用于有机太阳能电池共轭聚合物的设计合成及其计算模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去几十年里,聚合物太阳能电池效率得到了飞速的发展。活性层给体材料的发展是促进其发展的主要动力之一,聚合物给体材料对光谱吸收、开路电压、载流子迁移率等方面都有决定性影响。最近几年,含氟材料在聚合物电池中得到了广泛的应用,包括活性层给受体材料和器件缓冲层材料。氟原子因其体积小、强吸电子性等特性而影响聚合物的带隙、能级、偶极矩、光伏器件效率。密度泛函理论(DFT)计算在模拟聚合物结构及其相关性质方面发挥了许多重要的作用。本论文围绕含氟窄带隙共轭聚合物的设计合成及其光伏性能开展了一系列的研究工作;同时,结合理论计算,对所设计的聚合物进行微观层次的结构分析,研究聚合物结构与性质之间的关系。本论文主要内容包括:
     1、以含侧链共轭噻吩的苯并二噻吩(TBDT)为给体单元,带无侧链噻吩π桥的氟化苯并噻二唑(fflDTBT)为受体单元,通过Stille偶联合成了一种新的给体(D)-受体(A)共轭聚合物PTBDTffDTBT。D-A共轭聚合物的光伏性能比非氟化类似聚合物得到提高。在没有特殊优化情况下,基于PTBDTffDTBT/PC61BM为活性层的器件在AM1.5G (100mW/cm2)照明条件下获得了4.8%的光电转换效率。二维共轭给体单元TBDT和含氟受体单元ffDTBT同时实现了Jsc(12.17mA/cm2的)和开路电压(0.86V)的增强。
     2、在PTBDTffDTBT聚合物上进行结构调整,引入溶解性烷烃侧链和五氟苯封端基分别合成了聚合物PTBDTffDC8TBT和PTBDTffDC8TBT-FB,并将其与无支链类似聚合物PTBDTffDTBT进行了各个性质对比。同时,应用密度泛函理论(DFT)模拟计算的方法对从初始结构PBDTDTBT至(?)PTBDTffEDC8TBT-FB五种聚合物进行了理论分析。聚合物PTBDTffDC8TBT和PTBDTffDC8TBT-FB具有类似的良好热稳定性、宽光谱吸收(带隙为1.68eV)、能级和聚合物链分子排列。与PTBDTffDTBT相比,烷烃链的引入改善了聚合物的溶解度提高了共轭长度,HOMO能级稍微提高而降低了带隙;烷烃链的引入同时增加了聚合物分子链的lamellar堆叠距离,而热处理对三个含氟聚合物的分子链堆积都没有影响。在器件性能上,PTBDTffDC8TBT/PC61BM在1:1最优条件下的光电效率为2.1%,Voc为0.80V,Jsc为8.31mA/cm2, FF为32%;而聚合物PTBDTffDC8TBT-FB/PC61BM在1:1最优条件下的光电转换效率为3.6%,各性能参数分别是Voc为0.82V,Jsc为10.45mA/cm2,FF为42%,短路电流和填充因子的差异是造成两者效率差别大的主要原因。通过DFT对从初始结构BDT、DTBT及其衍生结构、聚合物的模拟计算得出:侧链共轭噻吩扩大了苯并二噻吩的共轭程度;主链上氟原子的引入有助于降低能级,提高偶极矩;增加溶解性烷烃侧链会扩大单体间扭转程度(二面角增加约20°);特别是端基五氟苯的引入会进一步改变分子链的偶极矩,促进了聚合物活性层中的激子分裂与传输提高了短路电流,从而改善了器件效率。
     3、将ffDTBT结构与苯并二噻吩(BDT),3,6-二噻吩-吡咯并[3,4-c]吡咯-1,4-二酮(DPP)合成了双受体三元共聚物PffDTBT-BDT-DPP (1:2:1),聚合物具有很好的溶解性和成膜性,热稳定性。聚合物紫外可见吸收宽至800nm以后,光学带隙为1.46eV;聚合物具有较好的结晶性能,而且热处理可以增加聚合物的结晶性。以PffDTBT-BDT-DPP/PC61BM (1:1)为器件活性层,获得短路电流2.52mA/cm2,开路电压0.73V,填充因子45.3%,低的短路电流致使聚合物只获得0.8%低效率。与D-A交替共聚物PBDTDPP相比,ffDTBT的引入增加了光学带隙,提高了器件的开路电压。
     4、以基于咔唑改性的稠环结构6H-phenanthro[1,10,9,8-cdefg]carbazole (PC)为给体单元(D)和4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)为受体单元(A)合成了D-A共轭聚合物PPCDTBT。更大的共轭程度使聚合物具有窄带隙1.77eV,同时保持低HOMO能级。phenanthrocarbazole (PC)的大稠环刚性结构使聚合物几何形状严重的扭化。通过密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)在B3LYP/6-31G (d, p)水平上对聚合物二聚体模型的计算,一个大扭转角是打破聚合物骨干共平面性主要原因,因而影响聚合物的共轭。此外,一个不同的从HOMO-2轨道到更高轨道的跃迁是造成短波长处吸收肩峰的原因。经普通的优化,获得了2.3%的光电转换效率(PCE):开路电压为0.80V,短路电流为7.9mA/cm2.此外,为保持高共轭程度和抑制强烈扭转程度,提出和模拟了naphthocarbazole (NC)和对应的交替共轭聚合物(PNCDTBT),聚合物具有的更高共平面性结构,有助于更好的分子内和分子间作用。
During the past few years, the efficiency of polymer solar cell has been developed dramatically. The polymer materials in active layer was the main driving force to promote the development, which have a significant impact on the spectral absorption, open circuit voltage, carrier mobility and other aspects. Moreover, fluorine-containing material has been widely used in polymer solar cell, including donor/accept materials in active layer and buffer layer. A fluorine atom, which is small with strong electron withdrawing ability, affect the polymer properties in term of band gap, energy levels, the dipole moment and the efficiency of photovoltaic devices. Density functional theory (DFT) calculations play many important roles in simulating the electronic structure and related properties of polymers. A series of research work were carried out on designing, synthesis and photovoltaic properties of fluorinated narrow band gap conjugated polymers. At the same time, combined with theoretical calculations, the structure of polymer, as well as the relation between structure and polymer property were also discussed in the text. The details are given follows:
     1. A novel donor-acceptor conjugated polymer containing benzodithiophene with lateral thiophenyl and fluorinated4,7-dithien-2-yl-2,1,3-benzothiadiazole was synthesized by Stille coupling polymerization. The photovoltaic performance of the donor-acceptor polymer was improved as compared to the non-fluorinated donor-acceptor polymer analogue. A power conversion efficiency of4.8%have been achieved in the device based on PTBDTffDTBT/PC61BM under AM1.5G illumination (100mW/cm2) without considerable optimization. Simultaneously enhanced Jsc (12.17mA/cm2) and Voc (0.86V) have also been obtained by fusing two-dimensional conjugated donor unit TBDT and electron-withdrawing fluorinated ffDTBT into the donor-acceptor conjugated polymer.
