汽车关门声品质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车行业的高速发展,人民生活水平的不断提高,顾客对汽车的舒适性要求也随之提高。而噪声作为评价汽车品质的主要因素之一,也越来越受到重视。近年来,人们发现传统的噪声控制已经不能很好地满足市场需求,于是,声品质(Sound Quality)的研究与应用成为噪声控制领域的研究热点,越来越受到汽车企业的重视。声品质已成为产品竞争力的重要因素。
     汽车关门的声音不只具有噪声特性,更多的还是具有品质的特性。顾客对汽车的首要印象不仅来源于汽车的外观,也来源于汽车关门声品质。若汽车关门声音的品质差,将直接让顾客决定放弃该车,从而影响汽车企业的竞争力。因此,汽车关门声品质研究是汽车声品质研究的重要内容之一。论文选题源于国家“跃升计划”专项——中国高水平汽车自主创新能力建设等项目,结合某企业开发的一款样车中的车门系统项目,对汽车关门声品质客观评价参数、汽车关门声品质预测方法以及汽车关门声品质优化设计方法展开深入系统地研究。
     论文主要研究内容有:
     (1)针对目前声品质预测模型的预测精度不高问题,将EMD分解引入汽车关门声品质预测,研究建立了基于EMD分解的BP神经网络、支持向量机预测模型;将临界频率带解析小波分解引入汽车关门声品质预测,研究建立了基于临界频率带解析小波分解的BP神经网络、支持向量机预测模型。对比分析了基于心理学参数的传统声品质预测模型和基于时频信号处理方法的声品质预测模型的预测精度。
     (2)针对现有的声品质评价参数不能全面准确评价汽车关门声品质的问题,将现代时频分析方法引入汽车关门声品质客观评价,研究利用时频信号处理技术提取汽车关门声信号声品质特征,在此基础上建立新的基于时频信号处理技术的汽车关门声品质客观评价参数;提出了基于伪Wigner-Ville分布的汽车关门声品质评价参数SMPWVD(Sound Metric Based On Pseudo Wigner-Ville Distribution)以及基于临界频率带小波分解的汽车关门声品质评价SMCBWD(Sound Metric BasedOn Critical Band Wavelet Decomposition);对比分析了SMPWVD和SMCBWD与汽车关门声品质主观评价绩效值之间的相关性。
     (3)针对汽车关门声品质分析离不开实际样车的问题,将普遍用于汽安全碰撞分析的仿真方法应用于关门碰撞仿真分析,并结合试验设计方法和响应面法建立了关门碰撞优化问题的近似模型;基于遗传算法,以减小车门系统能量为目的,对近似模型进行了优化;为了验证车门系统经优化设计改进后汽车关门声品质得到改善,分别采用仿真和实验方法对改进效果进行验证。建立了车门系统的声辐射仿真分析模型,计算了优化前后车门辐射出的声压值及传统汽车关门声品质评价参数(响度、尖锐度),并进行了对比分析;基于汽车关门声品质的客观评价试验和主观评价试验方法,对修改前样车(OTS3)、修改后样车(OTS4)及一辆关门声品质较好的标杆车进行了关门声品质客观评价和主观评价,得出了响度、尖锐度、SMPWVD、SMCBWD以及主观偏好性绩效值,并进行了对比分析。
     本文对汽车关门声品质预测模型、汽车关门声品质评价参数以及汽车关门声品质优化设计方法进行深入研究。建立了基于时频信号处理方法的汽车关门声品质预测模型,有效提高了汽车关门声品质预测模型的预测精度;提出了基于伪Wigner-Ville分布的汽车关门声品质评价参数SMPWVD以及基于临界频率带小波分解的汽车关门声品质评价SMCBWD,为汽车关门声品质的客观评价提供了准确有效的评价参数;建立了一套汽车关门声品质优化设计流程,通过优化汽车关门碰撞能量,成功改善了汽车关门声品质。论文研究成果能为汽车关门声品质预测、评价以及改善提供有效途径,具有重要的理论意义及工程应用价值。
With the development of vehicle industry and the improvement of people's livingstandard, the customer’s requirement for the comfort of the car is improved. As one ofthe main factors of automobile quality, noise has attracted more and more attention. Inrecent years, people has found that the traditional noise control cannot meet themarket demand, so the research and application of sound quality has become a focusin the field of noise control, and is attracted more and more attention by the carcompanies. Sound quality has become the important factors of productcompetitiveness.
