轨道交通桥梁结构噪声预测与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
列车通过桥梁时,振动能量通过轨道结构传递到桥面及其它桥梁构件,并激发其振动,成为一个个大小不一的“声板”,由此形成噪声的“二次辐射”,导致桥梁区段成为噪声地图上的“热点”。本文结合数值分析和现场试验对桥梁结构噪声进行预测与控制研究,主要内容包括:
     (1)对有关桥梁结构噪声预测与控制的研究进行了系统归纳和总结,包括桥梁结构噪声的试验研究、数值分析方法(有限元法、边界元法、统计能量法等)和降噪措施(建筑材料、声屏障、隔振与减振、粘弹性阻尼材料、桥梁结构形式等)三方面内容。
     (2)结合桥梁结构形式,对比分析了国内外四座高架桥的实测噪声频谱曲线,指出了目前桥梁结构噪声试验在测试设备、评价方法、声源辨识和测点布置四方面存在的问题,并探讨了桥梁结构噪声的评价和辨识方法。在此基础上,以32m混凝土简支箱梁为研究对象,开展了桥梁结构噪声的试验研究,针对四类测点(参考点、梁下测点、梁缝测点和梁侧测点),对实测噪声的时域特性、频谱特性和传播规律等进行了分析。
     (3)基于列车-轨道-桥梁耦合振动理论、边界元法和统计能量分析,提出了桥梁结构噪声的全频段预测方法。将桥梁振动响应作为边界元模型的边界输入,将钢轨振动响应作为统计能量分析模型的能量输入,并采用“强耦合”假设简化子系统间耦合损耗因子的求解。基于MATLAB平台编制了计算机程序,在频域内实现了桥梁结构噪声的稳态分析。
     (4)采用数值方法验证了“强耦合”假设的合理性,并将现场实测数据与全频段预测结果进行了对比,探讨了箱梁结构噪声峰值的产生原因。以32m双线混凝土简支箱梁为研究对象,对其振动声辐射机理、频谱特性和空间分布规律进行了分析,并考察了车速、墩高、声屏障和地面反射等因素对桥梁结构总体噪声的影响。
     (5)以32m单线混凝土简支箱梁为研究对象,考察了材料属性(弹性模量、材料密度和结构阻尼)、板厚(顶板、底板和腹板)、腹板倾角和边界条件(简支或固结)对结构声辐射的影响规律。对比了两种32m双线混凝土简支箱梁(单箱单室和单箱双室)的振动声辐射特性。研究了32m双线混凝土简支U形梁的振动声辐射机理、频谱特性和空间分布规律。
     (6)建立了移动集中力-简支箱梁-多重调谐质量阻尼器耦合振动模型,推导了时域微分方程,采用模态叠加法实现了模态解耦,以频响函数为中间变量,确立了优化目标函数,并采用有约束的非线性规划模型进行最优控制参数的求解。在此基础上,以32m双线混凝土简支箱梁为研究对象,探讨了在箱内布置多重调谐质量阻尼器进行桥梁结构减振、降噪的效果。
     (7)研究了简单矩形板的声辐射特性,采用瑞利积分法实现了此类结构辐射声功率的解耦,并分析了其声辐射模态特性。采用结构辐射声功率的一般公式,将振型叠加法、边界元法和矩阵的广义特征值分解结合起来,对结构声辐射阻抗矩阵和均方振动速度耦合矩阵同步对角化,实现了任意复杂三维结构声辐射功率的解耦,并将结构的辐射效率以特征值、特征向量的简单叠加表示出来。结合结构声辐射模态方法,将结构辐射声功率作为目标函数,讨论了采用次级力源进行结构声辐射的主动控制策略。基于MATLAB平台编制了复杂结构声辐射功率的解耦代码和最优次级力源的求解代码。在此基础上,以32m双线混凝土简支U形梁为研究对象,探讨了U形梁的声辐射模态和主动控制方法。
When a train runs across a bridge, vibration energy is transmitted from the track structure into the bridge deck and other components which act as different size of'sounding boards'. These'sounding boards'also radiate noise, namely, re-radiated noise, which results in'hot spots'in noise maps for bridge sections. In this dissertation, the prediction and control of structure-borne noise from bridge are studied based on numerical simulation and field measurement. The main contents include:
     (1) The achievements related to the prediction and mitigation of structure-borne noise from bridge are reviewed and summarized from three aspects experimental research, numerical analysis and noise reduction measures. The numerical methods include Finite Element Method (FEM), Boundary Element Method (BEM), Statistical Energy Analysis (SEA) and others. The noise reduction measures contain construction material, sound barrier, vibration isolation and/or reduction, viscoelastical damping material, bridge structural type, and so on.