     2. The polymer PTBDTffDCgTBT and PTBDTffDC8TBT-FB were synthesized by introduce alkyl side chains and pentafluorophenyl end group to fomer polymer PTBDTffDTBT. And the properties of the new polymer were compared with similar polymer PTBDTffDTBT. Meanwhile, density functional theory (DFT) was applied in the simulation on the five kinds of polymers from the initial structure PBDTDTBT to PTBDTffDC8TBT-FB. The polymer PTBDTffDC8TBT and PTBDTffDC8TBT-FB have similar good thermal stability, wide spectral absorption (band gap of1.68eV), the molecular levels and the arrangement of the polymer chains. In compared with PTBDTffDTBT, the introduction of alkyl chains resulted in a) improved solubility and increased polymer molecular weight, b) slightly higher HOMO energy level, c) increased the distance of lamellar stacking. While the organization of the three polymers were not susceptible to the heat treatment. The PCE of the device based on PTBDTffDC8TBT/PC6iBM (1:1) under AM1.5G illumination (100mW/cm2) without considerable optimization achieved2.1%with Voc of0.80V, Jsc of8.31mA/cm2and FF of32%, while the PCE of PTBDTffDC8TBT-FB/PC6iBM (1:1) reached3.6%with the Voc of0.82V, Jsc of10.45mA/cm2and FF of42%, the difference between short-circuit current and the fill factor is the primary cause of the difference in efficiency. By AFM analysis, a more appropriate micro-phase separation morphology with phase separation size of about10-20nm was existed in PTBDTffDC8TBT-FB/PC61BM active layer, the surface roughness Sq (root mean square roughness) of which was much small than PTBDTffDCsTBT (0.62nm vs1.43nm). By the DFT calculations from the initial structure BDT, DTBT, the derivative structure of the monomers and the relevant polymers, it was found that:a) two conjugated thiophene side rings really helps to expand the electron delocalization; b) the introduction of fluorine to the backbone help to reduce energy levels and improve dipole moment; c) the alkyl side chains increase the torsion degree between monomers (dihedral angle increased approximately20°); d) especially that the introduction of pentafluorophenyl end group further change the dipole moment of the molecular chain, which promote exciton split and transport in the active layer, consequently increased the short circuit current and the device efficiency.
     3. The structure ffDTBT was polymerized with benzodithiophene (BDT) and diketopyrrolo[3,4-c]pyrrole (DPP) to synthesized dual receptor polymer PffDTBT-BDT-DPP (1:2:1). The polymer has good solubility, film-forming property and thermal stability. The UV-visible absorption of polymer broaden to800nm with optical band gap of1.46eV. Polymer has good crystallinity which sensitive to heat treatment may increase the crystallinity. The device PffDTBT-BDT-DPP/PC61BM (1:1) as active layer to obtain short-circuit current of 2.52mA/cm2, the open circuit voltage of0.73V, the fill factor of45.3%, a low short-circuit current is the main reason to obtained of0.8%resulting in a polymer. Compared to the counterpart D-A alternating copolymer PBDTDPP, the introduction of ffDTBT increased the optical bandgap improved the open circuit voltage of the device.
     4. A new conjugated polymer containing6H-phenanthro[1,10,9,8-cdefg]carbazole (PC) and4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT) units, so as called PPCDTBT, is synthesized based on the further modification of carbazole moieties for poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)](PCDTBT). The resulted polymer exhibits narrow band gap with1.77eV resulting from the broader conjugation, while maintaining low-lying HOMO energy level. The polymer geometry is severely transformed by the large fused block phenanthrocarbazole (PC). Through the density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculation at the B3LYP/6-31G(d,p) level on the polymer dimer models, a big torsion angle is the main reason for breaking the backbone coplanarity, consequently the conjugation and organization. Moreover, a different transition from the HOMO-2orbital is responsible for the absorption shoulder at short wavelength. After ordinary optimization, the best power conversion efficiency (PCE) of2.3%is achieved with preferable Voc of0.80V and Jsc of7.9mA/cm2. Additionally, for holding extended conjugation from fused carbazole-like unit and suppressing the strong torsion, naphthocarbazole (NC) and counterpart alternative polymer of NC and DTBT (PNCDTBT) are proposed and simulated, which would be more planar for better intra-and inter-molecular interactions.
引文
[1]You J, Chen C C, Hong Z, et al.10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells[J]. Adv Mater,2013,25(29),3973-8.
    [2]Weinberger BR, Ehrenfreund E, Pron A, et al. Electron spin resonance studies of magnetic soliton defects in polyacetylene[J]. Chem Phy,1980,72,4749-4755.
    [3]Tang C W, Two-layer organic photovoltaic cell[J]. Applied Physics Letters,1986, 48,183-185.
    [4]Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron Transfer from conducting polymers onto buckminsterfullerene[J]. Science,1992,258,1474-1476.
    [5]Sariciftci N S, Braun D, Zhang C, Semiconducting Polymerbuckminsterfullerene heterojunctions:diodes, photodiodes, and photovoltaic cells[J]. Appl Phys Lett. 1993,62,585-587.
    [6]Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science,1995,270,1789-1791.
    [7]Marks R N, Halls J J M, Bradley D D C, et al. The Photovoltaic Response in Poly(P-Phenylene Vinylene)Thin-Film Devices[J]. Journal of Physics-Condensed Matter 1994,6(7),1379-1394.
    [8]Yang X, Loos J. Toward high-performance polymer solar cells:The Importance of Morphology Control[J]. Macromolecules,2007,40,1353-1362.
    [9]Sista S. Highly efficient tandem polymer photovoltaic cells[J]. Adv Mater.2010,22, 380-383.
    [10]Lipomi D J, Tee B C K, Vosgueritchian M, et al. Stretchable organic solar cells[J]. Adv Mater.2011,23,1771-1775.
    [11]Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells[J]. Appl Phys,2003,93,3693-3723.
    [12]Gunes S, Neugebauer H, Sariciftci N S, Conjugated polymer-based organic solar cells[J]. Chem Rev.2007,107 (4),1324-1338.
    [13]Coropceanu V, Cornil J, da Silva D A, et al. Charge transport in organic semiconductors[J]. Chem. Rev.,2007,107(4),926-952.
    [14]Yang X, Loos J. Toward high-pe rformance polymer solar cells:The importance of morphology control[J]. Macromolecules,2007,40(5),1353-1362.
    [15]Dennler G, Scharber M C, Ameri T, et al. Design rules for donors in bulk-heterojunc tion tandem solar cells-towards 15% energy-conversion efficiency[J]. Adv Mater,2008,20(3), 579-583.
    [16]Scharber M C, Wuhlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells-Towards 10% energy-conversion efficiency[J]. Adv Mater, 2006,18(6),789-794.
    [17]Koster L J A, Mihailetchi V D, Ramaker R, et al. Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells[J]. Appl Phys Lett,2005,86(12),123509-1-3.
    [18]Mihailetchi V D, Blom P W M, Hummelen J C, et al. Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells[J]. Appl Phys, 2003,94(10),6849-6854.
    [19]Sarangerel K, Ganzorig C, Fujihira M, et al. Influence of the work function of chemically modifi ed indium-tin-oxide electrodes on the open-circuit voltage of heterojunction photovoltaic cells[J]. Chem Lett,2008,37(7),778-779.
    [20]Peng Q, Park K, Lin T, et al. Donor-pi-acceptor conjugated copolymers for photovoltaic a pplications:Tuning the open-circuit voltage by adjusting the donor/acceptor ratio[J], Phys Chem B,2008,112(10),2801-2808.
