高血压继发左心室肥厚的遗传易感性及肥厚型心肌病的修饰基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     高血压左心室肥厚是心血管病发病率和死亡率的独立危险因素,也是脑卒中的独立危险因子。虽然高血压的主要并发症是左心室肥厚,但是左心室肥厚的程度与高血压病史的长短、血压水平及降压后逆转的程度并不呈比例,提示有高血压以外的因素参与。研究表明遗传因素对左心室重量的影响大约占非血压因素的60%。以往研究证实β1-肾上腺素受体(beta(1)-adrenergic receptor,ADRB1)在调节心脏结构方面起重要作用。并且也已经有关联研究证实ADRB1基因多态性位点与高血压,冠心病,心肌梗塞等疾病相关,然而这种关系并未在中国高血压人群中证实。
     研究目的
     本研究拟在中国人群中验证ADRB1基因多态性位点Arg389Gly和Gly49Ser与高血压左心室肥厚的关联。
     对象和方法
     研究对象为河南信阳高血压基地收集的2417例高血压患者包括1189例高血压伴有左心室继发肥厚患者和1228例高血压不伴有左心室继发肥厚患者。基因分型用聚合酶链式反应(PCR)和限制性长度片段多态性(RFLP)方法。卡方检验初步评估上述多态性位点与左心室继发肥厚之间的关系,并应用多元Logisitic回归方程评价校正了左心室继发肥厚传统危险因素后对其发病的影响。
     研究结果
     ADRB1基因多态性位点Arg389Gly与高血压左心室继发肥厚相关联。与携带有Arg389Gly基因型和Gly389Gly基因型的患者相比,携带有Arg389Arg基因型的患者具有显著增高的室间隔厚度(IVS)(分别为10.4±1.5mm vs 9.6±1.5mm,P<0.01或者9.4±1.4mm,P<0.01)、左室后壁厚度(PW)(分别为10.4±2.4mm vs9.6±2.4或者9.7±2.9mm,P<0.01)、左心室重量指数(LVMI) (分别为51.6±13.3g/m~(2.7)vs 44.6±12.9 g/m~(2.7),P<0.01或者43.2±14.4 g/m~(2.7),P<0.01)和相对室壁厚度(RWT) (分别为45.0±9.0%vs 42.6±8.1%,P<0.01或者43.2±8.8%,P<0.018)。上述显著相关性独立于心血管其他相关危险因素并且在另一个高血压人群中重复实验加以验证(n=327)。
     结论
     ADRB1基因多态性位点Arg389Gly可能是高血压左心室肥厚发生的遗传危险因素。
     研究背景
     肥厚型心肌病(hypertrophic cardiomyopathy,HCM)为常染色体显性遗传单基因疾病。HCM患者间临床表型存在明显差异,携带同一突变的不同家系及家系内不同患者的临床表型差异很大,主要表现在心肌肥厚程度、肥厚模式、外显率、发病年龄以及是否会发生心衰和猝死等方面。而HCMI临床表型变异仅用基因突变本身解释是远远不够的,修饰基因和环境因素对于HCMI临床表型也起重要作用。修饰基因的定义是,其突变不会导致HCM的发生,但可以影响疾病的严重程度、预后或转归。以往体内体外研究表明β1-肾上腺素受体(beta(1)-adrenergic receptor,ADRB1)与心肌的肥厚发生有重要作用。β1-肾上腺素受体的选择性抑制剂噻利洛尔可以通过阻断一氧化氮介导的信号通路抑制心肌肥厚和心力衰竭,其机制主要为促进一氧化氮合酶的表达从而提高一氧化氮水平。而至今已有许多国内外研究证明一氧化氮及其合成酶在肥厚型心肌病的发生发展中起重要作用。而我们之前的研究也已经发现ADRB1基因多态性位点Arg389Gly与高血压左心室肥厚相关联,其可能是高血压左心室肥厚发生的遗传危险因素。因此我们选择ADRB1基因作为候选基因,研究其与肥厚型心肌病关系以明确ADRBl基因是否为肥厚型心肌病的修饰基因。
     研究目的
     本研究拟探讨ADRB1基因多态性位点Arg389Gly和Gly49Ser与HCM是否关联。
     对象和方法
     研究对象为在中国医学科学院阜外心血管病医院就诊的267例无血缘关系的HCM患者,以及从河南信阳高血压基地收集的816例健康对照者。基因分型用聚合酶链式反应(PCR)和限制性长度片段多态性(RFLP)方法。卡方检验初步评估上述多态性与HCM的关系,应用One-Way ANOVA分析不同基因型与肥厚型心肌病患者的临床表型的关联。
     结果
     ADRB1基因多态性位点Arg389Gly和Gly49Ser的基因型频率在肥厚型心肌病患者和正常对照组比较无统汁学差异,并且携带Arg389Gly和Gly49Ser不同基因型的肥厚型心肌病患者超声参数、临床表型亦无统计学差异。
     结论
     表明ADRB1基因多态性位点Arg389Gly和Gly49Ser与肥厚型心肌病患病风险和临床表型无关。ADRB1基因不是肥厚型心肌病的修饰基因。
     研究背景
     高血压左心室肥厚是心血管病发病率和死亡率的独立危险因素,也是脑卒中的独立危险因子。虽然高血压的主要并发症是左心室肥厚,但是左心室肥厚的程度与高血压病史的长短、血压水平及降压后逆转的程度并不呈比例,提示有高血压以外的因素参与。研究表明遗传因素对左心室重量的影响大约占非血压因素的60%。钙调磷酸酶信号通路是参与心肌肥厚发生的最重要的信号通路之一,许多体内体外研究已经证明钙调磷酸酶的激活可以引起心肌肥厚的发生。钙调磷酸酶受多种内源性蛋白包括cGMP-依赖蛋白酶(PKGⅠ)、血红素加氧酶(HO-1)、钙调磷酸酶交互作用蛋白1(MCIP1)以及糖原合成酶(GSK3β)等的调节,同样也有研究已经证实PKGⅠ、HO-1、MCIP以及GSK3β等在心肌肥厚中的作用。我们选择PKGⅠ、HO-1、MCIP1以及GSK3β基因作为候选基因,研究其与高血压左心室继发肥厚的关系。
     研究目的
     探讨PKG,基因的rs10995555、rs10822178及rs4542348,HO-1基因的rs2071747、rs17884059、rs17879895和rs9282700多态位点,MCIP1基因的rs8133540,以及GSK3β基因的rs334558、rs2276708和rs3755557多态对高血压继发左心室肥厚表型的影响。
     对象和方法
     研究对象为河南信阳高血压基地收集的2696例高血压患者包括1271例高血压伴左心室肥厚患者和1425例高血压不伴有左心室肥厚患者。基因分型用聚合酶链式反应(PCR)和限制性长度片段多态性(RFLP)方法。卡方检验初步评估上述多态性与LVH的关系,并应用多元Logisitic回归方程评价校正了LVH传统危险因素后对其发病的影响。
     研究结果
     PKGⅠ基因多态性位点rs10822178(-2712A/T)与高血压左心室肥厚相关联,AA+AT基因型增加高血压左心室肥厚的患病风险1.7倍(OR1.70,95%CI1.18-2.47,p=0.005),而且携带AA+AT基因型的高血压患者室间隔厚度(IVS)(在高血压伴左室肥厚病人中,P<0.01;在高血压不伴左室肥厚患者中P<0.01)和左心室重量指数(LVMI)(在高血压伴左室肥厚患者中,P<0.05;在高血压不伴左室肥厚患者中P<0.01)较携带TT基因型的高血压患者明显增加。其他入选的多态性位点不增加LVH的发病风险。
     结论
     PKGⅠ基因多态性位点-2712A/T可能是高血压左心室肥厚发生的遗传危险因素。
Background: Left ventricular hypertrophy (LVH) is associated with cardiovascular morbidity and mortality, as well as all-cause mortality. LVH is also independently associated with risk of ischemic stroke. Although hypertension is a major cause of LVH, the degree of LVH does not parallel to the level of blood pressure, the duration of hypertension, or reversal of hypertensive LVH by pharmacological treatments. This implies that other factors may be involved in LVH in addition to blood pressure. It has been reported that genetic factors account for 60% of blood pressure-independent cardiac mass variances. Experimental evidence supports a key role for beta(1)-adrenergic receptor (ADRB1) in the modulation of cardiac mass. This relationship has not yet been described in Chinese population.