     (2) A comparative analysis of the measured Sound Pressure Level (SPL) of four elevated bridges at home and abroad is done, and then, four problems on test equipment, evaluation method, Noise Source Identification (NSI) and measuring point arrangement are pointed out. Subsequently, the suitable evaluation and identification method of structure-borne noise are investigated. Based on this, the in-suit noise test on a32m simply-supported pre-stressed concrete box girder with two tracks on it has been done; the measured time-frequency characteristic and propagation law of noise are analyzed according to four types of measuring point.
     (3) Based on the theory of Train-Track-Bridge Coupling Vibration (TTBCV), BEM and SEA, this dissertation puts forward a novel method of calculating structure-borne noise of various rail transit bridges covering the low-and middle-frequency range. The dynamic responses of bridge and rails are identified as the boundary condition and external energy input in the BEM and SEA model, respectively. Meanwhile, the'strong-coupling'assumption is introduced to simplify the solution of Coupling Loss Factors (CLF) between subsystems in the SEA model. A computer program based on these strategies is developed on the MATLAB(?) platform, that is, the steady analysis of structure-borne noise from bridge is achieved.
     (4) The rationality of'strong-coupling'assumption is checked based on numerical analysis. Meanwhile, the validation of prediction model is completed by field measurement as well as the explanation of peak frequency of structure-borne noise for box girder. By numerical simulation, the former32m box girder is selected as the case study, the vibro-acoustic mechanism, frequency spectrum characteristic and spatial distribution law of structure-borne noise are investigated, respectively. After that, the influences of train speed, pier height, sound barrier and ground reflection on the overall SPL are obtained.
     (5) A single track32m simply-supported pre-stressed box girder is selected as the case study, the variations of material property (elastic modulus, density and damping), structural thickness (top plate, bottom plate and web plate), inclination angle of web plate and boundary condition (simply-supported and clamped) on the overall SPL of structure-borne noise are investigated. Followed that, two32m double track simply-supported pre-stressed box girder are compared related to the structure-borne noise, the cross section of the first is single box with single chamber while the other one is single box with double chamber. Similarly, the vibro-acoustic mechanism, frequency spectrum characteristic and spatial distribution law of noise SPL of a32m double line simply-supported pre-stressed concrete U-shape girder are studied.
     (6) A moving concentrated force-box girder-Multiple Tuned Mass Dampers (MTMDs) coupling vibration model is presented; the time-domain differential equations are derived and subsequently decoupled by Modal Superposition Method (MSM). According to the intermediate variable of Frequency Response Function (FRF), the optimization object function is constructed, which is solved by a Constrained Nonlinear Programming Model (CNPM). Based on this, the former double track32m box girder is selected as the case study, the effectiveness of MTMDs on the control of vibration and noise radiation of box girder is investigated.
     (7) The acoustic radiation characteristic of a simple rectangle plate is studied, whose acoustic radiation power is decoupled by Rayleigh Integral Method (RIM). Subsequently, the acoustic radiation mode of it is analyzed. After that, the general formula of acoustic radiation power, the MSM, BEM and Generalized Eigenvalue Decomposition (GED) of matrix are combined to simultaneously diagonalize the matrix of acoustic radiation impedance and mean-square vibration velocity. That is, decoupling of an arbitrary three-dimensional complex structure is realized, and the structural radiation efficiency can be gained by simple addition of eigenvalue and eigenvector. Based on this, structural acoustic radiation power is identified as the object function, and the active control strategy of using Secondary Force Source (SFS) is investigated. On the MATLAB(?) platform, the codes of decoupling of acoustic radiation power and optimal SFS of an arbitrary three-dimensional complex structure are gained. After that, the former U-shape girder is selected as the case study, and the acoustic radiation mode and active control of it are researched.
