遥感影像综合评价与自适应复原方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感数据获取过程中经常受到各种因素的干扰,导致观测影像质量降低,为后续的数据应用带来了诸多困难。为了缓解以上问题,一方面需要对遥感数据进行质量评价,在现有条件下选择质量更优的遥感影像,同时过滤质量太差而无法使用的数据;另一方面,在没有高质量影像的条件下,通常需要对低质量的遥感影像进行复原处理,以提升影像的应用潜力。因此,影像评价与影像复原是遥感信息处理与应用中的重要基础环节。
     虽然遥感影像评价与复原问题在学术与应用领域一直广受关注,但现有研究仍然不能满足处理与应用需求。如何考虑多种辐射指标对遥感影像进行综合评价,以及如何针对不同影像的特征进行自适应复原,是当前需要解决的主要难题。本论文针对以上问题,围绕遥感影像的评价与复原展开了理论与方法研究,具体研究内容包括:
     (1)针对现有遥感影像噪声与调制传递函数MTF评价方法自动化程度不足、需要人工干预的问题,提出最优评价区域的自动选取与评价方法。在噪声评价方面,提出一种迭代优化的匀质区选择方法,可以解决传统方法中影像匀质区自动选择困难的难题,并通过设计基于卷积运算的评价指标实现对噪声水平的稳健估计。在影像MTF评价方面,针对传统方法往往需要人工选取刃边的问题,提出了一种自动检测影像边缘并提取最优刃边的方法,从而实现MTF的自动计算。实验结果表明,本文所提出的自动化评价方法准确有效,可以极大地提高遥感影像噪声和模糊评价的自动化程度。
     (2)在系统总结、改进现有遥感影像评价指标的基础上,提出一套遥感影像质量综合评价的方法。综合考虑了灰度分布、信息量、清晰度、分辨率、噪声、云量、无效像元等指标,并融入了基于参考影像的评价指标;在大量数据测试的基础上,确定了每项指标对应优、良、中、差的最优阈值;进一步从模糊理论出发,通过构建模糊评价矩阵,对多种单指标评价结果进行综合考虑,建立了对遥感影像辐射质量进行综合评定的方法。实验结果表明,本文提出的综合评价方法能准确评价遥感影像的综合质量,与人眼主观评价具有良好的一致性。
     (3)提出一种自适应非局部正则化的遥感影像噪声去除方法。针对传统去噪方法仅利用邻域信息、不能高效去除噪声的缺点,本文在非局部计算框架下开展去噪方法的研究,并重点解决去噪参数的自适应选取问题。为了对不同区域施加不同的去噪强度,通过计算局部噪声强度和标准差,并以此构建非局部模型的权值函数,从而建立白适应的非局部总变分去噪模型。实验结果表明该方法能针对影像的不同结构区域自适应调节去噪强度,可以在去除遥感影像噪声的同时,有效保护影像的边缘、纹理等细节信息。
     (4)提出一种自适应交替迭代的遥感影像盲去模糊方法。基于最大后验概率估计理论框架,建立对遥感影像与模糊函数进行联合求解的去模糊模型,并采用交替迭代的方法对影像和模糊函数进行求解;在影像求解的迭代过程中,充分利用中间复原影像求解数据一致性项和正则化项的函数值,并通过建立相应的求解准则,自适应求解影像与模糊函数的正则化参数。实验结果表明本文提出的盲复原方法,能够较为准确的估计模糊函数,并根据不同的影像特征实现自适应的影像去模糊处理,可有效提高处理精度与效率。
Due to the disturbances of various factors in the acquisition process, the remotely sensed images may have lower quality, which brings a good many difficulties for the subsequent applications. In order to relieve this problem, it is needed to evaluate the image quality to select remote sensing data with better quality, and to filter the poor-quality images. On the other hand, it is needed to restore the images for potential improvement in the condition of no high-quality images existing. Therefore, image evaluation and image restoration are important steps in remote sensing information processing and application.
