基于纳米材料和核酸适配体的高灵敏度光学生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,生物传感器因具有灵敏度高、选择性好、成本低和方便快捷等优点,被广泛地应用到与生命活动相关的核酸分子、蛋白质、金属离子、小分子和酶的检测当中。纳米材料和功能核酸的发展,为构建新颖的、用于各种目标物检测的生物传感技术提供了全新的设计思路和平台。
     本论文作为国家自然科学基金(No.21173071)和教育部高等学校博士点专项基金资助课题(No.20114104110002)的一部分,通过把功能核酸和纳米材料相结合,构建了几种光学生物传感器用于对重金属离子、生物小分子和酶活性及其抑制剂的检测。与传统检测方法相比,本论文所建立的传感器对目标物的检测具有灵敏度高、选择性好、成本低和操作简单等优点,同时初步验证了传感器的实用性。其主要内容如下:
     在第二章中构建了一种基于水溶性聚噻吩衍生物和非标记功能核酸的光学传感器,可以简单快速、高灵敏地和高选择性地检测水溶液中的铅离子。该传感器检测原理是利用铅离子诱导富含G碱基的核酸DNA的结构从自由卷曲状态到G-四链体状态,同时使用阳离子水溶性聚噻吩(PMNT)作为信号产生单元来产生光学信号。通过使用特定的核酸序列TBAA (5'-GGAAGGTGTGGAAGG-3'),实现了对铅离子的特异性识别,避免了传统功能核酸传感器使用掩蔽剂(CN-, SCN-)用于消除汞离子的干扰所带来的问题。当溶液中不存在铅离子时,PMNT与DNA探针通过静电相互作用,形成类双链的刚性复合物,使得PMNT骨架的共轭程度增大,溶液显现红色。当溶液中存在铅离子时,铅离子会诱导DNA探针折叠成G-四链体结构,PMNT通过静电作用缠绕在G-四链体表面形成复合物,在该复合物中PMNT的共轭程度低,溶液颜色为黄色。基于以上原理,本传感器实现了对铅离子的高灵敏和特异性检测。本传感器可以在5分钟内快速的检测水溶液中微摩尔浓度的铅离子,利用荧光检测方法可以把检测限提高到纳摩尔级别。该传感器成功的被应用到自来水中铅离子的检测。
     在第三章中基于氧化石墨烯对单链DNA和G-四链体DNA的吸附能力不同,设计了一种荧光增强型的G-四链体传感器用于铅离子的检测。通过使用在第二章中筛选出的核酸序列TBAA作为探针,实现了对铅离子特异性的识别。首先在探针的5’末端修饰上荧光发色团,不存在铅离子时,核酸探针在溶液中呈现柔软的单链构象。加入氧化石墨烯,通过单链核酸的碱基与氧化石墨烯的芳香性六元环π-π堆积作用,单链核酸探针吸附在氧化石墨烯表面导致荧光发色团的荧光猝灭。当存在铅离子时,铅离子诱导TBAA从单链构象折叠成G-四链体构象。加入氧化石墨烯,因为G-四链体与氧化石墨烯的作用力比较弱,带有荧光发色团的G-四链体远离氧化石墨烯的表面使荧光发色团的荧光不被猝灭。该传感器对铅离子的最低检测限为400pM,同时该传感器被成功的应用到河水和自来水中铅离子的检测。
     在第四章中利用氧化石墨烯对单、双链DNA的吸附能力不同,设计了一个基于氧化石墨烯的生物传感器用于HIV-1逆转录酶RNase H的活性检测及抑制剂筛选。首先在DNA序列的3’末端修饰上荧光发色团,然后与该序列互补的RNA杂交形成DNA/RNA杂交体。不存在RNase H时,因为DNA/RNA与氧化石墨烯的相互作用比较弱,加入氧化石墨烯后DNA/RNA不能稳定的吸附在氧化石墨烯的表面,因此荧光发色团的荧光不会被猝灭。当存在RNase H时,RNase H能够催化DNA/RNA中的RNA裂解成核糖核苷片段从而释放出单链DNA。加入氧化石墨烯后,单链DNA能够强力的吸附在氧化石墨烯的表面导致荧光猝灭。当存在酶抑制剂时,RNase H的酶活性被抑制,RNA/DNA依旧保持双链的状态。加入氧化石墨烯后荧光不被猝灭。该传感器对HIV-1RNase H酶的最低检测限为0.6units mL-1,同时可以进行高通量筛选HIV-1RNase H酶抑制剂。本传感器不仅提供了一个检测HIV-1RNase H酶活性和抑制剂筛选的通用平台,也在抗艾滋病药物的研发以及临床治疗方面表现出潜在的应用价值。
     在第五章中发展了一种新型的基于核酸切刻酶辅助目标循环放大的分子适配体信标策略用于ATP高灵敏的检测。切刻酶是一种限制性核酸内切酶,可特异性地识别双链DNA中的核苷酸序列,并对其中的一条链进行切割。在本实验中使用的切刻内切酶是Nt.CviPⅡ,能够特异性的在5’-···↓CCA…-3’位点处切刻双链DNA。在该传感策略中,把ATP的核酸适配体分割成两个短链寡聚核苷酸,Aptl和Apt2。其中Aptl的3’端修饰了荧光发色团。Aptl可以通过分子内自组装的方式形成分子信标。Aptl环状部分可以和Apt2—同作为ATP的适配体。不存在ATP时,因为含有错配的碱基对,Apt2不能够与Aptl中的环状部位杂交。因为Aptl和Apt2含有大的单链结构,加入氧化石墨烯后,通过单链DNA的碱基与氧化石墨烯的芳香环结构之间的π-π堆积作用,Aptl和Apt2吸附在氧化石墨烯的表面导致Aptl的荧光猝灭。当存在ATP时,Apt2和ATP一起作用于Aptl的环状部位打开Aptl的发卡结构形成双链DNA。在这个双链DNA结构中含有核酸切刻酶Nt.CviPII的切割位点。加入Nt.CviPⅡ后,可以把双链DNA中的Aptl切割成两部分,从而使APT和Apt2游离出来。游离出来的APT和Apt2又可以对另外—分子的Aptl分子信标进行互补配对,然后再次被酶切割,从而进行循环,累积许多含有荧光基团的短链DNA。因为被酶切割后Aptl是两条短链DNA,其与氧化石墨烯的相互作用能力比较弱,从而远离氧化石墨烯的表面产生荧光信号,并经过多次循环后实现了信号放大效应。该方法实现了对ATP的高灵敏和高特异性检测,响应动态范围为10nM到1000nM,最低检测限为4nM。该传感器的检测限比传统的方法相降低3个数量级。