    [21]Kinoshita Y, Hasobe T, Murata H, et al. Controlling open-circuit voltage of organic photovoltaic cells by inserting thin layer of Zn-phthalocyanine at pentacene/C60 interface. Japanese[J]. Appl Phys,2008,47(2),1234-1237.
    [22]Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer:fullerene bul k heterojunction solar cells[J]. Adv Mater,2007,19(12),1551-1566.
    [23]Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Materials Science & Engineering[J]. R-Reports,2003,40(1),1-46.
    [24]Cheng Y J, Yang S H, Hsu C S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chemical Reviews 2009,109(11),5868-5923.
    [25]Li C Liu, M Pschirer N G, Baumgarten M, et al. Polyphenylene-Based Materials for Organic Photovoltaics[J]. Chemical Reviews 2010,110(11),6817-6855.
    [26]Zhou H, Yang L, You W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells[J]. Macromolecules,2012,45(2),607-632.
    [27]Lee J S, Son, S K, Song S, et al. Importance of Solubilizing Group and Backbone Planarity in Low Band Gap Polymers for High Performance Ambipolar field-effect Transistors[J]. Chemistry of Materials,2012,24(7),1316-1323.
    [28]Lei T, Wang J Y, Pei J. Roles of Flexible Chains in Organic Semiconducting Materials[J]. Chem Mater,2013, doi,10.1021/cm4018776.
    [29]Morvillo P, Parenti F, Diana R, et al. A novel copolymer from benzodithiophene and alkylsulfanyl-bithiophene:Synthesis, characterization and application in polymer solar cells[J]. Solar Energy Materials and Solar Cells,2012,104,45-52.
    [30]Saadeh H A, Lu L, He F, et al. Polyselenopheno[3,4-b]selenophene for Highly Efficient Bulk Heterojunction Solar Cells[J]. ACS Macro Letters,2012,361-365.
    [31]Dong Y, Hu X, Duan C, et al. A series of new medium-bandgap conjugated polymers based on naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole) for high-performance polymer solar cells[J]. Adv Mater,2013,25(27),3683-8.
    [32]Dou L, Chang W H, Gao J Chen C C,et al. A selenium-substituted low-bandgap polymer with versatile photovoltaic applications[J]. Adv Mater,2013,25(6),825-31.
    [33]Hendriks K H, Li W, Wienk M M, et al. Band Gap Control in Diketopyrrolopyrrole-Based Polymer Solar Cells Using Electron Donating Side Chains[J]. Advanced Energy Materials, 2013,3(5),674-679.
    [34]Chu T.-Y, Lu J, Beaupr6 S, et al. Effects of the Molecular Weight and the Side-Chain Length on the Photovoltaic Performance of Dithienosilole/Thienopyrrolodione Copolymers[J]. Advanced Functional Materials,2012,22(11),2345-2351.
    [35]Wang D H, Pron A Leclerc M, Heeger A J. Additive-Free Bulk-Heterojuction Solar Cells with Enhanced Power Conversion Efficiency, Comprising a Newly Designed Selenophene-Thienopyrrolodione Copolymer[J]. Advanced Functional Materials,2013,23 (10),1297-1304.
    [36]Zhou N, Guo X, Ortiz R P, et al. Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells[J]. Adv Mater,2012,24(17),2242-8.
    [37]Kim J H, Song C E, Kang I N, et al. A highly crystalline low band-gap polymer consisting of perylene and diketopyrrolopyrrole for organic photovoltaic cells[J]. Chem Commun (Camb),2013,49(31),3248-50.
    [38]Fei Z, Ashraf R S, Huang Z, et al. Germaindacenodithiophene based low band gap polymers for organic solar cells[J]. Chem Commun (Camb),2012,48(24),2955-7.
    [39]http://www.derthon.com
    [40]Biniek L, Schroeder B C, Nielsen C B, et al. Recent advances in high mobility donor-acceptor semiconducting polymers[J]. Journal of Materials Chemistry,2012,22(30), 14803.
    [41]Dang M T, Hirsch L, Wantz G, et al. Controlling the Morphology and Performance of Bulk Heterojunctions in Solar Cells. Lessons Learned from the Benchmark Poly(3-hexylthiophene):[6,6]-Phenyl-C(61)-butyric Acid Methyl Ester System[J]. Chem Rev,2013, doi:10.1021/cr300005u.
    [42]Ko S, Verploegen E, Hong S, et al.3,4-Disubstituted Polyalkylthiophenes for High-Performance Thin-Film Transistors and Photovoltaics[J]. Journal of the American Chemical Society,2011,133(42),16722-16725.
    [43]Shen X, Duzhko V V, Russell T P, et al. A Study on the Correlation Between Structure and Hole Transport in Semi-Crystalline Regioregular P3HT[J]. Advanced Energy Materials, 2013,3,263-270.
    [44]Yuan M, Yang P, Durban M M, et al. Low Bandgap Polymers Based on Silafluorene Containing Multifused Heptacylic Arenes for Photovoltaic Applications[J]. Macromolecules, 2012,45,5934-5940
    [45]Chen C P, Chan S H, Chao T C, et al. Low-Bandgap Poly(Thiophene-Phenylene-Thiophene) Derivatives with Broaden Absorption Spectra for Use in High-Performance Bulk-Heterojunction Polymer Solar Cells[J]. Journal of the American Chemical Society, 2008,130(38),12828-12833.
    [46]Osaka I, Abe T, Shimawaki M, et al. Naphthodithiophene-Based Donor-Acceptor Polymers: Versatile Semiconductors for OFETs and OPVs[J]. ACS Macro Letters,2012,437-440.
    [47]Guo X, Puniredd S R, Baumgarten M, et al. Benzotrithiophene-Based Donor-Acceptor Copolymers with Distinct Supramolecular Organizations[J]. Journal of the American Chemical Society,2012.
    [48]Feng He, Wei Wang, Wei Chen, et al. Tetrathienoanthracene-Based Copolymers for Efficient Solar Cells, J. Am. Chem. Soc[J].2011,133,3284-3287.
    [49]Son H J, Lu L, Chen W, et al. Synthesis and Photovoltaic Effect in Dithieno[2,3-d:2',3'-d']Benzo[1,2-b:4,5-b']dithiophene-Based Conjugated Polymers[J]. Adv Mater,2012,25,838-43.
    [50]Padinger F, Rittberger R S, Sariciftci N S. Effects of postproduction treatment on plastic solar cells[J]. Adv Funct Mater,2003 13,85-88.
    [51]Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nature Mater,2005,4,864-868.
    [52]M W L, Yang C Y, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv Funct Mater,2005, 15,1617-1622.
    [53]Peet J, Kim J Y, Coates N E, et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols[J]. Nat Mater,2007,6(7),497-500.
    [54]Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J]. Nat Photon 2009,3(5),297-302.
    [55]Chen H Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nat Photon,2009,3(11),649-653.
    [56]He F, Yu L. How Far Can Polymer Solar Cells Go? In Need of a Synergistic Approach[J]. The Journal of Physical Chemistry Letters,2011,2(24),3102-3113.
    [57]Liang Y, Wu Y, Feng D, et al. Development of New Semiconducting Polymers for High Performance Solar Cells[J]. Journal of the American Chemical Society,2008,131(1),56-57.