     Objectives: We hypothesized that the polymorphisms of ADRB1 gene might confer higher risk of LVH. We tested whether the variations of ADRB1 gene Arg389Gly and Gly49Ser are associated with LVH in hypertensive patients.
     Methods: We tested our hypothesis in 2417 hypertensive patients which consisted of 1189 with LVH, 1228 without LVH. All subjects were genotyped for Arg389Gly and Gly49Ser polymorphisms.
     Results: Patients carrying the Arg389Arg genotype had increased left ventricular septal thickness (10.4±1.5mm vs 9.6±1.5mm,P<0.01 or 9.4±1.4mm,P<0.01, respectively); left ventricular posterior wall thickness (10.4±2.4mm vs 9.6±2.4 or 9.7±2.9mm, P<0.01, respectively); left ventricular mass index (51.6±13.3g/m~(27) vs 44.6±12.9 g/m~(27),P<0.01 or 43.2±14.4 g/m~(27),P<0.01, respectively) and relative wall thicking (45.0±9.0% vs 42.6±8.1%, P<0.01 or 43.2±8.8%, P<0.01, respectively) as compared with the these carrying the genotypes Arg389Gly and Gly389Gly.These associations were independent of anthropometric factors and major clinical features and were confirmed in another hypertensive population (n=327).
     Conclusions: Our findings indicate that the Arg389Gly polymorphism of the ADRB1 gene might be a genetic risk factor for the development of LVH in patients with hypertension.
     Background: Hypertrophic cardiomyopathy (HCM) is a primary autosomal dominant inheritant myocardial disorder with heterogeneity in clinical manifestations, natural history and prognosis. Even carrying an identical gene mutation, inter-and intra-family variations have been noticed worldwide in the presence and the severity of left ventricular hypertrophy and sudden death in patients with HCM. Modifier genes may contribute to the diversity. Previous studies in vitro or in vivo have indicated that beta(1)-adrenergic receptor plays an important role in the progression of cardiac hypertrophy. Celiprolol, a selectiveβ1-bloker, can attenuate cadiac myocyte hypertrophy both in vitro and in vivo, these effects are mediated via the NO-signal pathway by stimulating the expression of endothelial NO synthase (eNOS). Studies also have proved that the eNOS plays a key role in the development of HCM. Our previous studies suggest that the polymorphisms of beta(1)-adrenergic receptor gene are associated with left ventricular hypertrophy in hypertension. The ADRB1 gene might be a modifier gene for the development of LVH in patients with HCM.
     Objectives:We tested whether SNPs in the ADRB1 gene associated with HCM.
     Methods:The hypothesis was tested in 267 patients with HCM and age-and sex-matched 816 healthy individuals. All subjects were genotyped for Arg389Gly and Gly49Ser polymorphisms.
     Results: No difference has been found in the frequency of the genotypes in the Arg389Gly and Gly49Ser polymorphisms of ADRB1 gene between patients with HCM and controls.
     Conclusions: The polymorphisms of ADRB1 gene were not associated with risk of HCM and other clinical phenotypes. The two variations of ADRB1 gene is not the genetic modifier for the development of HCM.
     Background: Left ventricular hypertrophy (LVH) is associated with cardiovascular morbidity and mortality, as well as all-cause mortality. LVH is also independently associated with risk of ischemic stroke. Although hypertension is a major cause of LVH, the degree of LVH does not parallel to the level of blood pressure, the duration of hypertension, or reversal of hypertensive LVH by pharmacological treatments. This implies that other factors may be involved in LVH in addition to blood pressure. It has been reported that genetic factors account for 60% of blood pressure-independent cardiac mass variances. Previous studies in vitro and vivo have proved that the stimulation of calcineurin can lead to cardic hypertrophy. The activity of calcineurin is regulated by many proteins such as cGMP-dependent protein kinaseⅠ(PKGⅠ), heme oxygenase-1(HO-1), modulatory calcineurin-interacting protein 1(MCIP1) and glycogen synthase kinase 3 beta(GSK3β). Studies also have reported that PKGⅠ、HO-1、MCIP1 and GSK3βplay an important role in the progression of cardiac hypertrophy.We selected these genes as our candidate genes to study their association with LVH.