Recently, because of their high sensitivity, good selectivity, low cost and short time-consuming, biosensors have been widely applied to the detection of heavy metal ions, small biomoleculars and enzymes. The development of nanomaterials and functional nucleic acids provides the new strategies and platforms for the design of biosensing technology.
     As a part of the projects supported by the National Natural Science Foundation of China (No.21173071) and the Research Fund for the Doctoral Program of Higher Education of China (No.20114104110002)), in this doctoral thesis, we have developed a series of optical biosensors for the detection of heavy metal ions, small molecular, enzyme activity and drug screening by combining of the advantages of nanomaterials and functional nucleic acids. Compared with the traditional methods, the proposed detection methods are convenient, sensitive and cost-effective. The practicability of these developed methods was also verified. The detailed contents are described as follows:
     In the chapter2, we designed a highly selective and sensitive sensor for detection of Pb2+by using conjugated polymers and label-free oligonucleotides. This method is based on Pb2+-induced G-rich DNA conformation switch from a random-coil to G-quadruplex with a water-soluble polythiophene derivative (PMNT) as "a polymeric stain" to transduce optical signal. We selected a specific sequence oligonucleotide, TBAA (5'-GGAAGGTGTGGAAGG-3'), which can form a G-quadruplex structure upon the addition of Pb2+. This strategy provided a promising alternative to Pb2+determination in the presence of Hg2+instead of the universal masking agent of Hg2+(such as CN-,SCN-). In the absence of Pb2+, PMNT and TBAA probe readily formed an electrostatic PMNT-TBAA complex in aqueous solution. In the complex, PMNT took a highly conjugated and planar conformation with a characteristic red color. In the present of Pb2+, the TBAA probe formed a G-quadruplex structure through the specific Pb2+binding G-quartets. PMNT wound on the surface of G-quadruplex through electrostatic interaction, resulting in the twisting of conjugated backbone. The color of PMNT-G-quadruplex is yellow. By this method, we could identify micromolar Pb2+concentrations within5min even with the naked eye. Furthermore, the detection limit was improved to the nanomolar range by the fluorometric method. We also successfully utilized this biosensor for the determination of Pb2+in tap water samples.