引文
[1]焦大化.铁路环境噪声控制[M].北京:中国铁道出版社,1990.
    [2]高军,许国平.350 km/h铁路客运专线噪声检测验收与评价探析[J].铁道技术监督.2008,36(12):19-21.
    [3]辜小安.我国城市轨道交通环境噪声振动标准与减振降噪对策[J].现代城市轨道交通.2004(1):42-45.
    [4]<责令改正违法行为决定书(胶济铁路客运专线有限责任公司),http://www.mep.gov.cn/gkml/hbb/qt/201011/t20101119_197753.htm>.
    [5]<委员关注沪杭高铁噪音扰民,建议轨道边安“消声墙”,http://zjnews.zjol.com.cn/05zjnews/system/2011/01/24/017257511.shtml>.
    [6]永田保久.东北新斡線の240 km/h化と环境对策[J].铁道土木.1985,27(12):770-772.
    [7]D. J. Thompson. Railway noise and vibration:mechanisms, modeling and means of control [M]. UK:Elsevier Science Ltd.,2009.
    [8]张曙光.京津城际高速铁路系统调试技术[M].北京:中国铁道出版社,2008.
    [9]常亮.箱形梁结构的振动和噪声辐射研究[D].武汉:武汉理工大学,2007.
    [10]谢旭,张鹤,山下斡夫.桥梁振动辐射低频噪声评估方法研究[J].土木工程学报.2008,41(10):53-59.
    [11]张鹤.交通荷载作用下桥梁振动与噪声问题研究[D].浙江:浙江大学,2010.
    [12]<低频噪音,http://baike.baidu.com/view/1946336.htm>.
    [13]焦大化.铁路噪声预测计算方法[J].铁道劳动安全卫生与环保.2005,32(3):101-107.
    [14]C. Stiiber. Gerauschentwicklung beim befahren stahlerner eisenbahnbrucken und abwehrmaβnahmen [R]. Verein Deutscher Ingenieure (VDI),1963.
    [15]C. Stiiber. Air-and structure-borne noise of railways [J]. Journal of Sound and Vibration.1975,43(2):281-289.
    [16]Office For Research And Experiment. Noise abatement on bridges Report 1:Noise development in steel railway bridges [R]. International Union of Railways (UIC), 1966.
    [17]Office For Research And Experiment. Noise abatement on bridges Report 2:Noise measurement on the Rosenhein bridges [R]. International Union of Railways (UIC),1969.
    [18]Office For Research And Experiment. Noise abatement on bridges Report 3:Final report [R]. International Union of Railways (UIC),1971.
    [19]Japanese National Railways. Shinkansen noise [R]. Japanese National Railways (JNR),1975.
    [20]L. G. Kurzweil. Prediction and control of noise from railway bridges and tracked transit elevated structures [J]. Journal of Sound and Vibration.1977,51(3): 419-439.
    [21]E. E. Ungar, L. E. Wittig. Wayside noise of elevated rail transit structure:analysis of published data and supplementary measurements [R]. U. S. Department of Transportation,1980.
    [22]A. E. J. Hardy. Noise from railway bridges [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.1999,213(3): 161-172.
    [23]O. G. Bewes. The calculation of noise from railway bridges and viaducts [D]. Southampton:University of Southampton,2005.
    [24]中华人民共和国铁道部.铁路建设项目环境影响评价噪声振动源强取值和治理原则指导意见(2010年修订稿)(铁计(2010)44号)[S].
    [25]沈锐利,高淑英,王重实.高速铁路线桥降噪措施及设计方案研究[R].成都:西南交通大学,1998.
    [26]K. W. Ngai, C. F. Ng. Structure-borne noise and vibration of concrete box structure and rail viaduct [J]. Journal of Sound and Vibration.2002,255(2): 281-297.
    [27]刘玉华,葛起宏,左鹏飞.高架桥箱梁结构振动与噪声的测试分析[J].武汉工业学院学报.2007,26(3):58-59.
    [28]何祚镛.结构振动与声辐射[M].哈尔滨:哈尔滨工程大学出版社,2002.