     Objectives: We hypothesized that polymorphisms of rs10995555、rs10822178 and rs4542348 of PKGⅠgene, rs2071747、rs17884059、rs17879895 and rs9282700 of HO-1 gene, rs8133540 of MCIP1 gene and rs334558、rs2276708和rs3755557 of GSK3βgene may modify the diversity of LVH. To test our hypothesis, the associations of these polymorphisms with cardiac hypertrophy were tested in case-control studies.
     Methods: We tested our hypothesis in 2696 hypertensive patients consisted of 1271 with LVH, 1425 without LVH, and 720 healthy individuals as controls. All subjects were genotyped for rs 10822178 (-2712A/T) polymorphism and about 500 subjects were genotyped for all the other polymorphisms.
     Results: We found that the AA+AT genotype at the position -2712 conferred a 1.7-fold risk for LVH (OR 1.70, 95%CI 1.18-2.47, p=0.005), In the hypertensive patients, the AA and AT genotype carriers had a significant increase in their interventricular septal wall thickness (10.7±1.3mm for TT versus either 11.5±1.3mm for AA, P<0.01 or 11.2±1.4mm for AT, P<0.01 respectively in the hypertension patients with LVH; 9.2±1.6mm for TT versus either 9.9±1.6mm for AA, P<0.01 or 10.1±1.6mm for AT, P<0.01 respectively in the hypertension patients without LVH) and left ventricular mass index (57.4±11.7g/m~(2.7) for TT ,61.8±15.8g/m~(2.7) for AA, P<0.05 or 61.4±10.7g/m~(2.7) for AT, P < 0.05 respectively in the hypertension patients with LVH; 46.8±13.8g/m~(2.7) for TT, 48.8±16.8g/m~(2.7) for AA, P<0.01 or 48.7±15.6g/m~(2.7) for AT, P<0.01 respectively in the hypertension patients without LVH) after adjustment of age, sex, systolic and diastolic blood pressure and body mass index. No significant association was found between the other polymorphisms and echocardiographic variables in both hypertensive patients and in controls (P>0.05).
     Conclusions Our findings indicate that the -2712A/T polymorphism of the PKGⅠgene might be a genetic risk factor for the development of LVH in patients with hypertension.
引文
[1] Maron BJ, Anan TJ, Roberts WC.Quantitative analysis of the distribution of cardiac muscle cell disorganization in the left ventricular wall of patients with hypertrophic cardiomyopathy. Circulation 1981 ;63:882-94.
    [2] Levy D, Garrison RJ, Savage DD,Kannel WB, Castelli WP.Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561-6.
    [3] Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 2003;65:45-79.
    [4] Bashyam MD,Savithri GR, Kumar MS, Narasimhan C, Nallari P. Molecular genetics of familial hypertrophic cardiomyopathy (FHC). J Hum Genet 2003;48:55-64.
    [5] Maron BJ. Hypertrophic cardiomyopathy: a systematic review. Jama 2002;287:1308-20.
    [6] Saeed M, Saleheen D, Siddiqui S, Khan A, Butt ZA, Frossard PM. Association of angiotensin converting enzyme gene polymorphisms with left ventricular hypertrophy. Hypertens Res 2005;28:345-9.
    [1] Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 2000;35:580-6.
    
    [2] Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561-6.
    [3] Bikkina M, Levy D, Evans JC, Larson MG, Benjamin EJ, Wolf PA, Castelli WP. Left ventricular mass and risk of stroke in an elderly cohort. The Framingham Heart Study. Jama 1994;272:33-6.
    [4] Deschepper CF, Boutin-Ganache I, Zahabi A, Jiang Z. In search of cardiovascular candidate genes: interactions between phenotypes and genotypes. Hypertension 2002;39:332-6.
    [5] Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA. Structure and function of G protein-coupled receptors. Annu Rev Biochem 1994;63:101-32.
    [6] Engelhardt S, Hein L, Keller U, Klambt K, Lohse MJ. Inhibition of Na(+)-H(+) exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice. Circ Res 2002;90:814-9.
    [7] Iemitsu M, Miyauchi T, Maeda S, Sakai S, Kobayashi T, Fujii N, et al. Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am J Physiol Regul Integr Comp Physiol 2001;281:R2029-36.
    [8] Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV, Sastravaha A, et al. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 2000;32:817-30.
    [9] Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A1999;96:7059-64.
    [10] Hoehe MR, Otterud B, Hsieh WT, Martinez MM, Stauffer D, Holik J, et al. Genetic mapping of adrenergic receptor genes in humans. J Mol Med 1995;73:299-306.
    
    [11] Maqbool A, Hall AS, Ball SG, Balmforth AJ. Common polymorphisms of beta1-adrenoceptor: identification and rapid screening assay. Lancet 1999;353:897.
    
    [12] Mason DA, Moore JD, Green SA, Liggett SB. A gain-of-function polymorphism in a G-protein coupling domain of the human betal-adrenergic receptor. J Biol Chem 1999;274:12670-4.
    [13] Moore JD, Mason DA, Green SA, Hsu J, Liggett SB. Racial differences in the frequencies of cardiac beta(1)-adrenergic receptor polymorphisms: analysis of c145A>G and c1165G>C. Hum Mutat 1999;14:271.
    [14] Mialet Perez J, Rathz DA, Petrashevskaya NN, Hahn HS, Wagoner LE, Schwartz A, et al. Beta 1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med 2003;9:1300-5.
    [15] Iwai C, Akita H, Kanazawa K, Shiga N, Terashima M, Matsuda Y, et al. Arg389Gly polymorphism of the human beta1-adrenergic receptor in patients with nonfatal acute myocardial infarction. Am Heart J 2003; 146:106-9.
    [16] Shioji K, Kokubo Y, Mannami T, Inamoto N, Morisaki H, Mino Y, et al. Association between hypertension and the alpha-adducin, beta1-adrenoreceptor, and G-protein beta3 subunit genes in the Japanese population; the Suita study. Hypertens Res 2004;27:31-7.
    [17] Bengtsson K, Melander O, Orho-Melander M, Lindblad U, Ranstam J, Rastam L, Groop L. Polymorphism in the beta(1)-adrenergic receptor gene and hypertension. Circulation 2001; 104:187-90.
