568, no.1, pp.69–82,2005.
    [117] T. Omori, T. Aonishi, H. Miyakawa, M. Inoue, and M. Okada,“Estimated distri-bution of specifc membrane resistance in hippocampal CA1pyramidal neuron,”Brain research, vol.1125, no.1, pp.199–208,2006.
    [118] M. Jadi, A. Polsky, J. Schiller, and B. Mel,“Location-dependent efects of inhibitionon local spiking in pyramidal neuron dendrites,” PLoS Computational Biology, vol.8, no.6, p. e1002550,2012.
    [119] E. Vu and F. Krasne,“Evidence for a computational distinction between proximaland distal neuronal inhibition.” Science (New York, NY), vol.255, no.5052, pp.1710–1712,1992.
    [120] X. Wang,“Synaptic reverberation underlying mnemonic persistent activity,” Trendsin neurosciences, vol.24, no.8, pp.455–463,2001.
    [121] A. V. Egorov, B. N. Hamam, E. Frans′en, M. E. Hasselmo, and A. A. Alonso,“Grad-ed persistent activity in entorhinal cortex neurons,” Nature, vol.420, no.6912, pp.173–178,2002.
    [122] C. D. Brody, R. Romo, A. Kepecs et al.,“Basic mechanisms for graded persistentactivity: discrete attractors, continuous attractors, and dynamic representations,”Current opinion in neurobiology, vol.13, no.2, pp.204–211,2003.
    [123] L. Busse, A. R. Wade, and M. Carandini,“Representation of concurrent stimuli bypopulation activity in visual cortex,” Neuron, vol.64, no.6, p.931,2009.
    [124] O. Schwartz, E. P. Simoncelli et al.,“Natural signal statistics and sensory gaincontrol,” Nature neuroscience, vol.4, no.8, pp.819–825,2001.
    [125] S. X. Luo, R. Axel, and L. Abbott,“Generating sparse and selective third-orderresponses in the olfactory system of the fy,” Proceedings of the National Academyof Sciences, vol.107, no.23, pp.10713–10718,2010.
    [126] T. Berger, G. Silberberg, R. Perin, and H. Markram,“Brief bursts self-inhibit andcorrelate the pyramidal network,” PLoS biology, vol.8, no.9, p. e1000473,2010.
    [127] A. Gidon and I. Segev,“Principles governing the operation of synaptic inhibitionin dendrites,” Neuron, vol.75, no.2, pp.330–341,2012.
    [128] D. Beaudoin, B. Borghuis, and J. Demb,“Cellular basis for contrast gain controlover the receptive feld center of mammalian retinal ganglion cells,” The Journal ofneuroscience, vol.27, no.10, pp.2636–2645,2007.
    [129] F. Chance, S. Nelson, and L. Abbott,“Complex cells as cortically amplifed simplecells,” Nature Neuroscience, vol.2, no.3, pp.277–282,1999.
    [130] M. Tsodyks, K. Pawelzik, and H. Markram,“Neural networks with dynamic synaps-es,” Neural computation, vol.10, no.4, pp.821–835,1998.
    [131] B. Sagdullaev, E. Eggers, R. Purgert, and P. Lukasiewicz,“Nonlinear interaction-s between excitatory and inhibitory retinal synapses control visual output,” TheJournal of Neuroscience, vol.31, no.42, pp.15102–15112,2011.
    [132] R. Normann and I. Perlman,“The efects of background illumination on the pho-toresponses of red and green cones.” The Journal of physiology, vol.286, no.1, pp.491–507,1979.
    [133] J. Wessnitzer, J. Young, J. Armstrong, and B. Webb,“A model of non-elementalolfactory learning in drosophila,” Journal of Computational Neuroscience, pp.1–16,2011.
    [134] C. A. Fung, K. M. Wong, H. Wang, and S. Wu,“Dynamical synapses enhanceneural information processing: Gracefulness, accuracy, and mobility,” Neural Com-putation, vol.24, no.5, pp.1147–1185,2012.
    [135] M. V. Tsodyks and H. Markram,“The neural code between neocortical pyrami-dal neurons depends on neurotransmitter release probability,” Proceedings of theNational Academy of Sciences, vol.94, no.2, pp.719–723,1997.
    [136] L. Abbott, J. Varela, K. Sen, and S. Nelson,“Synaptic depression and cortical gaincontrol,” Science, vol.275, no.5297, pp.221–224,1997.
    [137] J.-P. Pfster, P. Dayan, and M. Lengyel,“Synapses with short-term plasticity areoptimal estimators of presynaptic membrane potentials,” Nature neuroscience, vol.13, no.10, pp.1271–1275,2010.
    [138] A. Levina, J. M. Herrmann, and T. Geisel,“Dynamical synapses causing self-organized criticality in neural networks,” Nature Physics, vol.3, no.12, pp.857–860,2007.
    [139] S. Yazulla, K. M. Studholme, and J.-Y. Wu,“Gabaergic input to the synapticterminals of mb sub1/sub bipolar cells in the goldfsh retina,” Brain research,vol.411, no.2, pp.400–405,1987.