     In the chapter3, we designed a highly selective and sensitive sensor for detection of Pb2+by using graphene oxide (GO) and G-quadruplex DNA (G4). Based on Pb+-induced G-rich DNA conformation switch from a random-coil to G-quadruplex and the remarkable difference in the absorbing affinity of GO with ssDNA and G-quadruplex, we constructed a GO-G4based fluorescence "turn-on" sensing system for rapid, sensitive and selective detection of Pb2+by using "mix-and-detect" assay format. We used the specific sequence G-rich ssDNA (TBAA) for the detection of Pb2+which was slected in chapter2. In the absence of Pb2+, the TBAA is in a flexible single strand state. The introduction of GO to the carboxy fluorescein (FAM)-labeled TBAA solution would result in strong binding between nucleotide bases and aromatic structure of GO via π-stacking, bringing the fluorophore into close proximity with the GO surface. Consequently, the fluorescence of FAM is quenched via energy transfer from dyes to GO. However, in the presence of Pb2+, the conformation of the TBAA is switched from a random coil to G-quadruplex complex. The introduction of GO into the sensor solution will result in weak quenching of the fluorescence of FAM due to the weak affinity of G-quadruplex complex to GO, and the fluorescence intensity should gradually increase with the increasing concentration of Pb2+. A detection limit of400pM for Pb2+ions was estimated. We also successfully utilized this biosensor for the determination of Pb2+in tap water and river water samples.
     In the chapter4, we have developed a simple and highly sensitive fluorescent biosensor for the detection of HIV-1RNase H activity and inhibition by using graphene oxide (GO) as sensing platform. In our approach, a DNA-RNA substrate was prepared which FAM was labeled at the3'termini of single strand DNA. The FAM labeled DNA-RNA substrate preserves most of the fluorescence when mixed with GO. However, in the present of RNase H, RNase H can cleavage the RNA into fragments, resulting in the dissociation of ssDNA and mononucleotides. The fluorescence intensity was greatly quenched after the addition of GO. The as-proposed method provides a low detection limit of0.6units mL-1for HIV-1RNase H activity analysis. Furthermore, this approach shows potential for high-throughput screening of HIV-1RNase H inhibitors. The method not only provides a universal platform for monitoring activity and inhibition of RNase H but also shows great potential in biological process researches, drug discovery, and clinic diagnostics.
     In chapter5, we developed a novel molecular aptamer beacon biosensing strategy for high-sensitive detection of ATP based on Nicking Endonuclease (NEase)-assisted target recycling amplification. NEase is a special family of restriction endonucleases, which can recognize a specific sequence kown as a restriction site along a double-strand DNA and only cleave one strand of it, leaving a nick in the DNA. The NEase used here is Nt.CviPII, which recognizes a simple asymmetric sequence,5'-…↓CCA…-3'. In this assay, the aptamer of ATP was split into two subunits, which was named Aptl and Apt2, respectively. Aptl was designed to form a hairpin structure whose3'-terminal was modified a fluorophore. The Apt2was not labeled any dye molecule. The loop sequence of Aptl and Apt2were combined as the aptamer of ATP. In the absence of ATP, because of the mismatch bases, Apt2can not hybridize with the loop structure of Aptl. Aptl and Apt2were adsorbed onto the surface of graphene oxide through π-stacking interaction between the ring structrue in the nucleobases and the hexagonal cells of GO, and the fluorescence of the dye was quenched. In the present of ATP, Apt2combined with ATP hybridized with Aptl to form double-stranded DNA structure. In this double-stranded DNA, it contains the cleavage sites of Nt.CviPII. The Nt.CviPII can recognize the specific nucleotide sequence and cleave the Aptl into two fragments. After nicking, the ATP and Apt2will dissociate from the probe-target complex. Then, ATP and Apt2can hybridize with another intact Aptl to form a new substrate for NEase and the cycle starts anew. Through such strand-scission cycle, only one target can trigger cleavage of a large quantity of Aptl, which can accumulate more short-strand DNA containing fluorophore. Because of the weak affinity between short-strand DNA with graphene oxide, the introduction of GO into the sensing solution will result in weak quenching of the fluorescence of FAM. After several cycles, it leads to significant amplification of the signal. The results revealed that this strategy offered a sensitive and selective method for the detection of ATP over the concentration range from10nM to1000nM with the detection limit of4nM. The sensitivity of assay is3orders magnitude better than previously reported methods.