     The sound of door-slamming has not only the characteristics of noise, but alsothe characteristics of quality. The customer’s first impression of a car not only camefrom the appearance of a car, but also came from the sound quality of door-slamming.If the sound quality of door-slamming is poor, the car will be given up by customersand the competition ability of the enterprise will be influenced directly. Therefore, theresearch of the sound quality of door-slamming is one of the important contents invehicle quality. The dissertation sponsored by the project “Yue Sheng Program” andthe independent innovation capabilities of high-level car construction in China. Thesound quality prediction model, the sound quality evaluation parameters and thesound quality optimization methods of door-slamming were studied in thisdissertation.
     The main research contents of this dissertation were
     (1) Aiming at the problem that the precision of the sound quality predictionmodel of door-slamming is poor, EMD (Empirical Mode Decomposition) method wasintroduced to predict the sound quality of door-slamming. Based on EMD, BP (BackPropagation) neural network prediction model and SVM (support vector machines)prediction model were established. Furthermore, Critical Band WaveletDecomposition was also introduced to predict the sound quality of door-slamming.Based on Critical Band Wavelet Decomposition, BP (Back Propagation) neuralnetwork prediction model and SVM (support vector machines) prediction model wereestablished. The comparative analysis has been done between the traditionalprediction model based on psychology parameters and the new prediction model basedon time-frequency analysis methods.
     (2) Aiming at the problem that the existed sound quality evaluation parameterscannot evaluate the sound quality of door-slamming fully and accurately, thetime-frequency analysis methods were introduced into the objective evaluation ofsound quality of door-slamming. The characteristics of the sound quality wereextracted by time-frequency analysis methods, and based on it new sound qualityevaluation parameters were established. Two new sound metrics called S ound Metricbased on Pseudo Wigner-Ville Distribution (SMPWVD) and Sound Metric based onCritical Band Wavelet Decomposition (SWCBWD) were developed. The comparativeanalysis of the correlation coefficients between the subjective sound qualityperformance value of door-slamming and SMPWVD or SMPWVD has been done.
     (3) Aiming at the problem that the sound quality of door-slamming can’t beanalyzed without actual vehicles, the explicit finite element method widely used invehicle safety impact analysis was introduced into the analysis of door-slamming. Bycombining the explicit finite element method with the experimental design methodand the response surface method, an approximation model of door-slammingoptimization was established. To reduce the vibration energy of door-slamming, theapproximate model was optimized by using the genetic algorithm. The simulation andexperimental results before and after optimization verified that the sound quality ofdoor-slamming of the optimized model was improved. Furthermore, the soundradiation simulation model of the door system was established. By comparing thesound pressure and traditional sound quality evaluation parameters (loudness,sharpness) of the sound radiation simulation model before and after the optimization,the sound quality of door-slamming of the optimized model was improved. Based onthe objective and subjective evaluation experiments, the loudness, sharpness,SMPWVD, SMCBWD and the subjective sound quality preference of the car beforemodified (OTS3), the modified car (OTS4) and a benchmarking car was test andanalyzed.
     This dissertation made in-depth researches on the sound quality prediction model,the sound quality evaluation parameters and the sound quality optimization methodsof door-slamming. The new prediction model based on time-frequency analysismethods was established. The prediction precision of the new prediction model wasimproved compared with the traditional prediction model. Two new sound metricscalled SMPWVD and SWCBWD which can provide the accurate and effectiveevaluation parameters were developed. What’s more, the sound quality optimizationprocess of door-slamming was established. By optimizing the energy of door-slamming, the sound quality of door-slamming was improved. The researchresults of this dissertation can provide the effective way to predict, evaluate andimprove the sound quality, and have an important theoretical significance andapplication value.
引文
[1]孙林.国内外汽车法规和标准的发展.汽车工程,2000,22(3):154-158
    [2] Winfried K. Sound quality evaluation in the product Cycle.Acta Acustica unitedwith Acustica,1997,83(5):784-788
    [3] Ute J. Meaning in the context of sound quality assessment.Acta Acustica unitedwith Acustica,1999,85(5):679-684
    [4] Miehael Wilhelm. Development of vehiele sound quality targets and methods.SAETechnical Paper,No.651283
    [5] Rainer Guski. Psyehological method for evaluating sound quality andassessing aeoustic information. Acta Acustica united with Acustica,1997,83(5):765-774
    [6] Blauert J. Product-sound assessments: An enigmaticissue from thepoint of view ofengineering.In:Inter.noise94, Yokohama, Japan1994,86(2):857-862.