     Although the problems of image evaluation and image restoration have obtained wide attentions in the academic and application fields, the existing methods can not solve the difficulties perfectly. How to consider multiple factors for a comprehensive evaluation and how to consider the features of different images for an adaptive restoration, are the main difficulties to be solved. This thesis aims to these problems, and develop theories and methods for the evaluation and restoration of remote sensing images. The main contents are as follows:
     (1) The current evaluation methods of noise and Modulation Transfer Function (MTF) always have low degree of automation, and need manual intervention. Aiming at this problem, this thesis proposes automatic selection methods of the optimal evaluation regions. As for the noise assessment, an iterative optimization method for the selection of homogeneous area is proposed. This method may solve the difficulties in traditional methods and realize robust noise estimation by using convolution based evaluation index. As for the MTF assessment, in order to solve the problem of knife edge searching in MTF computing, an automatic searching and calculating method is presented. The experimental results show that the automatic evaluation methods are accurate and effective, and can greatly improve the degree of automation of remote sensing noise and MTF evaluation.
     (2) This thesis gives a systematically summary of the current image evaluation indices, and makes several improvements. Base on these, a comprehensive evaluation method for remote sensing images is proposed by fully consider the indices of grey distribution, information quantity, definition, resolution, noise, cloud, and invalid pixels. The reference based method is also considered. After a plenary test of remote sensing data, the optimal thresholds of different grades (Excellent, Good, Fair and Poor) are determined. In the framework of fuzzy mathematics theory, the fuzzy evaluation matrix is firstly built, and the results of the evaluation of a variety of single indicators are considered comprehensively, then a overall qualitative evaluation score is given. The experimental results show that this comprehensive evaluation method can accurately evaluate the quality of remote sensing images with good consistency with the human eye evaluation.
     (3) This thesis proposes an adaptive non-local regularization denoising method for remotely sensed images. Traditional denoising methods only use the neighboring information, leading to that the noise can not be effectively removed. This research develop new denoising method in the framework of non-local computation, and solve the problem of adaptive selection of filtering parameters. In this thesis, based on the non-local total variation denoising model, an adaptive filtering parameter determination approach is presented by computing the local noise intensity and standard deviation. In the iterative process, the parameters are adjusted automatically according to the noise level of the iteration results. Experimental results show that this filtering parameter determination method have the performance to adaptively adjusted the denoising strength according to different structures and can protect the edge and texture information while removing image noise.
     (4) This thesis proposes an adaptively alternative iteration method for blind deblurring of remotely sensed images. This method is based on the framework of maximum a posteriori (MAP), and jointly solves the image and blur function by alternative iteration procedure. During the iteration process, make full use of the partially solved image to compute the values of data consistency and regularization terms. The two regularization parameters of image and blur are adaptively solved by designing corresponding solution functions. The experimental results show that the proposed blind deblurring method has the performance to give accurate estimation of blurring function, and realize adaptive restoration according to image features. It can improve the processing accuracy and efficiency.
引文
[1]卜丽静.基于稀疏理论的星载雷达图像超分辨率重建.博士论文,辽宁工程技术大学,2011.
    [2]陈方听.基于区域生长法的图像分割技术.科技信息(科学教研),2008年,第15期:58-59.
    [3]陈港,陶劲松.纸张喷墨打印质量分析技术及其进展.中国造纸,2002,21(6):50-55.
    [4]陈冠楠.基于偏微分方程的医学图像处理理论与实验研究.博士论文,华中科技大学,2009.
    [5]陈浩,图像质量评价及复原系统研究.上海交通大学学位论文,2010年2月.
    [6]程东旭,秦新强,张太发等.基于区域增长的轮廓线提取算法.西安理工大学学报,2005,21(4):413-416.
    [7]成礼智,王红霞,罗永.小波的理论与应用.科学出版社,2004.
    [8]杜丽军.遥感影像盲复原方法研究.武汉大学硕士论文,2011.
    [9]方圣辉,李凡,李小娟,张宏雅.一种遥感影像质量的自动评价方法.测绘信息与工程,2010,35(5):26-27.
    [10]冈萨雷斯,数字图像处理(第二版),北京:电子工业出版社,2003.
    [11]高飞.基于偏微分方程的图像去噪算法研究.硕士论文,大连海事大学,2011.
    [12]高娟等.一种遥感影像边界无效像元的检测方法及应用.地理空间信息,2012年4月第10卷第2期:12-15.
    [13]何雷.地震图像去噪算法的研究与实现.硕士论文,大庆石油学院,2008.
    [14]何磊.乘性噪声图像恢复的变分方法,硕士论文,青岛大学,2008.
    [15]贺威.传感器与遥感影像的辐射校正方法探索.硕士论文,燕山大学,2005.
    [16]贺兴华,周媛媛,王继阳,等.MATLAB7. X图像处理.北京:人民邮电出版社,2006:104-106.