    [29]丁桂保,郑史雄.高速铁路桥梁的低频噪声研究[J].西南交通大学学报(自然科学版).1998,33(2):127-131.
    [30]A. J. Keane, W. G. Price. Statistical energy analysis [M]. Cambridge:Cambridge University Press,1994.
    [31]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995.
    [32]P. J. Remington, L. E. Wittig. Prediction of the effectiveness of noise control treatments in urban rail elevated structures [J]. Journal of the Acoustical Society of America.1985,78(6):2017-2033.
    [33]D. J. Thompson. An analytical model for the vibration isolation for a rail mounted on a bridge [R]. Southampton:Institute of Sound and Vibration Research (ISVR), 1992.
    [34]L. Carlone, D. J. Thompson. Vibrations of a rail coupled to a foundation beam through a series of discrete elastic supports [R]. Southampton:Institute of Sound and Vibration Research (ISVR),2001.
    [35]M. H. A. Janssens, D. J. Thompson. A calculation model for the noise from steel railway bridges [J]. Journal of Sound and Vibration.1996,193(1):295-305.
    [36]D. J. Thompson, C. J. C. Jones. Thameslink 2000 metropolitan junction to London bridge noise and vibration studies [R]. Southampton:Institute of Sound and Vibration Research (ISVR),1997.
    [37]D. J. Thompson, C. J. C. Jones. NORBERT-Software for predicting the noise of railway bridges and elevated structures [R]. Southampton:Institute of Sound and Vibration Research (ISVR),2002.
    [38]O. G. Bewes, D. J. Thompson, C. J. C. Jones, et al. Calculation of noise from railway bridges and viaducts:experimental validation of a rapid calculation model [J]. Journal of Sound and Vibration.2006,293(3-5):933-943.
    [39]D. J. Thompson, C. J. C. Jones, O. G. Bewes. NORBERT-Software for predicting the noise of railway bridges and elevated structures-Version 2.0 [R]. Southampton:Institute of Sound and Vibration Research (ISVR),2005.
    [40]王重实,王凤勤,高淑英.高速铁路桥梁噪声预测方法的探讨[J].西南交通大学学报.2001,36(2):1 66-168.
    [41]段金明,周敬宣,李艳萍.统计能量分析在轻轨交通噪声预测中的应用[J].华中科技大学学报(城市科学版).2002,19(3):57-60.
    [42]张旭,宋雷鸣.列车通过高架桥结构时的运行噪声统计能量分析(SEA)研究[J].噪声与振动控制.2008(2):77-79.
    [43]宋雷鸣,孙守光.铁路高架结构线路噪声预测[J].北京交通大学学报.2009,33(4):42-45.
    [44]徐良.高速铁路简支箱梁结构噪声的SEA方法[D].成都:西南交通大学,2011.
    [45]J. A. Steel, R. J. M. Craik. Statistical energy analysis of structure-borne sound transmission by finite element methods [J]. Journal of Sound and Vibration.1994, 178(4):553-561.
    [46]C. A. Brebbia. The boundary element method for engineers [M]. London:Pentech Press,1978.
    [47]赵志高.结构声辐射的机理与数值方法研究[D].武汉:华中科技大学,2005.
    [48]R. D. Ciskowski, C. A. Brebbia. Boundary element methods in acoustics [M]. Berlin:Springer,1991.
    [49]S. Kirkup. The boundary element method in acoustics [M]. UK:Integrated Sound Software,2007.
    [50]Y. J. Liu. Fast multipole boundary element method:theory and applications in engineering [M]. Cambridge:Cambridge University Press,2009.
    [51]朱彦,陈光冶,林常明.城市高架轨道桥辐射噪声的计算与分析[J].噪声与振动控制.2005(3):37-41.
    [52]胡新伟,黄醒春.高架轨道梁振动与结构噪声的数值模拟[J].低温建筑技术.2007(2):54-56.
    [53]林龙.地铁齿轮箱与高架桥梁振动声辐射特性仿真分析[D].上海:上海交通 大学,2007.
    [54]吴国强.基于边界元法的高速铁路混凝土箱梁振动声辐射研究[D].成都:西南交通大学,2011.