    [7] Blauert J. Aesthetic and Cognitive Aspects of Noise Engineering.In:Inter.Noise86,Cambidge MA,1986,1:3-14
    [8] Glenn Pietila, Teik C. Lim. Intelligent systems approaches to product soundquality evaluations. Applied Acoustics,2012,73(10):987-1002
    [9] D. Berckmans, K. Janssens. Model-based synthesis of aircraft noise to quantifyhuman perception of sound quality and annoyance. Journal of Sound andVibration,2008,311(3–5):1175-1195
    [10] Jin Yong Jeon,Jin You,Ho Yeon Chang. Sound radiation and sound qualitycharacteristics of refrigerator noise in real living environments. ProcediaEnvironmental Sciences,2011,11(A):471-477
    [11] Jeff Mielke. A phonetically based metric of sound similarity. Lingua,2012,122(2):145–163
    [12] Jennings P, Fry J, Dunne G. Using neural networks to predict customerevaluation of sounds for the foresight vehicle. SAE Technical Paper,2002,No.2002-01-1125
    [13]郑大瑞,蔡秀兰,陈通.关于噪声评价用语的研究.声学学报,1993,18(6):444-454
    [14] Kousuke Noumur,Junji Yoshida. Perception modeling and quantification ofsound quality in cabin.SAE Technical Paper,2003,No.2003-01-1514
    [15] R Bisping. Emotional effect of car interior sounds:pleasantness And power andtheir relation to acoustic key features. SAE Technical Paper,1995,No.951284:1203-1209
    [16] R Bisping. Car interior sound quality:Experimental analysis by synthesis. ActaAcustica united with Acustica,1997,83:813-818
    [17] R Guski. Psychological methods for evaluating sound quality and assessingacoustic information.Acta Acustica united with Acustica,1997,83(5):765-774
    [18] Blauert J. Cognitive and aesthetic aspects of noise engineering. In:Internoise86,1986,(1):5-14
    [19] Bodden M. Instrumentation for sound quality evaluation.Acta Acustica unitedwith Acustica,1997,83:775-783
    [20]李齐勋.厅堂音质主观评价方法.电声技术,1984,(3):1-9
    [21]刘宗巍.车内噪声声品质建模分析与自适应主动控制研究:[吉林大学博士论文].长春:吉林大学,2007
    [22] Franz K Brandl, Werner Biermayer. A new tool for the onboard objectiveassessent of vehicle interior noise quality. SAE Technical Paper,No.1999-01-1695
    [23] L N Solomon. Semantic reactions to systematically varied sounds. Journal of theAcoustical Society of America,1959,31:986-990
    [24] N Chouard,T Hmpel. A semantic diferential design especially developed for theevaluation of interior car sounds.In: Joint Meeting of ASA/EAA/DAGA,Berlin,Germany,1999
    [25] S Buss, N Chouard, Schulte Fortksmp. Semantic diferential tests showIntercultural differences and similarities in perception of car sounds.In:Fortschritte der Akustik-DAGA,2000
    [26] T Hempel,N Chouard. Evaluation of interior car sound with a new specificsemantic differential design. In: Joint Meeting of ASA/EAA/DAGA,Berlin,Germany,1999
    [27]毛东兴.车内声品质主观评价与分析方法的研究:[同济大学博士论文].上海:同济大学,2003
    [28] Norman C Otto.Listening test methods for automotive sound quality.In: AES103rd Convention,New York,1997
    [29]向斌南.论厅堂音质的评价及设计[J].应用声学,1983,4(2):8-12
    [30] S Kuwano,S Namba,,H Fastl,A Schick. Evaluation of the impression of dangersignals-comparison between Japanese and German subjects.In:7.OldenburgerSymposium,BIS Oldenburg,1997:115-128