    [17]洪继光.灰度-梯度共生矩阵纹理分析方法.自动化学报,1984.10(1):22-25
    [18]胡杰,基于变分法的非局部均值去噪算法研究,硕士论文,青岛大学,2010.
    [19]黄小乔,石俊生,杨健,姚军财.基于色差的均方误差与峰值信噪比评价彩色图像质量研究.光子学报,2007(6):295-298
    [20]贾永红.数字成象系统调制传递函数的测定及应用.武汉测绘科技大学学报,1991,16(4):23-30.
    [21]贾永红.数字图像处理.武汉:武汉大学出版社,2003.9.
    [22]克兢,灰度和彩色图像对比度增强的PDE方法研究.硕士论文,西北大学硕十论文,2008.
    [23]K. R. Castleman数字图象处理.北京:电子工业出版社,2006.
    [24]李春梅等,基于邻域平均梯度的小波图像融合.微计算机信息,2006,12-3
    [25]李安贵,张志宏,孟燕,等.模糊数学及其应用.北京:冶金工业出版社,2005
    [26]李彤.大幅面扫描仪光学机械系统的研究设计及实现.硕士论文,清华大学,2005.
    [27]梁雄峰.一种双正则参数的TV方法在图像处理中的应用.中山大学硕士论文,2006.
    [28]刘红毅.结构保持的图像去噪方法研究.博士论文,南京理工大学,2011.
    [29]刘伟嵬,颜云辉,孙宏伟,王永慧.一种基于邻域噪声评价法的图像去噪算法,东北大学学报(自然科学版)第29卷第7期,2008年7月.
    [30]马晶等.一种遥感影像的自动噪声评价方法.遥感信息,2012年6月,第27卷第3期:78-82.
    [31]马晓昕.定量中子数字成像的中子散射校正技术研究.硕士论文,重庆大学,2007.
    [32]马政德,杜云飞,周海芳,刘衡竹.遥感图像配准中相似性测度的比较和分析.计算机工程与科学,2008,30(2):45-48
    [33]倪永婧.基于纹理细节的图像去噪算法的研究.硕士论文,燕山大学,2006.
    [34]强赞霞.遥感图像的融合及应用.博士论文,华中科技大学,2005.
    [35]冉琼,迟耀斌,王智勇,等,北京1号小卫星图像噪声评估,遥感学报,2009,13(3).
    [36]阮秋琦.数字图象处理学.北京:电子工业出版社,2004.
    [37]沈峘、李舜酩等.数字图像复原综述.中国图像图形学报,2009,14(9).
    [38]时红伟,陈世平.一种面向用户任务需求的遥感图像质量标准NIIRS航天返回与遥感,2003,24(003):30-35.
    [39]孙权森,罗楠,夏德深Bregman交替迭代遥感图像复原方法2012.
    [40]孙于顺.图像噪声评价方法与图像噪声评价装置.中华人民共和国国家知识产权局,CN101599170A,2009.
    [41]孙宇丹.基于总体变分法的图像去噪和复原研究.硕士论文,东北石油大学,2011.
    [42]王军.量化对遥感图像质量的影响.航天返回与遥感,2004,35(5):46-49.
    [43]王桥.数字图像处理,科学出版社,2009.
    [44]王强.电子分色原理与工艺,武汉测绘科技大学出版社,1997.
    [45]王涛.地震资料解释系统中若干问题的研究.硕十论文,西安科技大学,2009.
    [46]王幸平,基于偏微分方程的图像去噪研究,硕十论文,南京理工大学,2007.
    [47]王昱.数字遥感影像构像质量评价方法初探.遥感信息,2000(4):32-33.
    [48]王益艳.图像去噪算法研究.西安:陕西师范大学,2008.
    [49]王占宏.遥感影像信息量及质量度量模型的研究.博十论文,武汉大学,2004
    [50]吴振宇.模糊图像复原方法研究.硕士论文,国防科技大学研究生院,2009.
    [51]仵冀颖,阮秋琦.偏微分方程在图像去噪中的应用,计算机工程与应用,2006,vol.42,no.22:67-71.
    [52]肖亮,韦志辉,吴慧中.“非局部数字全变差滤波算法,”中国图象图形学报,vol.15,no.9,pp.1318-1325,2010.
    [53]谢季坚,刘承平.模糊数学方法及其应用.武汉:华中科技大学出版社,2005.