    [18] Sofowora GG, Dishy V, Muszkat M, Xie HG, Kim RB, Harris PA, et al. A common betal-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade. Clin Pharmacol Ther 2003;73:366-71.
    [19] Terra SG, Hamilton KK, Pauly DF, Lee CR, Patterson JH, Adams KF, et al. Betal-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenet Genomics 2005;15:227-34.
    [20] Tajik AJ, Seward JB, Hagler DJ, Mair DD, Lie JT. Two-dimensional real-time ultrasonic imaging of the heart and great vessels. Technique, image orientation, structure identification, and validation. Mayo Clin Proc 1978;53:271-303.
    [21] Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978;58:1072-83.
    [22] Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450-8.
    [23] de Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 1995;25:1056-62.
    [24] Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 1992; 19:1550-8.
    [25] Leadon SA, Cerutti PA. A rapid and mild procedure for the isolation of DNA from mammalian cells. Anal Biochem 1982; 120:282-8.
    [26] Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16:31-41.
    [27] Kato N, Sugiyama T, Morita H, Nabika T, Kurihara H, Yamori Y, Yazaki Y. Genetic analysis of the atrial natriuretic peptide gene in essential hypertension. Clin Sci (Lond) 2000;98:251-8.
    [28] Bristow MR. Why does the myocardium fail? Insights from basic science. Lancet 1998;352 Suppl 1:SI8-14.
    [29] Bristow MR. Mechanistic and clinical rationales for using beta-blockers in heart failure. J Card Fail 2000;6:8-14.
    [30] Naga Prasad SV, Nienaber J, Rockman HA. Beta-adrenergic axis and heart disease. Trends Genet 2001;17:S44-9.
    [31] Johnson M. The beta-adrenoceptor. Am J Respir Crit Care Med 1998;158:S146-53.
    [32] Brodde OE. Beta 1- and beta 2-adrenoceptors in the human heart: properties,function, and alterations in chronic heart failure. Pharmacol Rev 1991;43:203-42.
    [33] Buxton IL,Brunton LL.Direct analysis of beta-adrenergic receptor subtypes on intact adult ventricular myocytes of the rat.Circ Res 1985;56:126-32.
    [34] Friddle CJ,Koga T,Rubin EM, Bristow J. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy.Proc Natl Acad Sci U S A 2000;97:6745-50.
    [1] Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 1995;92:785-9.
    [2] Charron P, Heron D, Gargiulo M, Richard P, Dubourg O, Desnos M, et al. Genetic testing and genetic counselling in hypertrophic cardiomyopathy: the French experience. J Med Genet 2002;39:741-6.
    [3] Ho CY, Seidman CE. A contemporary approach to hypertrophic cardiomyopathy. Circulation 2006;113:e858-62.
    [4] Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 2003;107:2227-32.
    [5] Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 2001; 104:557-67.
    [6] Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, et al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 2003;107:1390-5.
    [7] Simon DK, Johns DR. Mitochondrial disorders: clinical and genetic features. Annu Rev Med 1999;50:111-27.
    [8] Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 2003;111:209-16.
    
    [9] Attie AD. Atherosclerosis modified. Circ Res 2001 ;89:102-4.
    [10] Rai TS, Dhandapany PS, Ahluwalia TS, Bhardwaj M, Bahl A, Talwar KK, et al. ACE I/D polymorphism in Indian patients with hypertrophic cardiomyopathy and dilated cardiomyopathy. Mol Cell Biochem 2008;311:67-72.
    
    [11] Kaufman BD, Auerbach S, Reddy S, Manlhiot C, Deng L, Prakash A, et al. RAAS gene polymorphisms influence progression of pediatric hypertrophic cardiomyopathy. Hum Genet 2007; 122:515-23.
    
    [12] Chen AH, Zhang WX, Li ZL, Tang XM, Lu Q, Qian XX, et al. [Association between aldosterone synthase gene polymorphism and hypertrophic cardiomyopathy]. Di Yi Jun Yi Da Xue Xue Bao 2002;22:704-6.
    [13] Nagai T, Ogimoto A, Okayama H, Ohtsuka T, Shigematsu Y, Hamada M, et al. A985G polymorphism of the endothelin-2 gene and atrial fibrillation in patients with hypertrophic cardiomyopathy. Circ J 2007;71:1932-6.
    [14] Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA. Structure and function of G protein-coupled receptors. Annu Rev Biochem 1994;63:101-32.
    [15] Engelhardt S, Hein L, Keller U, Klambt K, Lohse MJ. Inhibition of Na(+)-H(+) exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice. Circ Res 2002;90:814-9.
    [16] Iemitsu M, Miyauchi T, Maeda S, Sakai S, Kobayashi T, Fujii N, et al. Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am J Physiol Regul Integr Comp Physiol 2001;281:R2029-36.
    [17] Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV, Sastravaha A, et al. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 2000;32:817-30.
    [18] Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A 1999;96:7059-64.
    [19] Liao Y, Asakura M, Takashima S, Ogai A, Asano Y, Shintani Y, et al. Celiprolol, a vasodilatory beta-blocker, inhibits pressure overload-induced cardiac hypertrophy and prevents the transition to heart failure via nitric oxide-dependent mechanisms in mice. Circulation 2004; 110:692-9.
    [20] Ogimoto A, Shigematsu Y, Nakura J, Hara Y, Ohtsuka T, Kohara K, et al. Endothelial nitric oxide synthase gene polymorphism (Glu298Asp) in patients with coexistent hypertrophic cardiomyopathy and coronary spastic angina. J Mol Med 2005;83:619-25.
    [21] Ohsawa Y, Toko H, Katsura M, Morimoto K, Yamada H, Ichikawa Y, et al. Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity. Hum Mol Genet 2004;13:151-7.
    [22] Piech A, Massart PE, Dessy C, Feron O, Havaux X, Morel N, et al. Decreased expression of myocardial eNOS and caveolin in dogs with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2002;282:H219-31.
    [23] Fu C, Wang H, Wang S, Shi Y, Sun K, Chen J, et al. Association of beta (1)-adrenergic receptor gene polymorphisms with left ventricular hypertrophy in human essential hypertension. Clin Biochem 2008.