    [58]Dou L, Gao J, Richard E, et al. Systematic investigation of benzodithiophene-and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells[J]. J Am Chem Soc,2012,134(24),10071-9.
    [59]Zou Y, Najari A, Berrouard P, et al. Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells[J]. Journal of the American Chemical Society,2010,132(15), 5330-5331.
    [60]Wang M, Hu X, Liu P, et al. Donor-Acceptor Conjugated Polymer Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells[J]. Journal of the American Chemical Society,2011,133(25),9638-9641.
    [61]Huang Y, Guo X, Liu F, et al. Improving the ordering and photovoltaic properties by extending pi-conjugated area of electron-donating units in polymers with D-A structure[J]. Adv Mater,2012,24(25),3383-9.
    [62]Dou L T, You J B, Yang J, et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer[J]. Nat Photonics,2012,6(3),180-185.
    [63]He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat Photon,2012,6(9),591-595.
    [64]Li W, Furlan A, Hendriks K H, et al. Efficient tandem and triple-junction polymer solar cells[J]. J Am Chem Soc,2013,135(15),5529-32.
    [65]Liang Y, Feng D, Wu Y, et al. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties[J]. Journal of the American Chemical Society,2009,131 (22),7792-7799.
    [66]Liang Y, Xu Z, Xia J, et al. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Adv. Mater,2010,22(20), E135-E138.
    [67]Lou S J, Szarko J M, Xu T, et al. Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells[J]. J Am Chem Soc,2011,133 (51),20661-3.
    [68]Son H J, Wang W Xu T, Liang Y, et al. Synthesis of Fluorinated Polythienothiophene-co-benzodithiophenes and Effect of Fluorination on the Photovoltaic Properties[J]. Journal of the American Chemical Society,2011,133(6),1885-1894.
    [69]Hammond M R, Kline R J, Herzing A A, et al. Molecular Order in High-Efficiency Polymer/Fullerene Bulk Heterojunction Solar Cells[J]. ACS Nano,2011,5(10),8248-8257.
    [70]Carsten B, Szarko J M, Son H J, et al. Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications[J]. J Am Chem Soc,2011,133(50),20468-75.
    [71]Rolczynski B S, Szarko J M, Son H J, et al. Ultrafast intramolecular exciton splitting dynamics in isolated low-band-gap polymers and their implications in photovoltaic materials design[J]. J Am Chem Soc,2012,134(9),4142-52.
    [72]Son H J, Lu L, Chen W, et al. Synthesis and photovoltaic effect in dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene-based conjugated polymers[J]. Adv Mater,2013,25(6),838-43.
    [73]Lu L, Luo Z, Xu T, et al. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells[J]. Nano Lett,2013,13(1),59-64.
    [74]Zhou H X, Yang L Q, Stuart A C, et al. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency[J]. Angewandte Chemie-International Edition,2011,50(13),2995-2998.
    [75]Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J]. J Am Chem Soc,2011, 133(12),4625-31.
    [76]Li Z Lu, J P, Tse S C, et al. Synthesis and applications of difluorobenzothiadiazole based conjugated polymers for organic photovoltaics[J]. Journal of Materials Chemistry,2011,21 (9),3226-3233.
    [77]Min J, Zhang Z G, Zhang S, et al. Conjugated Side-Chain-Isolated D-A Copolymers Based on Benzo[1,2-b:4,5-b']dithiophene-alt-dithienylbenzotriazole:Synthesis and Photovoltaic Properties[J]. Chemistry of Materials,2012,24(16),3247-3254.
    [78]Min J, Zhang Z G, Zhang M, et al. Synthesis and photovoltaic properties of a D-A copolymer of dithienosilole and fluorinated-benzotriazole[J]. Polym Chem,2013,4(5), 1467.
    [79]Stuart A C, Tumbleston J R, Zhou H, et al. Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells[J]. J Am Chem Soc,2013,135(5),1806-15.
    [80]Jheng J F, Lai Y Y, Wu J S, et al. Influences of the non-covalent interaction strength on reaching high solid-state order and device performance of a low bandgap polymer with axisymmetrical structural units[J]. Adv Mater,2013,25(17),2445-51.
    [81]Peng Q, Liu X, Su D, et al. Novel benzo[1,2-b:4,5-b']dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells[J]. Adv Mater,2011, 23(39),4554-8.
    [82]Li K, Li Z, Feng K, Xu X, et al. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells[J]. J Am Chem Soc,2013,135(36), 13549-57.
    [83]Zhang Y, Chien S C, Chen K S, et al. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chemical Communications, 2011,47(39),11026-11028.
    [84]Zhang Y, Zou J, Cheuh C C, Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated PoIymer[J]. Macromolecules,2012,45(13),5427-5435.
    [85]Li Y, Zou J, Yip H L, et al. Side-Chain Effect on Cyclopentadithiophene/ Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells[J]. Macromolecules,2013,46(14),5497-5503.
    [86]Iyer A, Bjorgaard J, Anderson T, et al. Quinoxaline-Based Semiconducting Polymers:Effect of Fluorination on the Photophysical, Thermal, and Charge Transport Properties[J]. Macromolecules,2012,45(16),6380-6389.
    [87]Chen H C, Chen Y H, Liu C C, et al. Prominent Short-Circuit Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of 8.0%[J]. Chemistry of Materials,2012,24 (24),4766-4772.
    [88]Chen H C, Chen Y H, Liu C H, et al. Fluorinated thienyl-quinoxaline-based D-n-A-type copolymer toward efficient polymer solar cells:synthesis, characterization, and photovoltaic properties[J]. Polym Chem,2013,4(11),3411.
    [89]Fei Z, Shahid M, Yaacobi-Gross N, et al. Thiophene fluorination to enhance photovoltaic performance in low band gap donor-acceptor polymers[J]. Chem Commun (Camb),2012, 48(90),11130-2.
    [90]Wei Q, Nishizawa T, Tajima K, et al. Self-Organized Buffer Layers in Organic Solar Cells. Adv Mater,2008,20(11),2211-2216.
    [91]Zhong Y, Ma J, Hashimoto K, et al. Electric field-induced dipole switching at the donor/acceptor interface in organic solar cells[J]. Adv Mater,2013,25(7),1071-5.
    [92]Yao K, Chen L, Chen X, et al. Self-Organized Hole Transport Layers Based on Polythiophene Diblock Copolymers for Inverted Organic Solar Cells with High Efficiency[J]. Chemistry of Materials,2013,25(6),897-904.
    [93]Lobez J M, Andrew T L, Bulovic V, et al. Improving the Performance of P3HT-Fullerene Solar Cells with Side-Chain-Functionalized Poly(thiophene) Additives:A New Paradigm for Polymer Design[J]. ACS Nano,2012,6(4),3044-56.
    [94]Kim J S, Lee Y Lee, J H, et al. High-efficiency organic solar cells based on end-functional-group-modified poly(3-hexylthiophene) [J]. Adv Mater,2010,22(12), 1355-60.
    [95]Mao Z, Vakhshouri K, Jaye C, et al. Synthesis of Perfluoroalkyl End-Functionalized Poly(3-hexylthiophene) and the Effect of Fluorinated End Groups on Solar Cell Performance[J]. Macromolecules,2013,46(1),103-112.