引文
[1]张先恩,王志通,简浩然.生物传感器[J].微生物学通报,1987,3:136-139.
    [2]蒋雪松,王剑平,应义斌等.用于食品安全检测的生物传感器的研究进展[J].农业工程学报,2007,5:272-277.
    [3]钱军民,奚西峰,黄海燕.我国酶传感器研究新进展[J].石化技术与应用,2002,20(5):333-336.
    [4]蒋中华,马立人.化学传感器和生物传感器的研究进展[J].军事医学科学院院刊,1995,19(4):306-309.
    [5]许春向.生物传感器及其应用[M].北京:科学出版社,1993,1-12.
    [6]Campanella L, Pacifici F, Sammartino M P. A new organic phase bienzymatic electrode for lecithin analysis in food Products [J]. Bioelectrochemistry and Bioenergeties,1998,47(1):25-35.
    [7]Blackburn G F, Talley D B, Booth P M, et al. Potentiometric biosensor employing catalytic antibodies as the molecular recognition element [J]. Analytical Chemistry,1990,62(20):2211-2216
    [8]Pandey P C, Weetall H H. Detection of aromatic compounds based on DNA intercalation using an evanescent wave biosensor [J]. Analytical Chemistry,1995,67(5):787-792.
    [9]Tombelli S, Mascini M, Braccini L, et al. Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein epoly-morphisms [J]. Biosensors and Bioelectronics,2000, 15(7-8):363-370
    [10]Lee T, Tsuzuki M, Takeuchi T, et al. Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetric method [J]. Analytica Chimica Acta,1995, 302(1):81-87.
    [11]Oungpipat W, Alexander P W, Southwell-Keely P. A reagentless amperometric biosensor for hydrogen peroxide determination based on asparagus tissue and ferrocene mediation [J]. Analytica Chimica Acta, 1995,309(1-3):35-45.
    [12]Sergeyeva T A, Soldatkin A P, Achkov A E, et al. β-Lactamase label-based potentiometric biosensor for a-2 interferon detection [J]. Analytica Chimica Acta,1999,390(1-3):78-81
    [13]Pena N, Kuiz G, Reviejo A J, et al. Graphite-teflon composite bienzyme electrodes for the determination of cholesterol in reversed micelles. Application to food samples [J]. Analytical Chemistry,2001,73(6):1190-1195.
    [14]Toppozada A R, Wright J, Eldefrawi A T. Evaluation of a fiber optical immunosensor for quantitating cocaine in coca [J]. Biosensors and Bioelectronics,1997,12(2):113-124
    [15]姚守拙.压电化学与生物传感[M].长沙:湖南师范大学出版社,1997,386-391.
    [16]Pizziconi V B, Page D L. A cell-based immunosensor with engineered molecular recognition-part: design feasibility [J]. Biosensors and Bioelectronics,1997,12(3):287-299.
    [17]Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature, 1990,346 (6287):818-822.
    [18]Cuenoud B, Szostak J W. A DNA metalloenzyme with DNA ligase activity [J]. Nature,1995,375 (15): 611-614
    [19]Breaker R R. DNA enzymes [J]. Nature Biotechnology,1997,15 (5):427-431.
    [20]Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA [J]. Chemistry and Biology,1994,1(4): 223-229.
    [21]Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA-enzyme [J]. Proceedings of the National Academy of Sciences,1997,94(9):4262-4266.
    [22]Brown A K, Li J, Pavot C M B. A lead-dependent DNAzyme with a two-step mechanism [J]. Biochemistry,2003,42(23):7152-7161
    [23]Liu J, Brown A K, Meng X, Cropek D M, Istok J D, Watson D B and Lu Y. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity [J]. Proceedings of the National Academy of Sciences,2007,104(7):2056-2061.
    [24]Carmi N, Balkhi H R, Breaker R R. Cleaving DNA with DNA [J]. Proceedings of the National Academy of Sciences,1998,95(5):2233-2237.
    [25]Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex [J]. Chemistry & Biology,1998,5(9):505-517.
    [26]Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles [J]. Journal of the American Chemical Society,2003,125(22):6642-6643.
    [27]Liu J W, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+[J]. Journal of the American Chemical Society,2004,126(39): 12298-12305.
    [28]Wei H, Li B, Li J, et al. DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes [J]. Nanotechnology,2008,19(9):095501.