    [55]张鹤,谢旭,山下斡夫.桥梁交通振动辐射的低频噪声声场分布研究[J].振动工程学报.2010,23(5):514-522.
    [56]崔喆.复杂箱形结构辐射声场的理论预估及噪声控制方法研究[D].西安:西安交通大学,2003.
    [57]N. Ouelaa, A. Rezaiguia, B. Laulagnet. Vibro-acoustic modelling of a railway bridge crossed by a train [J]. Applied Acoustics.2006,67(5):461-475.
    [58]谢旭,张鹤,张治成.桥梁振动辐射低频噪声的数值评估[C].第16届全国结构工程学术会议,太原,2007:503-508.
    [59]丁勇,布占宇,谢旭.考虑桥面板振动的桥梁结构低频噪声分析[J].土木建筑与环境工程.2011(2):58-64.
    [60]孙亮明.箱形梁结构噪声的理论研究[D].武汉:武汉理工大学,2008.
    [61]谢伟平,孙亮明.箱形梁声辐射问题的半解析方法[J].武汉理工大学学报.2008,30(12):165-169.
    [62]周新祥.噪声控制技术及其新进展[M].北京:冶金工业出版社,2007.
    [63]陈克安.有源噪声控制[M].北京:国防工业出版社,2003.
    [64]<芝加哥高架轻轨全封闭式隔音屏障,http://www.sooooob.cn/case/196.htm>.
    [65]<武汉轻轨全封闭式隔音屏,http://www.sooooob.cn/gallery/2208.htm>.
    [66]韩义涛.城市轨道交通减振降噪分析及工程措施[J].铁道工程学报.2010(2):85-88.
    [67]董国宪.高架轨道交通浮置板轨道减振降噪性能研究[D].上海:同济大学,2007.
    [68]<纵向轨枕轨道系统,http://www.beijingik.com/a/jishuzhanshi/2011/0105/32.html>.
    [69]Y. Ban, T. Miyamoto. Noise control of high-speed railways [J]. Journal of Sound and Vibration.1975,43(2):273-280.
    [70]J. T. Nelson. Steel elevated structure noise reduction with resilient rail fasteners at the NYCTA [C]. INTER-NOISE 90, Gothenburg,1990:395-400.
    [71]A. Wang, S. J. Cox, D. Gosling, et al. Railway bridge noise control with resilient baseplates [J]. Journal of Sound and Vibration.2000,231(3):907-911.
    [72]M. F. Harrison, D. J. Thompson, C. J. C. Jones. The calculation of noise from railway viaducts and bridges [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.2000,214(3):125-134.
    [73]A. R. Crockett, J. R. Pyke. Viaduct design for minimization of direct and structure-radiated train noise [J]. Journal of Sound and Vibration.2000,231(3): 883-897.
    [74]沈坚,张俊峰,耿传智.香港西线铁路噪声控制技术[J].城市轨道交通研究.2005(3):65-67.
    [75]高飞,夏禾,安宁.北京地铁5号线高架结构的辐射噪声分析与实验研究[J].中国铁道科学.2010,31(5):134-139.
    [76]齐琳,战家旺,夏禾.城市轨道交通高架桥梯形轨枕轨道降噪性能试验分析[J].中国铁道科学.2011,32(1):36-40.
    [77]F. Poisson, F. Margiocchi. The use of dynamic dampers on the rail to reduce the noise of steel railway bridges [J]. Journal of Sound and Vibration.2006,293(3-5): 944-952.
    [78]余钱华,胡世德,范立础.桥梁结构MTMD被动控制的理论研究和实桥分析[J].世界地震工程.2001,17(3):105-108.
    [79]T. Igusa, K. Xu. Vibration reduction characteristics of distributed tuned mass dampers [C]. Proceeding of the 4th International Conference on Recent Advances in Structural Dynamics, Southampton,1991:596-605.
    [80]H. Kwon, M. Kim, I. Lee. Vibration control of bridges under moving loads [J]. Computer & Structure.1998,66(4):473-480.
    [81]J. F. Wang, C. C. Lin, B. L. Chen. Vibration suppression for high-speed railway bridges using tuned mass dampers [J]. International Journal of Solids and Structures.2003,40(2):465-491.