    [96]Ma J, Hashimoto K, Koganezawa T, et al. End-on orientation of semiconducting polymers in thin films induced by surface segregation of fluoroalkyl chains[J]. J Am Chem Soc,2013, 135(26),9644-7.
    [97]Sousa F S, Fernandes P A, Ramos M J, et al. General Performance of Density Functionals[J]. J Phys Chem A,2007,111,10439-10452.
    [98]Cohen A J, Mori-Sanchez P, Yang W. Challenges for Density Functional Theory[J]. Chemical Reviews,2011,112(1),289-320.
    [99]Blouin N, Michaud A, Gendron D, et al. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells[J]. Journal of the American Chemical Society,2008,130(2), 732-742.
    [100]Silverstein D W, Jensen L. Understanding the Resonance Raman Scattering of Donor-Acceptor Complexes using Long-Range Corrected DFT[J]. Journal of Chemical Theory and Computation,2010,6(9),2845-2855.
    [101]Li L J, Feng J K, Ren A M, et al. DFT/TDDFT Studies on the Electronic Structures and Spectral Properties of Carbazole-based Blue Light-emitting Dendrimers[J]. Chinese Journal of Chemistry,2011,29(11),2263-2270.
    [102]Suramitr S, Meeto W, Wolschann P, et al. Understanding on absorption and fluorescence electronic transitions of carbazole-based conducting polymers:TD-DFT approaches[J]. Theoretical Chemistry Accounts,2010,125(1-2),35-44.
    [103]Habuchi S, Fujita H, Michinobu T, et al. Twist Angle Plays an Important Role in Photophysical Properties of a Donor-Acceptor-Type Conjugated Polymer:A Combined Ensemble and Single-Molecule Study[J]. The Journal of Physical Chemistry B,2011, 115(49),14404-14415.
    [104]Kim J, Kwon Y S, Shin W S, et al. Carbazole-Based Copolymers:Effects of Conjugation Breaks and Steric Hindrance[J]. Macromolecules,2011,44(7),1909-1919.
    [105]Dkhissi A, Ouhib F, Chaalane A, et al. Theoretical and experimental study of low band gap polymers for organic solar cells[J]. Physical chemistry chemical physics:PCCP,2012, 14(16),5613-9.
    [106]Ku J, Lansac Y, Jang,Y H. Time-Dependent Density Functional Theory Study on Benzothiadiazole-Based Low-Band-Gap Fused-Ring Copolymers for Organic Solar Cell Applications[J]. J Phys Chem C,2011,115(43),21508-21516.
    [107]Qiang P, Xiangju L, Yuancheng Q, et al. Thieno 3,4-b pyrazine-based low bandgap photovoltaic copolymers:turning the properties by different aza-heteroaromatic donors[J]. J Polym Sci A, Polym Chem.2011,49(20),4458-44674467.
    [108]Kim B G, Ma X, Chen C, et al. Energy Level Modulation of HOMO, LUMO, and Band-Gap in Conjugated Polymers for Organic Photovoltaic Applications[J]. Advanced Functional Materials,2013,23(4),439-445.
    [109]Pandey L, Risko C, Norton J E, et al. Donor-Acceptor Copolymers of Relevance for Organic Photovoltaics:A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties[J]. Macromolecules 2012,45(16), 6405-6414.
    [110]Popere B C, Della Pelle A M, Poe A, et al. Predictably tuning the frontier molecular orbital energy levels of panchromatic low band gap BODIPY-based conjugated polymers[J]. Chemical Science,2012,3(10),3093-3102.
    [111]Takimiya K, Osaka I, Nakano M. pi-Building blocks for organic electronics:Revaluation of "inductive" and "resonance" effects of pi-electron deficient units[J]. Chemistry of Materials, 2013, doi,10.1021/cm4021063.
    [112]Anafcheh M, Ghafouri R, Hadipour N L. A computational proof toward correlation between the theoretical chemical concept of electrophilicity index for the acceptors of C60 and C70 fullerene derivatives with the open-circuit voltage of polymer-fullerene solar cells[J], Solar Energy Materials and Solar Cells,2012,105,125-131.
    [113]Dreuw A. Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules[J]. Chem Rev,2005,105,4009-4037.
    [114]Risko C, McGehee M D, Bredas J L. A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells[J]. Chemical Science,2011,2(7),1200.
    [1]Thompson B C, Frechet J M J. Polymer-Fullerene Composite Solar Cells[J]. Angew Chem Int Ed,2008,47,58-77.
    [2]Chen L M, Hong Z, Li G, et al. Recent Progress in Polymer Solar Cells:Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells [J]. Adv Mater,2009,21,1434-1449.
    [3]Heeger A J. Semiconducting polymers:the Third Generation[J]. Chem Soc Rev,2010,39, 2354-2371.
    [4]Brabec C J. Organic photovoltaics:technology and market[J], Sol Energy Mater Sol Cells, 2004,83,273-292.
    [5]Yu G, Gao J, Hummelen J, et al. Polymer Photovoltanic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions[J]. Science,1995,270,1789-1791.
    [6]Li X, Choy W C H, Huo L, et al. Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells[J]. Adv Mater,2012,24,3046-3052.
    [7]Service R F. Fullerene nanowires as a versatile platform for arganic electronics[J]. Science, 2011,332,293-293.
    [8]Gunes S, Neugebauer H, Sariciftci N S. Conjugated Polymer-Based Organic Solar Cells [J]. Chem Rev,2007,107,1324-1338.
    [9]Cheng Y J, Yang S H, Hsu C S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chem. Rev.2009,109,5868-5923.
    [10]Dennler G D, Scharber M C, Brabec C J. Polymer-Fullerene Bulk-Heterojunction Solar Cells[J]. Adv Mater,2009,21,1323-1338.
    [11]Chu T Y, Lu J, Beaupre S, et al. Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2',3'-d]silole Copolymer with a Power Conversion Efficiency of 7.3%[J]. J Am Chem Soc,2011,133,4250-4253.
    [12]Zhou H, Yang L, Stuart A C, et al. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency[J]. Angew Chem Int Ed,2011,123, 3051-3054.
    [13]Amb C M, Chen S, Graham K R, et al. Dithienogermole as a Fused Electron Donor in Bulk Heterojunction Solar Cells[J]. J Am Chem Soc,2011,133,10062-10065.
    [14]Hou L J, Zhang S Q, Guo X, et al. Replacing alkoxy groups with alkylthienyl groups:A feasible approach to improve the properties of photovoltaic polymers[J]. Angew Chem Int Ed, 2011,50,9697-9702.
    [15]Tan Z a, Zhang W, Zhang Z, et al. High-Performance Inverted Polyer Solar Cells with Solution-Processed Titanium Chelate as Electron-Collecting Layer on ITO Electrode[J]. Adv Mater,2012,24,1476-1481.
    [16]Gevaerts V S, Furlan A, Wienk M M, et al. Solution Processed Polymer Tandem Solar Cell Using Efficient Small and Wide bandgap Polymer:Fullerene Blends[J]. Adv Mater,2012,24, 2130-2134.
    [17]Liang Y, Feng D, Wu Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties[J]. J Am Chem Soc,2009,131,7792-7799.