    [24] Mayosi B, Watkins H. The diagnosis of familial hypertrophic cardiomyopathy in children. Eur Heart J 1998; 19:1276-8.
    [25] Panza JA, Petrone RK, Fananapazir L, Maron BJ. Utility of continuous wave Doppler echocardiography in the noninvasive assessment of left ventricular outflow tract pressure gradient in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 1992;19:91-9.
    [26] Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978;58:1072-83.
    [27] Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989;2:358-67.
    [28] Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450-8.
    [29] Leadon SA, Cerutti PA. A rapid and mild procedure for the isolation of DNA from mammalian cells. Anal Biochem 1982; 120:282-8.
    [30] Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31-41.
    [31] Bashyam MD, Savithri GR, Kumar MS, Narasimhan C, Nallari P. Molecular genetics of familial hypertrophic cardiomyopathy (FHC). J Hum Genet 2003;48:55-64.
    [32] Maron BJ. Hypertrophic cardiomyopathy: a systematic review. Jama 2002;287:1308-20.
    [33] Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 2003;65:45-79.
    [34] Saeed M, Saleheen D, Siddiqui S, Khan A, Butt ZA, Frossard PM. Association of angiotensin converting enzyme gene polymorphisms with left ventricular hypertrophy. Hypertens Res 2005;28:345-9.
    [35] Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Keil U,et al.Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 1994;330:1634-8.
    [36] Vohl MC, Houde A, Lebel S, Hould FS, Marceau P. Effects of the peroxisome proliferator-activated receptor-gamma co-activator-1 Gly482Ser variant on features of the metabolic syndrome. Mol Genet Metab 2005;86:300-6.
    [1] Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 2000;35:580-6.
    [2] Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561-6.
    [3] Bikkina M, Levy D, Evans JC, Larson MG, Benjamin EJ, Wolf PA, Castelli WP. Left ventricular mass and risk of stroke in an elderly cohort. The Framingham Heart Study. Jama 1994;272:33-6.
    [4] Deschepper CF, Boutin-Ganache I, Zahabi A, Jiang Z. In search of cardiovascular candidate genes: interactions between phenotypes and genotypes. Hypertension 2002;39:332-6.
    [5] Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215-28.
    [6] Taigen T, De Windt LJ, Lim HW, Molkentin JD. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2000;97:1196-201.
    [7] Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, et al. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 2000;275:15239-45.
    [8] Choudhary R, Sastry BK, Subramanyam C. Positive correlations between serum calcineurin activity and left ventricular hypertrophy. Int J Cardiol 2005;105:327-31.
    [9] Fiedler B, Wollert KC. Interference of antihypertrophic molecules and signaling pathways with the Ca2+-calcineurin-NFAT cascade in cardiac myocytes. Cardiovasc Res 2004;63:450-7.
    [10] Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 1998;101:812-8.
    [11] Airhart N, Yang YF, Roberts CT, Jr., Silberbach M. Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction. J Biol Chem 2003;278:38693-8.
    [12] Wollert KC, Fiedler B, Gambaryan S, Smolenski A, Heineke J, Butt E, et al. Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 2002;39:87-92.
    [13] Hofmann F, Ammendola A, Schlossmann J. Rising behind NO: cGMP-dependent protein kinases. J Cell Sci 2000;113 ( Pt 10): 1671-6.
    [14] Yet SF, Perrella MA, Layne MD, Hsieh CM, Maemura K, Kobzik L, et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest 1999;103:R23-9.
    [15] Melo LG, Agrawal R, Zhang L, Rezvani M, Mangi AA, Ehsan A, et al. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 2002; 105:602-7.
    [16] Seki T, Naruse M, Naruse K, Yoshimoto T, Tanabe A, Seki M, et al. Induction of heme oxygenase produces load-independent cardioprotective effects in hypertensive rats. Life Sci 1999;65:1077-86.
    [17] Tongers J, Fiedler B, Konig D, Kempf T, Klein G, Heineke J, et al. Heme oxygenase-1 inhibition of MAP kinases, calcineurin/NFAT signaling, and hypertrophy in cardiac myocytes. Cardiovasc Res 2004;63:545-52.
    [18] Hu CM, Chen YH, Chiang MT, Chau LY Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation 2004;110:309-16.
    [19] Dodge KL, Scott JD. Calcineurin anchoring and cell signaling. Biochem Biophys Res Commun 2003 ;311:1111 -5.
    [20] Vega RB, Yang J, Rothermel BA, Bassel-Duby R, Williams RS. Multiple domains of MCIP1 contribute to inhibition of calcineurin activity. J Biol Chem 2002;277:30401-7.
    [21] Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Mammen P, Yang J, et al. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 2001;98:3328-33.
    [22] Hill JA, Rothermel B, Yoo KD, Cabuay B, Demetroulis E, Weiss RM, et al. Targeted inhibition of calcineurin in pressure-overload cardiac hypertrophy. Preservation of systolic function. J Biol Chem 2002;277:10251-5.
    [23] van Rooij E, Doevendans PA, Crijns HJ, Heeneman S, Lips DJ, van Bilsen M, et al. MCIP1 overexpression suppresses left ventricular remodeling and sustains cardiac function after myocardial infarction. Circ Res 2004;94:e18-26.
    [24] Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 2002;99:907-12.
    [25] Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A, et al. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 2000;151:117-30.
    [26] Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J. The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 2000;275:14466-75.
    [27] El Jamali A, Freund C, Rechner C, Scheidereit C, Dietz R, Bergmann MW. Reoxygenation after severe hypoxia induces cardiomyocyte hypertrophy in vitro: activation of CREB downstream of GSK3beta. Faseb J 2004; 18:1096-8.
    [28] Badorff C, Seeger FH, Zeiher AM, Dimmeler S. Glycogen synthase kinase 3beta inhibits myocardin-dependent transcription and hypertrophy induction through site-specific phosphorylation. Circ Res 2005;97:645-54.
    [29] Tajik AJ, Seward JB, Hagler DJ, Mair DD, Lie JT. Two-dimensional real-time ultrasonic imaging of the heart and great vessels. Technique, image orientation, structure identification, and validation. Mayo Clin Proc 1978;53:271-303.
    [30] Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978;58:1072-83.
    [31] Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:450-8.
    [32] de Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 1995;25:1056-62.
    [33] Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 1992;19:1550-8.