    [82]C. C. Lin, J. F. Wang, B. L. Chen. Train-induced vibration control of high-speed railway bridges equipped with multiple tuned mass dampers [J]. Journal of Bridge Engineering.2005,10(4):398-414.
    [83]J. D. Yau, Y. B. Yang. Vibration reduction for cable-stayed bridges traveled by high-speed trains [J]. Finite Elements in Analysis and Design.2004,40(3): 341-359.
    [84]韩西,李磊,钟厉MTMD参数设计控制拱桥竖向振动方法研究[J].振动与冲击.2008,27(3):104-107.
    [85]万信华.大跨斜拉桥在移动荷载作用下的振动控制[J].华中科技大学学报(城市科学版).2010,27(1):40-45.
    [86]刘棣华.粘弹阻尼减振降噪应用技术[M].北京:中国宇航出版社,1990.
    [87]J. J. Hanel, T. Seeger. Schalldampfung groβversuch an zwei stahlemen eisenbahn-hohlkastenbrucken [J]. Der Stahlabau.1978,47(12):353-361.
    [88]T. Odebrant. Noise from steel railway bridges:a systematic investigation on methods for sound reduction [J]. Journal of Sound and Vibration.1996,193(1): 227-233.
    [89]G. P. Wilson, F. Kirschner. Reduction of noise from composite steel-concrete aerial structures by damping steel plates [J]. The Journal of the Acoustical Society of America.2008,123(5):3383.
    [90]M. H. A. Janssens, D. J. Thompson, J. W. Verheij. Application of a calculation model for low noise design of steel railway bridges [C]. INTER-NOISE 97, Budapest,1997:1621-1624.
    [91]J. H. Cooper, H. F. Harrison. Development of an alternative design for the west rail viaducts [C]. Proceedings of the Institution of Civil Engineers, London,2002: 87-95.
    [92]张博.都市高架轨道箱梁的声学优化[D].上海:上海交通大学,2006.
    [93]陈乐.圆柱壳体的振动与声辐射[D].武汉:武汉理工大学,2007.
    [94]谢伟平,陈西德.钢筋混凝土圆柱壳声辐射特性的有限元研究[J].声学技术.2008,27(5):769-774.
    [95]谢伟平,陈西德,潘支明.空气中钢筋混凝土圆柱壳声辐射特性研究[J].噪声与振动控制.2008(3):109-112.
    [96]潘支明.开孔钢筋混凝土圆柱壳声辐射特性研究[D].武汉理工大学,2007.
    [97]陈无平,谢伟平,王勇.混凝土圆柱壳声辐射数值模拟[J].华中科技大学学报(城市科学版).2008,25(1):39-41.
    [98]Y. Moritoh, Y. Zenda, K. Nagakura. Noise control of high speed Shinkansen [J]. Journal of Sound and Vibration.1996,193(1):319-334.
    [99]K. W. Ngai. The model of local mode analysis for structural acoustics of box structures [D]. Hong Kong:The Hong Kong Polytechnic University,2004.
    [100]环境保护部.声学:铁路机车车辆辐射噪声测量(GB/T5111-1995)[S].
    [101]中华人民共和国铁道部.机车车辆及动车组运行辐射噪声限值(报批稿)(GB/T13669)[S].
    [102]中华人民共和国铁道部.铁路沿线环境噪声测量技术规定(TB/T3050-2002)[S].
    [103]环境保护部.铁路边界噪声限值及其测量方法(2008年修改方案)(GB12525-1990)[S].
    [104]国家环境保护总局.声屏障声学设计和测量规范(HJ/T 90-2004)[S].
    [105]中华人民共和国铁道部.铁路声屏障声学构件技术要求和测试方法(TB/T3122-2010)[S].
    [106]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2002.
    [107]G. Rasmussen. Technical review NO.1-1982:Human body vibration exposure and its measurement [M]. Denmark:Bruel & Kjaer,1982.
    [108]赵树卿,郭泉,杨亦春.环境次声波对人体健康的模拟实验研究[J].噪声与振动控制.2009(S2):22-25.