    [18]Zou Y, Najari A, Berrouard P, et al. A Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells[J]. J Am Chem. Soc,2010,132,5330-5331.
    [19]Huo L, Hou J, Zhang S, et al. A polybenzo[1,2-b:4,5-b']dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells[J]. Angew. Chem. Int. Ed.,2010,49,1500-1503.
    [20]He, Z, Zhong C, Huang X, et al. Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells[J]. Adv Mater,2011,23, 4636-4643.
    [21]Duan R, Ye L, Guo X, et al. Application of Two-Dimensional Conjugated Benzo[1,2-b:4,5-b'] dithiophene in Quinoxaline-Based Photovoltaic Polymers[J]. Macromolecules,2012,45, 3032-3038.
    [22]Park S, H Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon,2009,3,297-302.
    [23]Son H J, Wang W, Xu T, et al. Synthesis of Fluorinated Polythienothiophene-co-benzodithiophenes and Effect of Fluorination on the Photovoltaic Properties[J]. J Am Chem Soc 2011,133,1885-1894.
    [24]Price S C, Stuart A C, Yang L, et al. Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells[J]. J Am Chem Soc,2011, 133,4625-4631.
    [25]Peng Q, Liu X, Su D, et al. Novel Benzo[1,2-b:4,5-b']dithiophene-Benzothiadiazole Derivatives with Variable Side Chains for High-Performance Solar Cells[J]. Adv Mater,2011, 23,4554-4558.
    [26]Zhang Y, Chien S-C, Chen K-S, et al. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chem. Comm.,2011,47, 11026-11028.
    [27]Zhou H X, Yang L Q, Stuart A C, et al. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency[J]. Angew. Chem. Int. Ed.,2011, 50,2995-2998.
    [28]Li Z, Lu J P, Tse S C, et al. Synthesis and applications of difluorobenzothiadiazole based conjugated polymers for organic photovoltaics[J]. J. Mater. Chem.2011,21,3226-3233.
    [29]Kim J S, Lee Y, Lee J H, et al. High-efficiency organic solar cells based on end-functional-group-modified poly(3-hexylthiophene)[J]. Adv. Mater.2010,22,1355-1360.
    [30]Wei Q, Nishizawa T, Tajima K, et al. Self-Organized Buffer Layers in Organic Solar Cells[J]. Adv Mater,2008,20,2211-2216.
    [31]Kartha K K, Babu S S, Srinivasan S, et al. Attogram Sensing of Trinitrotoluene with a Self-Assembled Molecular Gelator[J]. J Am Chem Soc,2012,134,4834-4841.
    [32]Lobez J M, Andrew T L, Bulovic V, et al. Improving the Performance of P3HT-Fullerene Solar Cells with Side-Chain-Functionalized Poly(thiophene) Additives:A New Paradigm for Polymer Design[J]. ACS Nano,2012,6,3044-3056.
    [1]You J, Chen C C, Hong Z, et al.10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells[J]. Adv. Mater.,2013,25 (29),3973-8.
    [2]Zhou H, Yang L, You W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells[J]. Macromolecules,2012,45 (2),607-632.
    [3]Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chemical Reviews,2009,109 (11),5868-5923.
    [4]Chen H Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency[J]. Nat. Photon.,2009,3 (11),649-653.
    [5]He F, Yu L. How Far Can Polymer Solar Cells Go? In Need of a Synergistic Approach[J]. The Journal of Physical Chemistry Letters,2011,2 (24),3102-3113.
    [6]Liang Y, Wu Y, Feng D, et al. Development of New Semiconducting Polymers for High Performance Solar Cells[J]. Journal of the American Chemical Society,2008,131 (1),56-57.
    [7]Liang Y, Xu Z, Xia J, et al. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Adv. Mater.,2010,22 (20), E135-E138.
    [8]Huang Y, Guo X, Liu F, et al. Improving the ordering and photovoltaic properties by extending pi-conjugated area of electron-donating units in polymers with D-A structure[J]. Adv. Mater.,2012,24 (25),3383-9.
    [9]Huo L, Zhang S, Guo X, et al. Replacing Alkoxy Groups with Alkylthienyl Groups:A Feasible Approach To Improve the Properties of Photovoltaic Polymers[J]. Angewandte Chemie International Edition,2011,50 (41),9697-9702.
    [10]Huo L, Hou J, Zhang S, et al. A Polybenzo[1,2-b:4,5-b']dithiophene Derivative with Deep HOMO Level and Its Application in High-Performance Polymer Solar Cells[J]. Angewandte Chemie International Edition,2010,49 (8),1500-1503.
    [11]Blouin N, Michaud A, Gendron D, et al. Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells[J]. Journal of the American Chemical Society,2007,130 (2), 732-742.
    [12]Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J]. Nat Photon,2009,3 (5),297-302.
    [13]Zhou H X, Yang L Q, Stuart A C, et al. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency[J]. Angewandte Chemie-International Edition,2011,50 (13),2995-2998.
    [14]Peng Q, Liu X, Su D, et al. Novel benzo[1,2-b:4,5-b']dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells[J]. Adv. Mater.,2011, 23 (39),4554-8.
    [15]Jheng J F, Lai Y Y, Wu J S, et al. Influences of the non-covalent interaction strength on reaching high solid-state order and device performance of a low bandgap polymer with axisymmetrical structural units[J]. Adv. Mater.,2013,25 (17),2445-51.
    [16]Lobez J M, Andrew T L, Bulovic V, et al. Improving the Performance of P3HT-Fullerene Solar Cells with Side-Chain-Functionalized Poly(thiophene) Additives:A New Paradigm for Polymer Design[J]. ACS Nano,2012,6 (4),3044-56.
    [17]Wei Q, Nishizawa T, Tajima K, et al. Self-Organized Buffer Layers in Organic Solar Cells[J]. Adv. Mater.,2008,20 (11),2211-2216.
    [18]Yao K, Chen L, Chen X, et al. Self-Organized Hole Transport Layers Based on Polythiophene Diblock Copolymers for Inverted Organic Solar Cells with High Efficiency [J]. Chemistry of Materials,2013,25 (6),897-904.
    [19]Mao Z, Vakhshouri K, Jaye C, et al. Synthesis of Perfluoroalkyl End-Functionalized Poly(3-hexylthiophene) and the Effect of Fluorinated End Groups on Solar Cell Performance[J]. Macromolecules,2013,46 (1),103-112.
    [20]Kim J S, Lee Y, Lee J H, et al. High-efficiency organic solar cells based on end-functional-group-modified poly(3-hexylthiophene)[J]. Adv. Mater.,2010,22 (12), 1355-60.
    [21]Wu F, Zha D, Chen L, et al. Photovoltaics of donor-acceptor polymers based on benzodithiophene with lateral thiophenyl and fluorinated benzothiadiazole[J]. Journal of Polymer Science Part A:Polymer Chemistry,2013,51 (7),1506-1511.
    [22]Stuart A C, Tumbleston J R, Zhou H, et al. Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells[J]. J Am Chem Soc,2013,135 (5),1806-15.
    [23]Gaussian 09, Revision A.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian, Inc., Wallingford CT,2009.
    [1]Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chemical Reviews,2009,109 (11),5868-5923.
    [2]Zhou H, Yang L, You W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells[J]. Macromolecules,2012,45 (2),607-632.