    [31] S Kuwano,S Namba,A Schick,H Fastl.The timbre and annoyance of auditorywarning signals in different countries.In: Inter.Noise2000,Nizza,France,2000
    [32] M Hussain,J Golles,A Ronacher,HSchiffbanker. Statistical evaluation of anannoyance index for engine noise recordings.SAE Technical Paper,1991,No.911080,
    [33] Otto Martner, Carsten Zerbs, B John Feng. Psychoacoustic model for theobjective determination of engine roughness.In:Sound Quality Symposium2002DEARBORN,Michigan,2002,NO.SQS02-35
    [34] Lee Sang-Kwon, Kim Ho-Wuk. Improvement of impact noise in a passengercar utilizing sound metric based on wavelet transform. Journal of Sound an dVibration,2010,329(17):3606-3619
    [35]蒋伟康,张伟.基于掩蔽特性的噪声品质评估研究.声学学报,2005,2(30):184-188
    [36] R Hoeldrich,M Pflueger. A generalized psychoacoustical model of modulationparameters(roughness)for objective vehicle noise evaluation,In:Proceeding ofthe1999Noise and Vibration Conference,Traverse City Michigan,USA,1999,No.1999-01-1817
    [37] M Pflueger,R Hoeldrich,F Brandl,W Biermayer. Subjective assessment ofroughness as a basis for objective vehicle interior noise quality evaluation.In:Proceeding of the1999Noise and Vibration Conference, Traverse CityMichigan,USA,1999,No.1999-01-1850
    [38] Lijian Zhang. A sensory approach to develop product sound qualitycriterion.SAE Technical Paper,No.1999-01-1818
    [39] VanAuke M, Zellnerand J W, Kunkel D T. Correlation of Zwieker’sloudness and other noise metries with driver’s over-the-Road transient noisediscomfort.SAE Technical Paper,NO.980585
    [40] Amman, Scott, Greenberg, Jeff. Subjective evaluation and objectivequantification of automobile strut noise. Noise Control Engineering Journal,1999,47(1):17-27
    [41] T Hashimoto. Sound quality approach on vehicle interior and exteriornoise-Quantification of frequency related attributes and impulsiveness.Journal ofAcoustical Society of Japan,2000,(21):337-340
    [42]丁厚明.空调器噪声质量客观评价技术的研究与软件开发:[南京理工大学博士论文].南京:南京理工大学,2002
    [43]徐小军.基于主观感觉的声质量客观评价方法及应用:[合肥工业大学博士论文].合肥:合肥工业大学,2004
    [44]赵忠峰,陈克安.基于Zwicker理论的噪声客观评价方法.电声技术,2005,(10):63-65
    [45]梁杰.基于双耳听觉模型的车内声品质分析与评价方法研究:[吉林大学博士论文].长春:吉林大学,2007
    [46] Holger U.Prante. Modeling judgements of environmental sounds by meansofartificial neural networks:[Technischen University Ph.D. Thesis]. Berlin:Technischen University,2001
    [47] Fry J,Jennings P,Dunne G. Jury evaluation of sound quality using neuralNetworks. Journal of the Royal Astronomical Society of Canada,2002:301-306
    [48]申秀敏,左曙光,李林,张世炜.车内噪声声品质的支持向量机预测.振动与冲击,2010,29(6):66-68
    [49] Frank E C,Pickering D J,Raglin C. In-vehicle tire sound quality prediction fromtire noise data.In:SAE Noise and Vibration Conference and Exhibition,2007,No.2007-01-2253
    [50] Sung-Jong Kim, Sang Kwon Lee, Dong-Chul Park, Min-Sub Lee, Seung-GyoonJung. Objective evaluation for the passenegr carduring acceleration based on thesound metric and artificial neural network. SAE Technical Paper,2007,No.2007-01-2396.