    [109]闻邦椿,李凌轩,宋桂秋.基于ANSYS分析客运列车固有振动特性对人的影响[J].振动与冲击.2011,30(1):121-123.
    [110]环境保护部.环境影响评价技术导则:声环境(HJ 2.4-2009)[S].
    [111]环境保护部.社会生活环境噪声排放标准(GB 22337-2008)[S].
    [112]环境保护部.工业企业厂界环境噪声排放标准(GB 12348-2008)[S].
    [113]A. Kjellberg, M. Goldstein, F. Gamberale. An assessment of dB(A) for predicting loudness and annoyance of noise containing low frequency components [J]. Journal of Low Frequency Noise and Vibration.1984(4):10-16.
    [114]K. Persson, M. Bjorkman, R. Rylander. An experimental evaluation of annoyance due to low frequency noise [J]. Journal of Low Frequency Noise and Vibration. 1985(4):145-153.
    [115]K. Persson, M. Bjorkman. Annoyance due to low frequency noise and the use of the dB(A) scale [J]. Journal of Sound and Vibration.1988,127(3):491-497.
    [116]G. Leventhall, P. Pelmear, S. Benton. A review of published research on low frequency noise and its effects [R]. London:Consultant in Noise, Vibration and Acoustics,2003.
    [117]Y. Inukai, H. Taua, A. Utsugi, et al. A new evaluation method for low frequency noise [C]. INTER-NOISE 90, Gothenburg,1990:1441.
    [118]N. Broner, H. G. Leventhall. Low frequency noise annoyance assessment by Low Frequency Noise Rating (LFNR) curves [J]. Journal of Low Frequency Noise and Vibration.1983,2(1):20-28.
    [119]M. L. S. Vercammen. Setting limits for low frequency noise [J]. Journal of Low Frequency Noise and Vibration.1989,8(4):105-109.
    [120]M. L. S. Vercammen. Low frequency noise limits [J]. Journal of Low Frequency Noise and Vibration.1992,11(1):7-13.
    [121]M. Mirowska. Evaluation of low frequency noise in dwellings:new polish recommendations [J]. Low Frequency Noise, Vibration and Active Control.2001, 20(2):67-74.
    [122]Deutsches Institut Fur Normung. Messung and bewertung tieffrequenter gerauschimmissionen in der nachbarschaft (DIN 45680:1997)[S].
    [123]D. Piorr, K. H. Wietlake. Assessment of low frequency noise in the vicinity of industrial noise sources [J]. Journal of Low Frequency Noise and Vibration. 1990(9):116-119.
    [124]N. Tokunaga, Y. Hino, T. Nushimura. Study on the traffic vibration around elevated road and factor of associated complaints [J]. Bridges and Foundations. 1998,98(3):51-56.
    [125]I. Murai. The low frequency noise problem about the road project [J]. Journal of INCE of Japan.1999,23(5):319-323.
    [126]I. Murai. Handling of low frequency noise in case of environmental assessment by road project [J]. Journal of INCE of Japan.2000,24(4):242-247.
    [127]瑕境省环境管理局大気生活瑕境室.低周波音防止对策事例集[Z].2002.
    [128]瑕境厅大気保全局.低周波音の测定方法[Z].2000.
    [129]環境省水、大気瑕境局大気生活環境室.低周波音对庙事例集[Z].2008.
    [130]乔宇锋.板结构辐射声的声品质基础理论研究[D].武汉:华中科技大学,2007.
    [131]M. H. David, A. S. A. Jamie. Acoustic and Psychoacoustics (4th Edition) [M]. Oxford:Focal Press,2009.
    [132]陈心昭.噪声源识别技术的进展[J].合肥工业大学学报(自然科学版).2009,32(5):609-614.
    [133]盛美萍.噪声与振动控制技术基础[M].北京:科学出版社,2001.
    [134]王济,胡晓MATLAB在针对信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [135]顾光武,朱博.偏相干分析在风洞噪声源识别中的应用[J].噪声与振动控制.2011(4):142-145.
    [136]江苏联能电子技术有限公司.产品手册[Z].2010.
    [137]北京声望声电技术有限公司.产品手册[Z].2010.