    [34] Leadon SA, Cerutti PA. A rapid and mild procedure for the isolation of DNA from mammalian cells. Anal Biochem 1982; 120:282-8.
    [35] Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16:31-41.
    [36] Kato N, Sugiyama T, Morita H, Nabika T, Kurihara H, Yamori Y, Yazaki Y. Genetic analysis of the atrial natriuretic peptide gene in essential hypertension. Clin Sci (Lond) 2000;98:251-8.
    [37] Horio T, Nishikimi T, Yoshihara F, Matsuo H, Takishita S, Kangawa K. Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Hypertension 2000;35:19-24.
    [38] Matsuoka H, Nakata M, Kohno K, Koga Y, Nomura G, Toshima H, Imaizumi T. Chronic L-arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats. Hypertension 1996;27:14-8.
    [39] Fiedler B, Lohmann SM, Smolenski A, Linnemuller S, Pieske B, Schroder F, et al. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci U S A 2002;99:11363-8.
    [40] Mery PF, Lohmann SM, Walter U, Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A 1991;88:1197-201.
    [41] Anderson ME. Ca2+-dependent regulation of cardiac L-type Ca2+ channels: is a unifying mechanism at hand? J Mol Cell Cardiol 2001;33:639-50.
    [42] Schroder F, Klein G, Fiedler B, Bastein M, Schnasse N, Hillmer A, et al. Single L-type Ca(2+) channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res 2003;60:268-77.
    [43] Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo.J Clin Invest 2000;105:1395-406.
    [44] De Windt LJ, Lim HW,Haq S, Force T, Molkentin JD.Calcineurin promotes protein kinase C and c-Jun NH2-terminal kinase activation in the heart.Cross-talk between cardiac hypertrophic signaling pathways. J Biol Chem 2000;275:13571-9.
    [45] Morin S, Charron F, Robitaille L,Nemer M.GATA-dependent recruitment of MEF2 proteins to target promoters.Embo J 2000; 19:2046-55.
    [46] Thomas DC, Witte JS. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev 2002;11:505-12.
    [47] Reich DE, Goldstein DB. Detecting association in a case-control study while correcting for population stratification. Genet Epidemiol 2001;20:4-16.
    [1] Maron BJ, Anan TJ, Roberts WC. Quantitative analysis of the distribution of cardiac muscle cell disorganization in the left ventricular wall of patients with hypertrophic cardiomyopathy. Circulation 1981 ;63:882-94.
    
    [2] Liang F, Gardner DG. Mechanical strain activates BNP gene transcription through a p38/NF-kappaB-dependent mechanism. J Clin Invest 1999;104:1603-12.
    [3] Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation 2004; 109:1580-9.
    [4] Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561-6.
    [5] Ho YL, Wu CC, Lin LC, Huang CH, Chen WJ, Chen MF, et al. Assessment of the coronary artery disease and systolic dysfunction in hypertensive patients with the dobutamine-atropine stress echocardiography: effect of the left ventricular hypertrophy. Cardiology 1998;89:52-8.
    [6] Dorn GW, 2nd, Robbins J, Sugden PH. Phenotyping hypertrophy: eschew obfuscation. Circ Res 2003;92:1171-5.
    [7] Komuro I. Molecular mechanism of cardiac hypertrophy and development. Jpn Circ J 2001 ;65:353-8.
    [8] Diez J, Lopez B, Gonzalez A, Ardanaz N, Fortuno MA. [Genetics and molecular biology in cardiology (IV). Myocardial response to biomechanical stress]. Rev Esp Cardiol 2001;54:507-15.
    [9] Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 1997;59:551-71.
    [10] Anversa P, Leri A, Kajstura J, Nadal-Ginard B. Myocyte growth and cardiac repair. J Mol Cell Cardiol 2002;34:91-105.
    
    [11] Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750-7.
    [12] Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 2003;92:139-50.
    [13] Molkentin JD, Dorn IG, 2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 2001;63:391-426.
    [14] Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 2000; 105:1395-406.
    [15] Babu GJ, Lalli MJ, Sussman MA, Sadoshima J, Periasamy M. Phosphorylation of elk-1 by MEK/ERK pathway is necessary for c-fos gene activation during cardiac myocyte hypertrophy. J Mol Cell Cardiol 2000;32:1447-57.
    [16] Liang F, Lu S, Gardner DG Endothelin-dependent and -independent components of strain-activated brain natriuretic peptide gene transcription require extracellular signal regulated kinase and p38 mitogen-activated protein kinase. Hypertension 2000;35:188-92.
    [17] Morimoto T, Hasegawa K,Kaburagi S, Kakita T, Wada H, Yanazume T,Sasayama S. Phosphorylation of GATA-4 is involved in alpha 1-adrenergic agonist-responsive transcription of the endothelin-1 gene in cardiac myocytes.J Biol Chem 2000;275:13721-6.
    [18] Mo Y, Ho W, Johnston K, Marmorstein R. Crystal structure of a ternary SAP-1/SRF/c-fos SRE DNA complex. J Mol Biol 2001;314:495-506.
    [19] Sepulveda JL,Vlahopoulos S, Iyer D, Belaguli N, Schwartz RJ. Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. J Biol Chem 2002;277:25775-82.
    [20] Huxley AF.Muscular contraction. J Physiol 1974;243:1-43.
    [21] Sheetz MP.Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2001;2:392-6.
    [22] Matsuda N, Hagiwara N, Shoda M, Kasanuki H, Hosoda S. Enhancement of the L-type Ca2+ current by mechanical stimulation in single rabbit cardiac myocytes. Circ Res 1996;78:650-9.
    [23] Sasaki N, Mitsuiye T, Wang Z, Noma A.Increase of the delayed rectifier K+ and Na(+)-K+ pump currents by hypotonic solutions in guinea pig cardiac myocytes. Circ Res 1994;75:887-95.
    [24] Ross RS, Borg TK Integrins and the myocardium. Circ Res 2001;88:1112-9.
    [25] Sadoshima J, Qiu Z, Morgan JP,Izumo S. Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. Embo J 1996;15:5535-46.
    [26] Knoll R, Hoshijima M, Hoffman HM, Person V,Lorenzen-Schmidt I, Bang ML, et al.The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 2002;111:943-55.
    [27] Frey N, Richardson JA, Olson EN. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci U S A 2000;97:14632-7.