    [54]刑藏菊,王守觉,邓浩江等.一种基于极值中值的滤波算法.中国图象图形学报,2001,6(6):533-536.
    [55]徐焕宇,孙权森,夏德深.基于非局部总变差的消除不规则采样遥感图像复原方法.测绘学报,2012,41(2):232-238.
    [56]杨晖.图像分割的阈值法研究.辽宁大学学报(自然科学版),2006,33(2):135-137.
    [57]叶春芳.光学系统MTF快速测量仪的研究.硕士论文.浙江大学,2006.
    [58]袁亚湘(译),矩阵运算.北京:科学出版社,2001.
    [59]曾衍伟.空间数据质量控制与评价技术体系研究.博士论文,武汉大学,2004.
    [60]曾滂,陈世平,于晋.光学遥感成像系统调制传递函数补偿技术.中国空间科学技术,2010,(4):38-42.
    [61]曾湧,于晋,陈世平.基于调制传递函数的航天遥感图像恢复研究.航天返回与遥感,2008,29(2):11-17.
    [62]张东英,易维宁,王先华,乔延力.空基遥感图像的MTF试验研究.安徽大学学报(自然科学版),2007,31(6):55-58.
    [63]张仁霖.信息论基础及其在地学中的应用.西安地图出版社,1993.
    [64]赵四能.偏微分方程在遥感图像去噪与分类的应用研究.硕士论文,浙江大学,2011.
    [65]赵文华.偏微分方程在图像处理中的几种应用.硕士论文,浙江大学,2004.
    [66]郑学芬,林宗坚,范丽,等.遥感影像信息量的计算方法研究.山东科技大学学报:自然科学版,2008,27(1):80-83.
    [67]钟锦敏.非局部平均的去噪方法研究.硕士论文,上海交通大学,2007.
    [68]周春平,宫辉力等.遥感图像MTF复原国内研究现状.航天返回与遥感,2009,30(1):27-32.
    [69]周浩.基于偏微分方程的图像降噪算法研究.硕士论文,江苏科技大学,2010.
    [70]周密.整体变分法的数字图像修复技术研究.西北大学硕士论文,2008.
    [71]朱博,王新鸿,唐伶俐,李传荣.光学遥感图像信噪比评估方法研究进展.遥感技术与应用第25卷,第2期,2010年4月.
    [72]朱立新.基于偏微分方程的图像去噪和增强研究.博士论文,南京理工大学,2007.
    [73]朱永松,国澄明.基于相关系数的相关匹配算法的研究.信号处理,2003.12:531-534
    [74]A. A. Efros, T. K. Leung, Texture synthesis by non-parametric sampling,1999, pp.1033-1038 vol.2.
    [75]A. Buades, B. Coll, J. M. Morel, A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation,2005,4(2):490-530.
    [76]B.C. Forster, P. Best. Estimation of SPOT P2mode Point Spread Function and Derivation of a Deconvolution Filter. ISPRS Journal of Photogrammetry and Remote Sensing,1994,49 (6):32-42.
    [77]B.C. McCallum, B. Blind deconvolution by simulated annealing. Optics Communications,1990,75(2):101-105.
    [78]C. R. Vogel and M. E. Oman. Iterative methods for total variation denoising. SIAM Journal on Scientific Computing,1996,17(1):227-238.
    [79]D. Brownrigg, The weighted median filter, Communication Association for Computing Machinery, vol.27, no.8, pp.807-818,1984.
    [80]D. Kundur, D. H. Blind image deconvolution. IEEE Signal Processing Magazine, 1996,13(3):43-64.
    [81]F. Catte, P. L. Lions, J. M. Morel, T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical Analysis, pp.182-193,1992.
    [82]G. Gilboa, N. Sochen, Y. Y. Zeevi, Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing, vol.11, no.7, pp.689-703,2002.
    [83]G. Gilboa, S. Osher, Nonlocal Operators with Applications to Image Processing, Multiscale Modeling and Simulation,2008,7(3):1005-1028.
    [84]G. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics,1979,21,215-223.
    [85]G. R. Ayers, J. C. D. Iterative blind deconvolution method and its applications. Optics letters,1988,13(7):547-549.
    [86]H. Chang, D. Yeung, Y. Xiong. Super-Resolution through Neighbor Embedding. In Proceedings of CVPR,2004:275-282.