    [138]Bruel & Kjaer. PULSE系统手册[Z].1996.
    [139]<并列式声强传感器,http://www.coinv.com.cn/_d268976461.htm>.
    [140]Bruel & Kjaer. Noise source identification [Z].2008.
    [141]张曙光.350 km/h高速列车噪声机理、声源识别及控制[J].中国铁道科学.2009,30(1):86-90.
    [142]辜小安.日本新干线铁路噪声现状及控制[J].铁道劳动安全卫生与环保.2000,27(3):147-152.
    [143]贾丽,翟国庆,王巧燕.间歇噪声主观烦恼度研究[J].环境科学学报.2008,28(8):1699-1703.
    [144]何琳.声学理论与工程应用[M].北京:科学出版社,2006.
    [145]B. Gernot, S. Lan, D. Christian. The boundary element method with programming: for engineers and scientists [M]. New York:Springer,2008.
    [146]雷晓燕,圣小珍.现代轨道理论研究(第二版)[M].北京:中国铁道出版社,2008.
    [147]M. P. Norton. Fundamentals of noise and vibration analysis for engineers [M]. New York:Cambridge University Press,1989.
    [148]L. V. Stvan, L. L. Beranek. Noise and vibration control engineering:principles and applications (2nd Edition) [M]. New Jersey:John Wiley & Sons Inc.,2005.
    [149]B. Laulagnet, J. L. Guyader. Modal analysis of a shell's acoustic radiation in light and heavy fluids [J]. Journal of Sound and Vibration.1989,131(3):397-415.
    [150]B. L. Clarkson, R. J. Pope. Experimental determination of modal densities and loss factors of flat plates and cylinders [J]. Journal of Sound and Vibration.1981, 77(4):535-549.
    [151]B. L. Clarkson, M. F. Ranky. Modal density of honeycomb plates [J]. Journal of Sound and Vibration.1983,91(1):103-118.
    [152]王毅刚,王佐民,杨志刚.复杂结构统计能量分析的低频限研究[J].同济大学学报(自然科学版).2008,36(6):812-815.
    [153]W. Bellevue. Tecplot 360 user's manual [M]. Washington:Tecplot Inc.,2010.
    [154]李小珍.高速铁路列车-桥梁系统耦合振动理论与应用研究[D].成都:西南交通大学,2000.
    [155]刘德军.风-列车-线路-桥梁系统耦合振动研究[D].成都:西南交通大学,2010.
    [156]C. C. Lin, C. M. Hu, J. F. Wang, et al. Vibration control effectiveness of passive tuned mass dampers [J]. Journal of the Chinese Institute of Engineers.1994,17(3): 367-376.
    [157]G. V. Borgiott. The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements [J]. The Journal of the Acoustical Society of America.1990,88(4):1884-1893.
    [158]S. J. Elliott, M. E. Johnson. Radiation modes and the active control of sound power [J]. The Journal of the Acoustical Society of America.1993,94(4):2194-2204.
    [159]M. N. Currey, K. A. Cunefare. The radiation modes of baffled finite plates [J]. The Journal of the Acoustical Society of America.1995,98(3):1570-1580.
    [160]G. P. Gibbs, R. L. Clark, D. E. Cox, et al. Radiation modal expansion:application to active structural acoustic control [J]. The Journal of the Acoustical Society of America.2000,107(1):332-339.
    [161]李双,陈克安.结构声辐射有源控制中主导辐射模态的抵消及次级力的最优布放[J].噪声与振动控制.2006(6):62-66.
    [162]周晓楠,姜哲.结构噪声主动控制在时域声辐射模态下的仿真研究[J].振动工程学报.2007,20(2):149-154.
    [163]李双.基于模态分析方法的有源声学结构研究[D].西北工业大学,2007.
    [164]韦庆杰,姜哲.基于声辐射模态的有源控制解耦在固定支承板上的研究[J].应用声学.2010,29(6):409-415.
    [165]姜哲,郭骅.由试验模态分析确定振动物体的辐射效率[J].振动与冲击.1992(4):44-49.
    [166]毛崎波,姜哲.通过声辐射模态研究结构声辐射的有源控制[J].声学学报(中文版).2001,26(3):277-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700