    [29]Wang Z, Lee J H, Lu Y. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme [J]. Advanced Materials,2008, 20(17):3263-3267.
    [30]Lee J H, Wang Z, Liu J, et al. Highly sensitive and selective colorimetric sensors for uranyl (UO22+): Development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems [J]. Journal of the American Chemical Society,2008,130(43):14217-14226.
    [31]Wang Y, Yang F, Yang X. Label-free colorimetric biosensing of copper (II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes [J]. Nanotechnology,2010, 21(20):205502.
    [32]Elbaz J, Shlyahovsky B, Willner I. A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine [J]. Chemical Communications,2008 (13):1569-1571.
    [33]Moshe M, Elbaz J, Willner I. Sensing of UO22+and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes [J]. Nano letters,2009,9(3):1196-1200.
    [34]Yin B C, Ye B C, Tan W, et al. An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper (Ⅱ) [J]. Journal of the American Chemical Society,2009,131(41):14624-14625.
    [35]Zhang X B, Kong R M, Lu Y. Metal ion sensors based on DNAzymes and related DNA molecules [J]. Annual review of analytical chemistry,2011,4(1):105-128
    [36]Tyagi S, Kramer F R. Molecular beacons:probes that fluoresce upon hybridization [J]. Nature biotechnology,1996,14(3):303-308.
    [37]Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions [J]. Journal of the American Chemical Society,2000,122(42):10466-10467.
    [38]Nagraj N, Liu J, Sterling S, et al. DNAzyme catalytic beacon sensors that resist temperature-dependent variations [J]. Chemical Communications,2009,27:4103-4105.
    [39]Chiuman W, Li Y. Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates [J]. Nucleic Acids Research,2007,35(2):401-405.
    [40]Mei S H J, Liu Z, Brennan J D, et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling [J]. Journal of the American Chemical Society,2003,125(2): 412-420.
    [41]Liu Z, Mei S H J, Brennan J D, et al. Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences [J]. Journal of the American Chemical Society,2003,125(25): 7539-7545.
    [42]Shen Y, Mackey G, Rupcich N, et al. Entrapment of fluorescence signaling DNA enzymes in sol-gel-derived materials for metal ion sensing [J]. Analytical chemistry,2007,79(9):3494-3503.
    [43]Wang H, Kim Y, Liu H, et al. Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring [J]. Journal of the American Chemical Society,2009,131(23):8221-8226.
    [44]Zhang X B, Wang Z, Xing H, et al. Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity [J]. Analytical chemistry,2010,82(12):5005-5011.
    [45]Zhang L, Han B, Li T, et al. Label-free DNAzyme-based fluorescing molecular switch for sensitive and selective detection of lead ions [J]. Chemical Communications,2011,47(11):3099-3101.
    [46]Wang F, Wu Z, Lu Y, et al. A label-free DNAzyme sensor for lead (II) detection by quantitative polymerase chain reaction [J]. Analytical biochemistry,2010,405(2):168-173.
    [47]Therk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA Polymerase [J]. Seienee,1990,249(4968):505-510.
    [48]Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature, 1990,346 (6287):815-822.
    [49]Ellington A E, Szostak J W. Selection in vitro of single stranded DNA molecules that fold into specific ligand binding structures. Nature,1992,355(6363):850-852.
    [50]Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin [J]. Nature,1992,355:564-566
    [51]Paborsky L R, McCurdy S N, Griffin L C, et al. The single-stranded DNA aptamer-binding site of human thrombin [J]. Journal of biological chemistry,1993,268(28):20808-20811.
    [52]Stojanovic M N, De Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine [J]. Journal of the American Chemical Society,2001,123(21):4928-4931.
    [53]Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine [J]. Journal of the American Chemical Society,2002,124(33):9678-9679.
    [54]Jhaveri S D, Kirby R, Conrad R, et al. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity [J]. Journal of the American Chemical Society,2000, 122(11):2469-2473.
    [55]Mansy S, Wood T E, Sprowles J C, et al. Heavy metal-nuccleotide interactions. Binding of methylmercury (Ⅱ) to pyrimidine nucleosides and nucleotides. Studies by Raman difference spectroscopy [J]. Journal of the American Chemical Society,1974,96(6):1762-1770.
    [56]Miyake Y, Togashi H, Tashiro M, et al. Mercury (Ⅱ)-mediated formation of thymine-Hg (Ⅱ)-thymine base pairs in DNA duplexes [J]. Journal of the American Chemical Society,2006,128(7):2172-2173.