    [140] M. Tachibana and A. Kaneko,“gamma-aminobutyric acid exerts a local inhibitoryaction on the axon terminal of bipolar cells: evidence for negative feedback fromamacrine cells,” Proceedings of the National Academy of Sciences, vol.84, no.10,pp.3501–3505,1987.
    [141] C. Chen and W. G. Regehr,“Presynaptic modulation of the retinogeniculatesynapse,” The Journal of neuroscience, vol.23, no.8, pp.3130–3135,2003.
    [142] R. I. Wilson,“Understanding the functional consequences of synaptic specialization:insight from the drosophila antennal lobe,” Current opinion in neurobiology, vol.21, no.2, pp.254–260,2011.
    [143] S. M. Thompson, M. Capogna, and M. Scanziani,“Presynaptic inhibition in thehippocampus,” Trends in neurosciences, vol.16, no.6, pp.222–227,1993.
    [144] M. Kuno,“Mechanism of facilitation and depression of the excitatory synaptic po-tential in spinal motoneurones,” The Journal of physiology, vol.175, no.1, pp.100–112,1964.
    [145] J. Clements, I. Forsythe, and S. Redman,“Presynaptic inhibition of synaptic po-tentials evoked in cat spinal motoneurones by impulses in single group ia axons.”The Journal of physiology, vol.383, no.1, pp.153–169,1987.
    [146] J. Dudel and S. Kufer,“Presynaptic inhibition at the crayfsh neuromuscular junc-tion,” The Journal of physiology, vol.155, no.3, pp.543–562,1961.
    [147] A. B. MacDermott, L. W. Role, and S. A. Siegelbaum,“Presynaptic ionotropicreceptors and the control of transmitter release,” Annual review of neuroscience,vol.22, no.1, pp.443–485,1999.
    [148] B. A. Olshausen, D. J. Field et al.,“Sparse coding of sensory inputs,” Currentopinion in neurobiology, vol.14, no.4, pp.481–487,2004.
    [149] B. A. Olshausen et al.,“Emergence of simple-cell receptive feld properties by learn-ing a sparse code for natural images,” Nature, vol.381, no.6583, pp.607–609,1996.
    [150] B. A. Olshausen, D. J. Field et al.,“Sparse coding with an overcomplete basis set:A strategy employed by vi?” Vision research, vol.37, no.23, pp.3311–3326,1997.
    [151] L. Thompson and P. Best,“Place cells and silent cells in the hippocampus of freely-behaving rats,” The Journal of neuroscience, vol.9, no.7, pp.2382–2390,1989.
    [152] M. R. DeWeese, M. Wehr, and A. M. Zador,“Binary spiking in auditory cortex,”The Journal of neuroscience, vol.23, no.21, pp.7940–7949,2003.
    [153] R. H. Hahnloser, A. A. Kozhevnikov, and M. S. Fee,“An ultra-sparse code underli-esthe generation of neural sequences in a songbird,” Nature, vol.419, no.6902, pp.65–70,2002.
    [154] R. Jortner, S. Farivar, and G. Laurent,“A simple connectivity scheme for sparsecoding in an olfactory system,” The Journal of neuroscience, vol.27, no.7, pp.1659–1669,2007.
    [155] J. Wessnitzer, B. Webb, and D. Smith,“A model of non-elemental associative learn-ing in the mushroom body neuropil of the insect brain,” in Adaptive and NaturalComputing Algorithms. Springer,2007, pp.488–497.
    [156] B. A. Wandell, Foundations of vision. Sinauer Associates,1995.
    [157] Y. Aso, K. Gru¨bel, S. Busch, A. B. Friedrich, I. Siwanowicz, and H. Tanimoto,“The mushroom body of adult drosophila characterized by gal4drivers,” Journalof neurogenetics, vol.23, no.1-2, pp.156–172,2009.
    [158] Y.-H. Chou, M. L. Spletter, E. Yaksi, J. C. Leong, R. I. Wilson, and L. Luo,“Diver-sity and wiring variability of olfactory local interneurons in the drosophila antennallobe,” Nature neuroscience, vol.13, no.4, pp.439–449,2010.
    [159] B. Leitch, G. Laurent et al.,“Gabaergic synapses in the antennal lobe and mushroombody of the locust olfactory system,” The Journal of comparative neurology, vol.372, no.4, pp.487–514,1996.
    [160] L. M. Masuda-Nakagawa, N. K. Tanaka, and C. J. O’Kane,“Stereotypic and ran-dom patterns of connectivity in the larval mushroom body calyx of drosophila,”Proceedings of the National Academy of Sciences of the United States of America,vol.102, no.52, pp.19027–19032,2005.
    [161] B. L. Chen, D. H. Hall, and D. B. Chklovskii,“Wiring optimization can relateneuronal structure and function,” Proceedings of the National Academy of Sciencesof the United States of America, vol.103, no.12, pp.4723–4728,2006.
    [162] M. Papadopoulou, S. Cassenaer, T. Nowotny, and G. Laurent,“Normalization forsparse encoding of odors by a wide-feld interneuron,” science, vol.332, no.6030,p.721,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700