    [87]H. Du, K. J. Voss Effects of point-spread function on calibration and radiometric accuracy of CCD camera. Applied Optics,2004,43(3):665-670
    [88]H. Greenspan, Super-Resolution in Medical Imaging, Comput. J.,2009,52(1): 43-63.
    [89]H. He and L. P. Kondi, A regularization framework for joint blur estimation and super-resolution of video sequences, presented at IEEE International Conference on Image Processing, Genova,2005.
    [90]H. Liao and M. Ng, Blind Deconvolution Using Generalized Cross Validation Approach to Regularization Parameter Estimation IEEE Transactions on Image Processing,2011,20(3),670-680.
    [91]H. Liao, F. Li and M. Ng, On Selection of Regularization Parameter in Total Variation Image Restoration, Journal of the Optical Society of America A,2009, 26,2311-2320.
    [92]H. Shen, L. Du, L. Zhang and W. Gong, A blind restoration method for remote sensing images, IEEE Geosci. Remote Sens. Lett.,2012,9(6):1137-1141.
    [93]H. Shen, L. Zhang. A MAP-Based Algorithm for Destriping and Inpainting of Remotely Sensed Images. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(5):1492-1502.
    [94]H. Stark, P. Oskoui. High-resolution image recovery from image plane arrays, using convex projections. Journal of the Optical Society of America A:Optics and Image Science, and Vision,1989,6:1715-1726,.
    [95]H. Talebi and P. Milanfar. Global Image Denoising. IEEE Trans, on Image Processing,2014,23(2):755-768.
    [96]J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio. General image-quality equation:GIQE. Applied Optics,1997,36(32):8322-8328.
    [97]J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio. General image-quality equation for infrared imagery, Applied Optics,2000,39(26): 4826-4828.
    [98]J. Papa et al. Convex restriction sets for CBERS-2 satellite image restoration. International Journal of Remote Sensing,2008,29(2):443-458.
    [99]J. Serra, Morphological filtering:An overview. Signal Processing,1994, 38(1):3-11.
    [100]J. Weickert, Anisotropic diffusion in image processing. Teubner Stuttgart, 1998.
    [101]J.W. Tukey. Exploratory data analysis. Addison-Wesley, Rading, MA,1971.
    [102]J. Zhang, P. Zhong, Y. Chen, and S. Li, L1/2-Regularized Deconvolution Network for the Representation and Restoration of Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens.,2013,24(12):2013-2026,.
    [103]K. Dabov, A. Foi, V. Katkovnik, K.0. Egiazarian. Image denoising by sparse 3-D transform-domain collaborative fi ltering. IEEE Trans. Image Process. 2007,16(8):2080-2095.
    [104]L. A. Zadeh. The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Sciences,1975,8:199-251.
    [105]L. Dennis. IKONOS Satellite in Orbit Modulation Transfer Function (MTF) Measurement using Edge and Pulse Method. Electrical Engineering Department South Dakota State University, August,2002.
    [106]L. I. Rudin, S. Osher, Total variation based image restoration with free local constraints,. Proc First IEEE. Int. Conf. Image Processing, vol.1. pp.31-35, 1994.
    [107]L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D:Nonlinear Phenomena, vol.60, no.1-4, pp.259-268, 1992.
    [108]L. Liu, H. Dong, H. Huang, and A. C. Bovik. No-reference image quality assessment in curvelet domain. Signal Processing:Image Commun.,2014. Available:http://dx.doi.org/10.1016/j.image.2014.02.004
    [109]M. Eskicioglu and P. S. Fisher. Image quality measures and their performance. IEEE Transactions on Communications,1995,43(12):2959-2965.
    [110]M. Irani, S. Peleg. Improving resolution by image registration. CVGIP: Graphical Models and Image Processing,1991,53(3):231-239,
    [111]M. J., Black G. Sapiro, D. H. Marimont. Robust anisotropic diffusion, IEEE Transactions on Image Processing,1998,7(3):421-432.
    [112]M. Jung, X. Bresson, T. F. Chan, and L. A. Vese. Nonlocal Mumford-Shah regularizers for color image restoration. IEEE Trans. Image Process.,2011, 20(6):1583-1598.
    [113]M. K. Ng, et al. A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP Journal on Advances in Signal Processing,2007,2007(74585).
    [114]M. K. Ng, R. J. Plemmons, and F. Pimentel. A new approach to constrained total least squares image restoration. Linear algebra and its applications,2000, 316(1-3):237-258.