    [28] Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure.N Engl J Med 1999;341:1276-83.
    [29] Mehra MR,Uber PA, Francis GS. Heart failure therapy at a crossroad: are there limits to the neurohormonal model? J Am Coll Cardiol 2003;41:1606-10.
    [30] Kajstura J, Zhang X, Liu Y, Szoke E, Cheng W, Olivetti G,et al. The cellular basis of pacing-induced dilated cardiomyopathy. Myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation 1995;92:2306-17.
    [31] Dorn GW, 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy.J Clin Invest 2005;l15:527-37.
    [32] Young M, Head G,Funder J. Determinants of cardiac fibrosis in experimental hypermineralocorticoid states. Am J Physiol 1995;269:E657-62.
    [33] Robert V,Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C.Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hypertension 1999;33:981-6.
    [34] Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy.Circulation 2002; 105:677-9.
    [35] Takeda Y. Pleiotropic actions of aldosterone and the effects of eplerenone, a selective mineralocorticoid receptor antagonist. Hypertens Res 2004;27:781-9.
    [36] Rocha R, Funder JW. The pathophysiology of aldosterone in the cardiovascular system. Ann N Y Acad Sci 2002;970:89-100.
    [37] Brilla CG,Pick R, Tan LB, Janicki JS, Weber KT. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 1990;67:1355-64.
    [38] Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, et al.Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 2003;108:1831-8.
    [39] Blum A, Miller H. Pathophysiological role of cytokines in congestive heart failure. Annu Rev Med 2001;52:15-27.
    [40] Wollert KC, Drexler H. The role of interleukin-6 in the failing heart. Heart Fail Rev 2001 ;6:95-103.
    [41] Kanda T, Takahashi T. Interleukin-6 and cardiovascular diseases. Jpn Heart J 2004;45:183-93.
    [42] Hirota H, Yoshida K, Kishimoto T, Taga T. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines,causes myocardial hypertrophy in mice. Proc Natl Acad Sci U S A 1995;92:4862-6.
    [43] Kaneko K, Kanda T, Yokoyama T, Nakazato Y, Iwasaki T, Kobayashi I, Nagai R.Expression of interleukin-6 in the ventricles and coronary arteries of patients with myocardial infarction. Res Commun Mol Pathol Pharmacol 1997;97:3-12.
    [44] Maisch B. Extracellular matrix and cardiac interstitium: restriction is not a restricted phenomenon. Herz l995;20:75-80.
    [45] Weber KT. Fibrosis in hypertensive heart disease: focus on cardiac fibroblasts.J Hypertens 2004;22:47-50.
    [46] Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure?Circ Res 2001;89:201-10.
    [47] Weber KT, Pick R, Jalil JE, Janicki JS, Carroll EP. Patterns of myocardial fibrosis. J Mol Cell Cardiol 1989;21 Suppl 5:121-31.
    [48] Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis:involvement in cardiac hypertrophy. Circ Res 2002;91:l 103-13.
    [49] Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215-62.
    [50] Vatner DE, Yang GP, Geng YJ, Asai K, Yun JS, Wagner TE, et al.Determinants of the cardiomyopathic phenotype in chimeric mice overexpressing cardiac Gsalpha. Circ Res 2000;86:802-6.
    [51] Matsusaka T,Katori H,Inagami T,Fogo A,Ichikawa I.Communication models. J Mol Cell Cardiol 2003;35:1385-94.
    [68] Thorburn J, Xu S, Thorburn A. MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. Embo J 1997; 16:1888-900.
    [69] Sopontammarak S, Aliharoob A, Ocampo C, Arcilla RA, Gupta MP, Gupta M. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy. Cell Biochem Biophys 2005;43:61-76.
    [70] Proud CG. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res 2004;63:403-13.
    [71] Ren J, Fang CX. Small guanine nucleotide-binding protein Rho and myocardial function. Acta Pharmacol Sin 2005;26:279-85.
    [72] Hordijk PL. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 2006;98:453-62.
    [73] Disatnik MH, Jones SN, Mochly-Rosen D. Stimulus-dependent subcellular localization of activated protein kinase C; a study with acidic fibroblast growth factor and transforming growth factor-beta 1 in cardiac myocytes. J Mol Cell Cardiol 1995;27:2473-81.
    [74] Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, et al. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 2004; 10:248-54.
    [75] Johnsen DD, Kacimi R, Anderson BE, Thomas TA, Said S, Gerdes AM. Protein kinase C isozymes in hypertension and hypertrophy: insight from SHHF rat hearts. Mol Cell Biochem 2005;270:63-9.
    [76] Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 2001 ;105:851-62.
    [77] Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, et al. Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 1990;265:3595-8.
    [78] Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A 1988;85:339-43.
    [79] Schunkert H, Jahn L, Izumo S, Apstein CS, Lorell BH. Localization and regulation of c-fos and c-jun protooncogene induction by systolic wall stress in normal and hypertrophied rat hearts. Proc Natl Acad Sci U S A 1991;88:11480-4.
    [80] Chien KR, Knowlton KU, Zhu H, Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. Faseb J 1991;5:3037-46.
    [81] Komuro I, Kurabayashi M, Takaku F, Yazaki Y. Expression of cellular oncogenes in the myocardium during the developmental stage and pressure-overloaded hypertrophy of the rat heart. Circ Res 1988;62:1075-9.
    [82] Chien KR, Zhu H, Knowlton KU, Miller-Hance W, van-Bilsen M, O'Brien TX, Evans SM. Transcriptional regulation during cardiac growth and development. Annu Rev Physiol 1993;55:77-95.
    [83] Kariya K, Karns LR, Simpson PC. An enhancer core element mediates stimulation of the rat beta-myosin heavy chain promoter by an alpha 1-adrenergic agonist and activated beta-protein kinase C in hypertrophy of cardiac myocytes. J Biol Chem 1994;269:3775-82.
    [84] Kernan M, Cowan D, Zuker C. Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 1994;12:1195-206.
    [85] Molkentin JD, Olson EN. GATA4: a novel transcriptional regulator of cardiac hypertrophy? Circulation 1997;96:3833-5.
    [86] Evans SM, Yan W, Murillo MP, Ponce J, Papalopulu N. tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman. Development 1995;121:3889-99.
    [87] Chen Z, Friedrich GA, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 1994;8:2293-301.