    [57]Ono A, Togashi H. Highly Selective Oligonucleotide-based sensor for mercury (Ⅱ) in Aqueous solutions [J]. Angewandte Chemie International Edition,2004,43(33):4300-4302.
    [58]Ono A, Cao S, Togashi H, et al. Specific interactions between silver (Ⅰ) ions and cytosine-cytosine pairs in DNA duplexes [J]. Chemical communications,2008 (39):4825-4827.
    [59]Kim M Y, Vankayalapati H, Shin-ya K, et al. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex [J]. Journal of the American Chemical Society,2002,124(10):2098-2099.
    [60]Luu K N, Phan A T, Kuryavyi V, et al. Structure of the human telomere in K+solution:an intramolecular (3+1) G-quadruplex scaffold [J]. Journal of the American Chemical Society,2006, 128(30):9963-9970.
    [61]Kotch F W, Fettinger J C, Davis J T. A lead-filled G-quadruplex:Insight into the G-quartet's selectivity for Pb2+over K+[J]. Organic letters,2000,2(21):3277-3280.
    [62]Smirnov I, Shafer R H. Lead is unusually effective in sequence-specific folding of DNA [J]. Journal of molecular biology,2000,296(1):1-5.
    [63]Smirnov I V, Kotch F W, Pickering I J, et al. Pb EXAFS studies on DNA quadruplexes:identification of metal ion binding site [J]. Biochemistry,2002,41(40):12133-12139.
    [64]Vairamani M, Gross M L. G-quadruplex formation of thrombin-binding aptamer detected by electrospray ionization mass spectrometry [J]. Journal of the American Chemical Society,2003, 125(1):42-43.
    [65]Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles [J]. Angewandte Chemie,2006,118(1):96-100.
    [66]Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes [J]. Nature Protocols,2006,1(1):246-252.
    [67]Huang C C, Huang Y F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors [J]. Analytical chemistry,2005, 77(17):5735-5741.
    [68]Wang L, Liu X, Hu X, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers [J]. Chemical Communications,2006 (36):3780-3782.
    [69]Wei H, Li B, Li J, et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes [J]. Chemical Communications,2007 (36):3735-3737.
    [70]Zhao W, Chiuman W, Brook M A, et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation [J]. ChemBioChem,2007,8(7):727-731.
    [71]Li L, Li B, Qi Y, et al. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe [J]. Analytical and bioanalytical chemistry,2009,393(8):2051-2057.
    [72]Yang C, Wang Y, Marty J L, et al. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator [J]. Biosensors and Bioelectronics,2011,26(5):2724-2727.
    [73]Medley C D, Smith J E, Tang Z, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells [J]. Analytical chemistry,2008,80(4):1067-1072.
    [74]Wang Y, Yang F, Yang X. Colorimetric biosensing of mercury (II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer [J]. Biosensors and Bioelectronics,2010,25(8): 1994-1998.
    [75]Xia F, Zuo X, Yang R, et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes [J]. Proceedings of the National Academy of Sciences,2010,107(24):10837-10841.
    [76]Li T, Wang E, Dong S. Lead (Ⅱ)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+detection [J]. Analytical chemistry, 2010,82(4):1515-1520.
    [77]Li T, Dong S, Wang E. Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+ -modulated G-quadruplex-basedDNAzymes[J]. Analytical chemistry,2009,81(6):2144-2149.
    [78]Li T, Wang E, Dong S. G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin [J]. Chemical Communications,2008,31:3654-3656.
    [79]Li T, Wang E, Dong S. G-Quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection [J]. Chemical Communications,2009,5:580-582.
    [80]Zhou X H, Kong D M, Shen H X. Ag+ and cysteine quantitation based on G-quadruplex-hemin DNAzymes disruption by Ag+[J]. Analytical chemistry,2009,82(3):789-793.
    [81]Nakayama S, Sintim H O. Colorimetric split G-quadruplex probes for nucleic acid sensing:improving reconstituted DNAzyme's catalytic efficiency via probe remodeling [J]. Journal of the American Chemical Society,2009,131(29):10320-10333.
    [82]Shimron S, Wang F, Orbach R, et al. Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires [J]. Analytical chemistry,2011, 84(2):1042-1048.
    [83]Du Y, Li B, Guo S, et al. G-Quadruplex-based DNAzyme for colorimetric detection of cocaine:Using magnetic nanoparticles as the separation and amplification element [J]. Analyst,2011,136(3): 493-497.