    [115]M. Protter, I. Yavneh, and M. Elad. Closed-Form MMSE Estimation for Signal Denoising Under Sparse Representation Modelling Over a Unitary Dictionary. IEEE Transactions on Signal Processing,2010,58(7):3471-3484.
    [116]P. Maragos, R. Schafer. Morphological filters—part 1:Their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Transactions on Acoustics, Speech and Signal Processing.1987,35(8):1153-1169.
    [117]P. Maragos, R. Schafer. Morphological filters—part ii:Their relations to median, order-statistic, and stack filters. IEEE Transactions on Acoustics, Speech and Signal Processing,1987,35(8):1170-1184.
    [118]P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell,1990,12(7):629-639.
    [119]Q. Yuan, L. Zhang, and H. Shen. Hyperspectral Image Denoising Employing a Spectral-spatial Adaptive Total Variation Model. IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3660-3677.
    [120]R. A. Carmona, S. Zhong, Adaptive smoothing respecting feature directions. IEEE Transactions on Image Processing, vol.7, no.3, pp.353-358,1998.
    [121]R. H. Chan, C. W. Ho, M. Nikolova. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing.2005,14(10):1479-1485,.
    [122]R. Lukac, B. Smolka, K. N. Plataniotis. Selection weighted vector directional filters. Computer Vision and Image Understanding,2004,94(1):140-167.
    [123]R. T. Whitaker, S. M. Pizer, A multi-scale approach to nonuniform diffusion. CVGIP Image Understanding, vol.57, pp.99-99,1993.
    [124]S. Avcibas, B. Sankur, and K. Sayood. Statistical evaluation of image quality measures. Journal of Electronic Imaging,2002,11(2):206-223.
    [125]S. Omri, H. Oren, Y. Yitzhak, Blind restoration of atmospherically degraded images by automatic best step-edge detection, Pattern Recognition Letters, 2007,28 (2007):2094-2103
    [126]S. G. Mallat, A theory for multiresolution signal decomposition:The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [127]S. Mallat, W. L. Hwang, Singularity detection and processing with wavelets. IEEE Transactions on Information Theory,1992,38(2):617-643.
    [128]T.Chan, and C. Wong. Total variation blind deconvolution. IEEE Transactions on Image Processing,1998,7(3):370-375.
    [129]T. Choi. IKONOS satellite on orbit modulation transfer function (MTF) measurement using edge and pulse method. Thesis of South Dakota State University,2002
    [130]T. F. Chan, S. Osher, and J. Shen. The digital TV filter and nonlinear denoising. IEEE Transactions on Image Processing,,2001,10(2):231-241.
    [131]V. Caselles, J. Morel, Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Transactions on Image Processing, vol.7, no.3, pp.269-273, 1998.
    [132]W. Shi, C. Q. Zhu, Y. Tian, and J. Nichol. Wavelet-based image fusion and quality assessment, International Journal of Applied Earth Observation and Geoinformation,2005,6(3-4):241-251.
    [133]W. Xue, L. Zhang, and X. Mou. Learning without Human Scores for Blind Image Quality Assessment, in Proc. IEEE CVPR,2013, pp.995-1002.
    [134]W. Xue, X. Mou, L. Zhang, and X. Feng. Perceptual Fidelity Aware Mean Squared Error, Proc. IEEE ICCV,2013:705-712.
    [135]X. Zhu and P. Milanfar, Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content, IEEE Transactions on Image Processing, vol.19, no.12, pp.3116-3132,2010.
    [136]Y. Chen, B. C. Vemuri, L. Wang, Image denoising and segmentation via nonlinear diffusion, Computers & Mathematics with Applications, vol.39, no.5-6, pp. 131-149,2000.
    [137]Y. Lou, X. Zhang, S. Osher, A. Bertozzi, Image recovery via nonlocal operators, Journal of Scientific Computing, vol.42, no.2, pp.185-197,2010.
    [138]Y. Wen, M. K. Ng, and Y. Huang. Efficient total variation minimization methods for color image restoration. IEEE Trans. Image Process.,vol.17, no.11, pp. 2081-2088, Nov.2008.
    [139]Y. You, M. Kaveh. Blind image restoration by anisotropic regularization. IEEE Transactions on Image Processing,2002,8(3):396-407.
    [140]Y. You, M. Kaveh. Fourth-order partial differential equation for noise removal, IEEE Transactions on Image Processing,2000,9(10):1723-1730.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700