    [51] Lee S K,Kim B S,Chae H C. Sound quality analysis of a passenger car based onrumbling index. In: SAE Noise and Vibration Conference and Exhibition,Traverse City,USA,2005,No.2005-01-2481
    [52] Hamilton D. Sound quality of impulsive noises:an applied study of automotivedoor closing sounds.In:SAE Noise and Vibration Conference and Exhibition,Traverse City,USA,1999,No.1999-01-1684
    [53] Petniunas A,Ott N C,Ammanand S,SimPson R. Door System Design forImproved Closure Sound Quality.SAE Technical Paper,1999,No.1999-01-1681
    [54]范玮,孟子厚.汽车车门声品质调查.声学技术,2007,6(4):674-677
    [55]乌静,陈剑.车门关闭声品质偏好性评价与客观分析研究.噪声与振动控制,2010,30(4):119-122
    [56] Zhidong Zhang, Shaobo Young. Low Frequency Transient CAE Analysis ForVehicle Door Closure Sound Quality, In: Proceeding of the Noise and VibrationConference, SAE International. Traverse City Michigan, USA,2005,No.2005-01-2339
    [57] Musser C T,Young S. Application of transient SEA for vehicle door closuresound quality.In:SAE Noise and Vibration Conference and Exhibition, TraverseCity Michigan, USA,2005,No.2005-01-2433
    [58] Martin Pfluege,Robert Hoeldrich,Franz K. Subjective assessment of roughnessas a basis for objeetive vehicle interior noise quality evaluation.SAE TechnicalPaper,1999,No.1999-01-1850
    [59]曹银锋,李光耀,钟志华.汽车碰撞过程并行有限元仿真技术.机械工程学报,2005,41(2):153-157
    [60] Liu G.R., Quek S.S. The finite element method: a practical course. Oxford:Butterworth Heinemann,2004:1-9
    [61]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,2002,483-553
    [62] Mitchell A L. Introduction to genetic algorithms. Cambridge, MIT Press,1996,35-40
    [63]杨剑,张璞,陈火红. MD Nastran有限元实例教程.北京:机械工业出版社,2007,1-9,61-64
    [64] Hartman F. Introduction to Boundary Element: Theory and Applications. Berlin:Springer,1989
    [65] Brebbia C A,Tells J C F,Wrobel L C. Boundary Element Techniques. Berlin,Heidelberg, NewYork, Tokyo:Springer-Verlag,1984
    [66]宫燃,周晓军,张志刚,杨富春.声传递向量法在汽车驱动桥声辐射中的应用.中国公路学报,2008,21(1):116-120
    [67]孙威,陈昌明. ATV与MATV技术在轿车乘坐室噪声分析中的应用.汽车科技,2007,(6):24-27
    [68] Bodden M,Heinriehs. Sound Quality Evaluation of Interior Vehiele Noise Usingan Effieient Psychoacoustic Method.In:Proceeding of Euronoise, Essen,Germany,1998
    [69] Zwicker E, Terhardt E. Analytical expressions for critical bandwidth as afunction of frequency. Journal of the Acoustical Society of America,1980,68(5):1523-1525
    [70] Zwicker E,Fastl H. Psychoacoustics:Facts and Models2nd.New York:Springer,1999
    [71] LE Humes,DD Dirks,TS Bell. Application of the Articulation Index and theSpeech Transmission Index to the recognition of speech by normal-hearing andhearing-impaired listeners. Journal of Speech and Hearing Research,1986,29:447-462
    [72]谢军.汽车声品质及评价方法研究:[吉林大学博士论文].长春:吉林大学,2009
    [73] Chouard N,Hmpel T. A semantic differential design especially developedfor theevaluation of interior car sounds. In:Joint Meeting of ASA/EAA/DAGA, Berlin,Germany,1999
    [74] Buss S, Chouard N, Schulte-Fortkamp B. Semantic differential tests showIntercultural differences and similarities in perception of car sounds. In:DAGA,Oldenburg,Germany,2000
    [75] Hempel T,Chouard N. Evaluation of interior car sound with a new specificsemantic differential design. In:Joint Meeting of ASA/EAA/DAGA, Berlin,Germany,1999
    [76] Moran P A P. On the method of paired comparisons.Biometrika,1940,34(3-4):363-365
    [77] Kingsley,David C,Thomas C. Preference Uncertainty, Preference Learning, andPaired Comparison Experiments. Land Economics,2010,86(3):530–544
    [78] Gra hoff U,Gro mann H,Holling H,Schwabe R. Optimal designs for maineffects in linear paired comparison models.Journal of Statistical Planning andInference,2004,126(1):361-376
    [79]高印寒,孙强,梁杰. B级轿车车内声品质的主观评价方法研究的[J].噪声与振动控制,2010,30(4):115-118
    [80] Parizet E. Paired comparison listening tests and circular error rates.Acta Acusticaunited with Acustic,2002,88(4):594-598.