    [83]Kong D M, Xu J, Shen H X. Positive effects of ATP on G-quadruplex-hemin DNAzyme-mediated reactions [J]. Analytical chemistry,2010,82(14):6148-6153.
    [84]Tyagi S, Kramer F R. Molecular beacons:probes that fluoresce upon hybridization [J]. Nature biotechnology,1996,14(3):303-308.
    [85]Yamamoto R, Kumar P K R. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1 [J]. Genes to Cells,2000,5(5):389-396.
    [86]Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins [J]. Analytical chemistry,2005,77(4):1147-1156.
    [87]Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins [J]. Analytical biochemistry,2001,294(2):126-131.
    [88]Tok J, Lai J, Leung T, et al. Molecular aptamer beacon for myotonic dystrophy kinase-related Cdc42-binding kinase a [J]. Talanta,2010,81(1):732-736.
    [89]Yang L, Ellington A D. Real-time PCR detection of protein analytes with conformation-switching aptamers [J]. Analytical biochemistry,2008,380(2):164-173.
    [90]Liang Y, Zhang Z, Wei H, et al. Aptamer beacons for visualization of endogenous protein HIV-1 reverse transcriptase in living cells [J]. Biosensors and Bioelectronics,2011,28(1):270-276.
    [91]Wang K, Tang Z, Yang C J, et al. Molecular engineering of DNA:molecular beacons [J]. Angewandte Chemie International Edition,2009,48(5):856-870.
    [92]Fang X, Sen A, Vicens M, et al. Synthetic DNA Aptamers to Detect Protein Molecular Variants in a High-Throughput Fluorescence Quenching Assay [J]. ChemBioChem,2003,4(9):829-834.
    [93]Vicens M C, Sen A, Vanderlaan A, et al. Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection [J]. ChemBioChem,2005,6(5):900-907.
    [94]Li W, Yang X, Wang K, et al. FRET-based aptamer probe for rapid angiogenin detection [J]. Talanta, 2008,75(3):770-774.
    [95]Liu C W, Huang C C, Chang H T. Highly selective DNA-based sensor for lead (Ⅱ) and mercury (II) ions [J]. Analytical chemistry,2009,81(6):2383-2387.
    [96]Ono A, Togashi H. Highly Selective Oligonucleotide-Based Sensor for Mercury (Ⅱ) in Aqueous Solutions [J]. Angewandte Chemie International Edition,2004,43(33):4300-4302.
    [97]Ueyama H, Takagi M, Takenaka S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation [J]. Journal of the American Chemical Society,2002, 124(48):14286-14287.
    [98]Nutiu R, Li Y. Structure-switching signaling aptamers [J]. Journal of the American Chemical Society, 2003,125(16):4771-4778.
    [99]Nutiu R, Li Y. Structure-switching signaling aptamers:Transducing molecular recognition into fluorescence signaling [J]. Chemistry-A European Journal,2004,10(8):1868-1876.
    [100]Zhang Z, Guo L, Tang J, et al. An aptameric molecular beacon-based "Signal-on" approach for rapid determination of rHuEPO-a [J]. Talanta,2009,80(2):985-990.
    [101]Rankin C J, Fuller E N, Hamor K H, et al. A simple fluorescent biosensor for theophylline based on its RNA aptamer [J]. Nucleosides, Nucleotides, and Nucleic Acids,2006,25(12):1407-1424.
    [102]Lee J H. Highly sensitive "turn-on" fluorescent sensor for Hg2+in aqueous solution based on structure-switching DNA [J]. Chemical Communications,2008 (45):6005-6007.
    [103]Wang J, Jiang Y, Zhou C, et al. Aptamer-based ATP assay using a luminescent light switching complex [J]. Analytical chemistry,2005,77(11):3542-3546.
    [104]Jiang Y, Fang X, Bai C. Signaling aptamer/protein binding by a molecular light switch complex [J]. Analytical chemistry,2004,76(17):5230-5235.
    [105]Li T, Dong S, Wang E. A lead (Ⅱ)-driven DNA molecular device for turn-on fluorescence detection of lead (Ⅱ) ion with high selectivity and sensitivity [J]. Journal of the American Chemical Society,2010, 132(38):13156-13157.
    [106]Chiang C K, Huang C C, Liu C W, et al. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury (Ⅱ) in aqueous solution [J]. Analytical chemistry,2008,80(10): 3716-3721.