    [3]Lee Y, Liang Y, Yu L. The heck polycondensation for functional polymers[J]. Synletter, 2006,18,2879-2893.
    [4]Carsten B, He F, Yu L, et al. Stille polycondensation for synthesis of functional materials[J]. Chemical Review,2011,111,1493.
    [5]Burkhart B, Khlyabich P P, Thompson B C. Influence of the Acceptor Composition on Physical Properties and Solar Cell Performance in Semi-Random Two-Acceptor Copolymers[J]. ACS Macro Letters,2012,1 (6),660-666.
    [6]Xia Y, Luo J, Cao Y, et al. Novel random low-band-gap fluorene-based copolymers for deep red/near infrared light-emitting diodes and bulk heterojunction photovoltaic cells[J]. Macromolecule Chemical Physics,2006,207,511.
    [7]Roncali J. Molecular engineering of the band gap of π-conjugated systems:facing technological applications[J]. Macromolecule Rapid Communication,2007,28,1761.
    [8]Kirkpatrick J, Nielsen C B, McCulloch I, et al. A systematic approach to the design optimization of light-absorbing indenofluorene polymers for organic photovoltaics[J]. Advanced Energy Materials,2012,2,260-265.
    [9]Li K, Khlyabich P P, Li L, et al. Influence of Exciton Diffusion and Charge-Transfer State Dissociation Efficiency on the Short-Circuit Current Densities in Semi-Random Donor/Acceptor Polymer:Fullerene Solar Cells[J]. The Journal of Physical Chemistry C, 2013,117 (14),6940-6948.
    [10]Burkhart B, Khlyabich P P, Thompson B C. Semi-Random Two-Acceptor Polymers: Elucidating Electronic Trends Through Multiple Acceptor Combinations[J]. Macromolecular Chemistry and Physics,2013,214 (6),681-690.
    [11]Zhou J, Xie S, Amond E F, et al. Tuning Energy Levels of Low Bandgap Semi-Random Two Acceptor Copolymers[J]. Macromolecules,2013,46,3391-3394.
    [12]Chen C-H, Cheng Y-J, Chang C-Y, et al. Donor-Acceptor Random Copolymers Based on a Ladder-Type Nonacyclic Unit:Synthesis, Characterization, and Photovoltaic Applications[J]. Macromolecules,2011,44 (21),8415-8424.
    [13]Ranjith K, Swathi S K, Malavika A, et al. Random copolymers consisting of dithienylcyclopentadienone, thiophene and benzothiadiazole for bulk heterojunction solar cells[J]. Solar Energy Materials and Solar Cells,2012,105,263-271.
    [14]Jiang J-M, Chen H-C, Lin H-K, et al. Conjugated random copolymers of benzodithiophene-benzooxadiazole-diketopyrrolopyrrole with full visible light absorption for bulk heterojunction solar cells[J]. Polym. Chem.,2013,4 (20),5321.
    [15]Zhou J, Xie S, Amond E F, et al. Tuning Energy Levels of Low Bandgap Semi-Random Two Acceptor Copolymers[J]. Macromolecules,2013,46 (9),3391-3394.
    [16]Son H J, Lu L, Chen W, et al. Synthesis and photovoltaic effect in dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b1]dithiophene-based conjugated polymers[J]. Adv Mater,2013,25 (6),838-43.
    [17]Zhong Y, Ma J, Hashimoto K, et al. Electric field-induced dipole switching at the donor/acceptor interface in organic solar cells[J]. Adv Mater,2013,25 (7),1071-5.
    [18]Carsten B, Szarko J M, Son H J, et al. Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications[J]. J Am Chem Soc,2011,133 (50),20468-75.
    [19]Chen Z, Lee M J, Shahid Ashraf R, et al. High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities[J]. Adv Mater,2012,24 (5),647-52.
    [20]Nielsen C B, Turbiez M, McCulloch I. Recent advances in the development of semiconducting DPP-containing polymers for transistor applications[J]. Adv Mater,2013,25 (13),1859-80.
    [21]Li W, Roelofs W S, Wienk M M, et al. Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control[J]. J Am Chem Soc,2012,134(33),13787-95.
    [22]Deng Z, Chen L, Chen Y. Novel phenanthrocarbazole based donor-acceptor random and alternating copolymers for photovoltaics[J]. Journal of Polymer Science Part A:Polymer Chemistry 2013,51 (22),4885-4893.
    [23]Jung, J. W.; Jo, J. W.; Liu, F.; Russell, T. P.; Jo, W. H., A low band-gap polymer based on unsubstituted benzo[1,2-b:4,5-b']dithiophene for high performance organic photovoltaics. Chemical Communications 2012,48,6933-6935.
    [1]Thompson B C, Frochet J M J. Polymer-Fullerene Composite Solar Cells[J]. Angew. Chem., Int. Ed.2008,47,58-77.
    [2]Chen L-M, Hong Z, Li G, et al. Recent Progress in Polymer Solar Cells:Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells[J]. Adv. Mater.,2009,21,1434-1449.
    [3]Heeger A J. Semiconducting Polymers:the Third Generation[J]. Chem. Soc. Rev.,2010,39, 2354-2371.
    [4]Yu G, Gao J, Hummelen J, et al. Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions[J]. Science,1995,270,1789-1791.
    [5]Li G, Shrotriya V, Huang J S, et al. High-efficiency Solution Processable Polymer Photovoltaic Cells by Self-organization of Polymer Blends[J]. Nat. Mater.,2005,4,864-868.
    [6]Ma W L, Yang C Y, Gong X, et al. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology[J]. Adv. Funct. Mater.,2005, 15,1617-1622.
    [7]He Z, Zhong C, Huang X, et al. Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells[J]. Adv. Mater.,2011, 23,4636-4643.
    [8]He Z, Zhong C, Su S, et al. Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure[J]. Nat. Photon.,2012,6,591-595.
    [9]Lin H-W, Chiu S-W, Lin L-Y, et al. Device Engineering for Highly Efficient Top-Illuminated Organic Solar Cells with Microcavity Structures[J]. Adv. Mater.,2012,24,2269-2272.
    [10]Li X, Choy W C H, Huo L, et al. Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells[J]. Adv. Mater.,2012,24,3046-3052.
    [11]Etzold F, Howard I A, Forler N, et al. The Effect of Solvent Additives on Morphology and Excited-State Dynamics in PCPDTBT:PCBM Photovoltaic Blends[J]. J. Am. Chem. Soc., 2012,134,10569-10583.
    [12]Verploegen E, Miller C E, Schmidt K, et al. Manipulating the Morphology of P3HT-PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing[J]. Chem. Mater.,2012,24, 3923-3931.
    [13]Wang H, Cheng P, Liu Y, et al. A Conjugated Polymer Based on 5,5'-Bibenzo[c][1,2,5] thiadiazole for High-Performance Solar Cells[J]. J. Mater. Chem.,2012,22,3432-3439.
    [14]Havinga E, ten Hoeve W, Wynberg H. Alternate Donor-Acceptor Small-Band-Gap Semiconducting Polymers; Polysquaraines and Polycroconaines[J]. Synth. Met.,1993,55, 299-306.