    [81] Wang Y S,Lee C M,Kim D G. Sound-quality prediction for nonstationaryvehicle interior noise based on wavelet pre-processing neural network model.Journal of Sound and Vibration,2007,299(4-5),933-947
    [82] Huang N E, Shen Z, Long S R. The exmpirical mode decomposition and theHilbert spectrum for nonlinear and nonstationay time series analysis. In:Proceeding of Royal Society,London,England,1998,No.903-905
    [83] Cheng Junsheng,Yu Dejie.Application of frequency family separation methodbased upon EMD and local Hilbert energy spectrum method to gear faultdiagnosis.Mechanism and Machine Theory,2008,43(6):712-723
    [84]彭玉华.小波变换与工程应用.北京:科学出版社,2002
    [85] Zhu Xiangdong, J Kim. Application of analytic wavelet transform to analysis ofhighly impulsive noises. Journal of Sound and Vibration,2010,294(4-5):841-855
    [86]孙强.基于人工神经网络的汽车声品质评价与应用研究:[吉林大学博士论文].长春:吉林大学,2010
    [87]杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法.振动与冲击,2005,24(1):85-88
    [88] Shiotsuka T,Nagamatsu A,Yoshida K. Active control of drive motion of fourwheel seering car with neural network. SAE Technical Paper,1994,No.940229
    [89] Vapn IK V. The nature of statistical learning theory. New York: SpingerVerlag,2000
    [90] Gunn S R. Support Vector Machines for Classification and Regression. TechnicalReport, Image Speech and Intelligent Systems Research Group, Un iversity ofSouthampton,1997
    [91]王国胜.支持向量机的理论与算法研究:[北京邮电大学博士论文].北京:北京邮电大学,2008
    [92] Wigner E P.On The Quantum Correction for Thermodynamic Equilibrium. Phys.Rev.1932,40(5):749-759
    [93] Chandrika U K, Kim J H. Development of an algorithm for automatic detectionand rating of squeak and rattle events. Journal of Sound and Vibration,2010,329(21):4567-4577
    [94] Patrick Flandrin, Bernard Escudie. An interpretation of the Pseudo Wigner Villedistribution. Signal Processing,1984,6(1):27-36
    [95] Ali Mkaddem,Riadh Bahloul. Experimental and numerical optimisation of thesheet products geometry using response surface methodology, MaterialsProcessing Technology,2007,189(1-2):441–449
    [96] Guipu Xiao,Zikang Zhu. Friction materials development by using DOE/RSMand artificial neural network,Tribology International,2010,43(1-3):218–227
    [97] Montgomery D C. Design and analysis of experiments.4thVersion. New York:NY Wiley,1997:14-19
    [98]秦建侯,邓勃,王小芹.分析测试中的试验设计和优化方法:一正交试验设计.分析试验室,1985,4(10):45-55
    [99]邓勃,秦建侯,王小芹.分析测试中的试验设计和优化方法:二正交多项式回归设计.分析试验室,1985,4(11):47-56
    [100]王小芹,邓勃,秦建侯.分析测试中的试验设计和优化方法:三均匀设计法.分析试验室,1985,4(12):46-55
    [101]方开泰.均匀设计及其应用I.数理统计与管理,1994,13(1):57-64
    [102]方开泰.均匀设计及其应用II.数理统计与管理,1994,13(2):59-61
    [103]方开泰.均匀设计及其应用III.数理统计与管理,1994,13(3):52-55
    [104] Fang K T. The uniform design application of number theoret ic methods inexperimental design. Acta Mathematica Application Sinica,1980,3(4):363-372
    [105] Wang Y, Fang K T. A note on uniform distribution and experimental design.Chinese Science Bulletin,1981,26(6):485-489
    [106] Mckay M D, Beckman R J, Conover W J. A comparison of three methods forselecting values of input variables in the analysis of output from a computercode. Technometrics,2000,42(1):55-61
    [107] Keramat M, Kielbasa R. Modified Latin hypercube sampling Monte Carlo(MLHSC) estimation for average quality index. International Journal of AnalogIntegrated Circuits Signal Process,1999,19(1):87-98
    [108] Swidzinski J F, Chang K. Nonlinear statistical modeling and yield estimationtechnique for use in Monte Carlo simulations. IEEE Transactions on MicrowaveTheory and Techniques,2000,48(12):2316-2324
    [109] Myers R H, Montgomery D C. Response surface methodology: process andproduct optimization using designed experiments.2ndEdition. New York: JohnWiley&Sons,2002
    [110] Batmaz I, Tunali S, Small response surface designs for meta-modelestimation.European Journal of Operational Research,2003,145(2):455-470
    [111] Romem V J,Swiler L P,Giunta A A.Construction of response surface based onprogressive-lattice-sampling experimental designs witll application touncertainty propagation.Structural Safety,2004,26(2):201-219
    [112] Lindman H R. Analysis of variance in experimental design. New York:Springer-Verlag,1991
    [113] Mitchell A L. Introduction to genetic algorithms. Cambridge, MIT Press,1996,35-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700