    [88] Chen F, Kook H, Milewski R, Gitler AD, Lu MM, Li J, et al. Hop is an unusual homeobox gene that modulates cardiac development. Cell 2002;110:713-23.
    [89] Arsenian S, Weinhold B, Oelgeschlager M, Ruther U, Nordheim A. Serum response factor is essential for mesoderm formation during mouse embryogenesis. Embo J 1998;17:6289-99.
    [90] Norman C, Runswick M, Pollock R, Treisman R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 1988;55:989-1003.
    [91] Nurrish SJ, Treisman R. DNA binding specificity determinants in MADS-box transcription factors. Mol Cell Biol 1995;15:4076-85.
    [92] Shin CH, Liu ZP, Passier R, Zhang CL, Wang DZ, Harris TM, et al. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 2002;110:725-35.
    [93] Flesch M. On the trail of cardiac specific transcription factors. Cardiovasc Res 2001;50:3-6.
    [94] Sack MN, Disch DL, Rockman HA, Kelly DP. A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci U S A 1997;94:6438-43.
    [95] Dellow KA, Bhavsar PK, Brand NJ, Barton PJ. Identification of novel, cardiac-restricted transcription factors binding to a CACC-box within the human cardiac troponin I promoter. Cardiovasc Res 2001;50:24-33.
    [96] Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 2003;92:1079-88.
    [97] Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, et al. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 1998;4:1269-75.
    [98] Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 1996;94:2837-42.
    [99] Kliewer SA, Xu HE, Lambert MH, Willson TM. Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 2001 ;56:239-63.
    [100] Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999;20:649-88.
    [101] Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 2001;142:4195-202.
    [102] Barger PM, Brandt JM, Leone TC, Weinheimer CJ, Kelly DP. Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest 2000; 105:1723-30.
    [103] Kanda H, Nohara R, Hasegawa K, Kishimoto C, Sasayama S. A nuclear complex containing PPARalpha/RXRalpha is markedly downregulated in the hypertrophied rat left ventricular myocardium with normal systolic function. Heart Vessels 2000; 15:191-6.
    [104] Ogata T, Miyauchi T, Sakai S, Irukayama-Tomobe Y, Goto K, Yamaguchi I. Stimulation of peroxisome-proliferator-activated receptor alpha (PPAR alpha) attenuates cardiac fibrosis and endothelin-1 production in pressure-overloaded rat hearts. Clin Sci (Lond) 2002; 103 Suppl 48:284S-8S.
    [105] Jamshidi Y, Montgomery HE, Hense HW, Myerson SG, Torra IP, Staels B, et al. Peroxisome proliferator-activated receptor alpha gene regulates left ventricular growth in response to exercise and hypertension. Circulation 2002;105:950-5.
    [106] Calnek DS, Mazzella L, Roser S, Roman J, Hart CM. Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003;23:52-7.
    [107] Iglarz M, Touyz RM, Amiri F, Lavoie MF, Diep QN, Schiffrin EL. Effect of peroxisome proliferator-activated receptor-alpha and -gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol 2003;23:45-51.
    [108] Asakawa M, Takano H, Nagai T, Uozumi H, Hasegawa H, Kubota N, et al. Peroxisome proliferator-activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 2002; 105:1240-6.
    [109] Takano H, Hasegawa H, Nagai T, Komuro I. The role of PPARgamma-dependent pathway in the development of cardiac hypertrophy. Drugs Today (Barc) 2003;39:347-57.
    [110] Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 2000; 10:238-45.
    [111] Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998;12:599-606.
    [112] Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074-80.
    [113] Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol 2003 ;15:172-83.
    [114] Antos CL, McKinsey TA, Dreitz M, Hollingsworth LM, Zhang CL, Schreiber K, et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 2003;278:28930-7.
    [115] Hamamori Y, Schneider MD. HATs off to Hop: recruitment of a class I histone deacetylase incriminates a novel transcriptional pathway that opposes cardiac hypertrophy. J Clin Invest 2003;112:824-6.
    [116] Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man Yung W, Mackay J, et al. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 2003;112:863-71.
    [117] Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002; 110:479-88.
    [118] Minucci S, Nervi C, Lo Coco F, Pelicci PG. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene 2001 ;20:3110-5.
    [119] Kim DH, Kim M, Kwon HJ. Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents. J Biochem Mol Biol 2003;36:110-9.
    [120] Friddle CJ, Koga T, Rubin EM, Bristow J. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc Natl Acad Sci U S A 2000;97:6745-50.
    [121] McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, Izumo S. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A 2003;100:12355-60.
    [122] Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1 /eukaryotic translation initiation factor 4E. Mol Cell Biol 2004;24:200-16.
    [123] Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002; 16:1472-87.
    [124] Russell B, Motlagh D, Ashley WW. Form follows function: how muscle shape is regulated by work. J Appl Physiol 2000;88:1127-32.
    [125] Kramer CM, Rogers WJ, Park CS, Seibel PS, Shaffer A, Theobald TM, et al. Regional myocyte hypertrophy parallels regional myocardial dysfunction during post-infarct remodeling. J Mol Cell Cardiol 1998;30:1773-8.
    [126] Russell B, Wenderoth MP, Goldspink PH. Remodeling of myofibrils: subcellular distribution of myosin heavy chain mRNA and protein. Am J Physiol 1992;262:R339-45.
    [127] Harris BN, Li H, Terry M, Ferrari MB. Calcium transients regulate titin organization during myofibrillogenesis. Cell Motil Cytoskeleton 2005;60:129-39.
    [128] Klauke N, Smith GL, Cooper JM. Stimulation of isolated ventricular myocytes within an open architecture microarray. IEEE Trans Biomed Eng 2005;52:531-8.
    [129] Borisov AB, Kontrogianni-Konstantopoulos A, Bloch RJ, Westfall MV, Russell MW. Dynamics of obscurin localization during differentiation and remodeling of cardiac myocytes: obscurin as an integrator of myofibrillar structure. J Histochem Cytochem 2004;52:1117-27.
    [130] Moncman CL, Wang K. Targeted disruption of nebulette protein expression alters cardiac myofibril assembly and function. Exp Cell Res 2002;273:204-18.
    [131] Young P, Ehler E, Gautel M. Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 2001; 154:123-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700