    [15]Guo X, Zhou N, Lou S J, et al. Bithiopheneimide-Dithienosilole/Dithienogermole Copolymers for Efficient Solar Cells:Information from Structure-Property-Device Performance Correlations and Comparison to Thieno[3,4-c]pyrrole-4,6-dione Analogues[J]. J. Am. Chem. Soc.,2012,134,18427-18439.
    [16]Liang Y, Feng D, Wu Y, et al. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties[J]. J. Am. Chem. Soc.,2009,131, 7792-7799.
    [17]Huo L, Hou J, Zhang S, et al. A Polybenzo[1,2-b:4,5-b']dithiophene Derivative with Deep HOMO Level and Its Application in High-Performance Polymer Solar Cells[J]. Angew. Chem., Int. Ed.,2010,49,1500-1503.
    [18]Li W, Roelofs W S, Wienk M M, et al. Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control[J]. J. Am. Chem. Soc.,2012,134, 13787-13795.
    [19]Amb C M, Chen S, Graham K R, et al. Dithienogermole As a Fused Electron Donor in Bulk Heterojunction Solar Cells[J]. J. Am. Chem. Soc.,2011,133,10062-10065.
    [20]Zhou H, Yang L, Stuart A C, et al. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency[J]. Angew. Chem., Int. Ed.2011, 123,3051-3054.
    [21]Son H J, Wang W, Xu T, et al. Synthesis of Fluorinated Polythienothiophene-co-benzodithiophenes and Effect of Fluorination on the Photovoltaic Properties[J]. J. Am. Chem. Soc.,2011,133,1885-1894.
    [22]Chu T-Y, Lu J, Beaupr6 S, et al. Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2',3'-d]silole Copolymer with a Power Conversion Efficiency of 7.3%[J]. J.Am. Chem. Soc.,2011,133,4250-4253.
    [23]Blouin N, Michaud A, Leclerc M. A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells[J]. Adv. Mater.,2007,19,2295-2300.
    [24]Blouin N, Michaud A, Gendron D, et al. Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells[J]. J. Am. Chem. Soc.,2008,130,732-742.
    [25]Park S H, Roy A, Beaupre S, et al. Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%[J]. Nat. Photon.,2009,3,297-302.
    [26]Berton N, Ottone C, Labet V, et al. New Alternating Copolymers of 3,6-Carbazoles and Dithienylbenzothiadiazoles:Synthesis, Characterization, and Application in Photovoltaics[J]. Macromol. Chem. and Phys.,2011,212,2127-2141.
    [27]Fu Y, Cha H, Lee G-Y, et al.3,6-Carbazole Incorporated into Poly[9,9-dioctylfluorene-alt-(bisthienyl)benzothiadiazole]s Improving the Power Conversion Efficiency[J]. Macromolecules,2012,45,3004-3009.
    [28]Wang L, Fu Y, Zhu L, et al. Synthesis and Photovoltaic Properties of Low-Bandgap Polymers Based on N-Arylcarbazole[J]. Polymer,2011,52,1748-1754.
    [29]Jin E, Du C, Wang M, et al. Dibenzothiophene-Based Planar Conjugated Polymers for High Efficiency Polymer Solar Cells[J]. Macromolecules,2012,45,7843-7854.
    [30]Beaupre S, Boudreault P L T, Leclerc M. Solar-Energy Production and Energy-Efficient Lighting:Photovoltaic Devices and White-Light-Emitting Diodes Using Poly(2,7-fluorene), Poly(2,7-carbazole), and Poly(2,7-dibenzosilole) Derivatives[J]. Adv. Mater.,2010,22, E6-E27.
    [31]Cai S, Chen L, Zha D, et al. A Novel Planar D-A Alternating Copolymer with D-A Integrated Structures Exhibiting H-aggregate Behaviors for Polymer Solar Cells[J]. J. Polym. Sci. Pol. Chem.,2013,51,624-634.
    [32]Zha D, Chen L, Wu F, et al. Donor-Acceptor-Integrated Conjugated Polymers Based on Carbazole[3,4-c:5,6-c]bis[1,2,5]thiadiazole with Tight π-π Stacking for Photovoltaics[J]. J. Polym. Sci. Pol. Chem.,2013,51,565-574.
    [33]Chen H, He C, Yu G, et al. Phenanthro[1,10,9,8-cdefg]carbazole-Containing Copolymer for High Performance Thin-Film Transistors and Polymer Solar Cells[J]. J. Mater. Chem.,2012, 22,3696-3698.
    [34]Jiao C, Huang K-W, Luo J, et al. Bis-N-annulated Quaterrylenebis(dicarboximide) as a New Soluble and Stable Near-Infrared Dye[J]. Org. Lett.,2009,11,4508-4511.
    [35]Chen X-K, Zou L-Y, Guo J-F, et al. An Efficient Strategy for Designing N-type Organic Semiconductor Materials-Introducing A Six-Membered Imide Ring into Aromatic Diimides[J]. J. Mater. Chem.,2012,22,6471-6484.
    [36]Kim J-H, Kim H U, Mi D, et al. Introduction of Perylene Units for Enhanced Interchain Interaction in Conjugated Polymers for Organic Photovoltaic Devices[J]. Macromolecules, 2012,45,2367-2376.
    [37]Gaussian 09, Revision A.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian, Inc., Wallingford CT,2009.
    [38]Cohen A J, Mori-Sanchez P, Yang W. Challenges for Density Functional Theory[J]. Chem. Rev,2012,112,289-320.
    [39]Popere B C, Della Pelle A M, Poe A, et al. Predictably Tuning the Frontier Molecular Orbital Energy Levels of Panchromatic Low Band Gap BODIPY-based Conjugated Polymers[J]. Chem. Sci.,2012,3,3093-3102.
    [40]Risko C, McGehee M D, Bredas J-L. A Quantum-Chemical Perspective into Low Optical-Gap Polymers for Highly-Efficient Organic Solar Cells[J]. Chem. Sci.,2011,2, 1200-1218.
    [41]Banerji N, Gagnon E, Morgantini P-Y, et al. Breaking Down the Problem:Optical Transitions, Electronic Structure, and Photoconductivity in Conjugated Polymer PCDTBT and in Its Separate Building Blocks[J]. J. Phys. Chem. C,2012,116,11456-11469.
    [42]Zhang S S, Qu Z X, Tao P, et al. Quantum Chemical Study of the Ground and Excited State Electronic Structures of Carbazole Oligomers with and without Triarylborane Substitutes[J]. J. Phys. Chem. C,2012,116,12434-12442.
    [43]Kim J, Kwon Y S, Shin W S, et al. Carbazole-Based Copolymers:Effects of Conjugation Breaks and Steric Hindrance[J]. Macromolecules,2011,44,1909-1919.
    [44]Guo X, Puniredd S R, Baumgarten M, et al. Benzotrithiophene-Based Donor-Acceptor Copolymers with Distinct Supramolecular Organizations[J]. J. Am. Chem. Soc.,2012,134, 8404-8407.
    [45]Ahmed E, Subramaniyan S, Kim F S, et al. Benzobisthiazole-Based Donor-Acceptor Copolymer Semiconductors for Photovoltaic Cells and Highly Stable Field-Effect Transistors[J]. Macromolecules,2011,44,7207-7219.
    [46]Zhou H, Yang L, You W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells[J]. Macromolecules,2012,45,607-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700