    [107]Liu B. Highly sensitive oligonucleotide-based fluorometric detection of mercury (Ⅱ) in aqueous media [J]. Biosensors and Bioelectronics,2008,24(4):756-760.
    [108]Li C L, Liu K T, Lin Y W, et al. Fluorescence detection of lead (II) ions through their induced catalytic activity of DNAzymes [J]. Analytical chemistry,2010,83(1):225-230.
    [109]Xu J P, Song Z G, Fang Y, et al. Label-free fluorescence detection of mercury (II) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative [J]. Analyst,2010,135(11):3002-3007.
    [110]Zhu Z, Xu L, Zhou X, et al. Designing label-free DNA sequences to achieve controllable turn-off/on fluorescence response for Hg2+detection [J]. Chemical Communications,2011,47(28):8010-8012.
    [Ⅲ]Lin Y H, Tseng W L. Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe [J]. Chemical Communications, 2009 (43):6619-6621.
    [112]He H Z, Chan D S H, Leung C H, et al. A highly selective G-quadruplex-based luminescent switch-on probe for the detection of gene deletion [J]. Chemical Communications,2012,48(76): 9462-9464.
    [113]Choi M S, Yoon M, Baeg J O, et al. Label-free dual assay of DNA sequences and potassium ions using an aptamer probe and a molecular light switch complex [J]. Chemical Communications,2009 (47):7419-7421.
    [114]Swager T M. The molecular wire approach to sensory signal amplification [J]. Accounts of Chemical Research,1998,31(5):201-207.
    [115]McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors [J]. Chemical Reviews,2000,100(7):2537-2574.
    [116]Heeger A J. Nobel Lecture:Semiconducting and metallic polymers:The fourth generation of polymeric materials [J]. Reviews of Modern Physics,2001,73(3):681-700.
    [117]Heeger A J. Semiconducting and metallic polymers:the fourth generation of polymeric materials [J]. The Journal of physical chemistry B,2001,105(36):8475-8491.
    [118]Heeger A J. Semiconducting and metallic polymers:the fourth generation of polymeric materials (Nobel lecture) [J]. Angewandte Chemie International Edition,2001,40(14):2591-2611.
    [119]Lee K, Cho S, Park S H, et al. Metallic transport in polyaniline [J]. Nature,2006,441(7089):65-68.
    [120]Heeger P S, Heeger A J. Making sense of polymer-based biosensors [J]. Proceedings of the National Academy of Sciences,1999,96(22):12219-12221.
    [121]Leclerc M. Optical and electrochemical transducers based on functionalized conjugated polymers [J]. Advanced Materials,1999,11(18):1491-1498.
    [122]Liu B, Bazan G C. Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers [J]. Chemistry of materials,2004,16(23):4467-4476.
    [123]Chen L, McBranch D W, Wang H L, et al. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer [J]. Proceedings of the National Academy of Sciences,1999,96(22):12287-12292.
    [124]Yamamoto T, Sanechika K, Yamamoto A. Preparation of thermostable and electric-conducting poly (2, 5-thienylene) [J]. Journal of Polymer Science:Polymer Letters Edition,1980,18(1):9-12.
    [125]Sugimoto R I, Takeda S, Gu H B, et al. Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property [J]. Chem. Express,1986,1(11):635-638.
    [126]Ho H A, Boissinot M, Bergeron M G, et al. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives [J]. Angewandte Chemie,2002,114(9):1618-1621.
    [127]Chayer M, Faiid K, Leclerc M. Highly conducting water-soluble polythiophene derivatives [J]. Chemistry of materials,1997,9(12):2902-2905.
    [128]Dore K, Dubus S, Ho H A, et al. Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level [J]. Journal of the American Chemical Society,2004, 126(13):4240-4244.
    [129]Ho H A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes [J]. Journal of the American Chemical Society,2004,126(5):1384-1387.
    [130]Bera Aberem M, Najari A, Ho H A, et al. Protein detecting arrays based on cationic polythiophene-DNA-Aptamer complexes [J]. Advanced materials,2006,18(20):2703-2707.
    [131]Ho H A, Najari A, Leclerc M. Optical detection of DNA and proteins with cationic polythiophenes [J]. Accounts of chemical research,2008,41(2):168-178.
    [132]Zhan R, Fang Z, Liu B. Naked-eye detection and quantification of heparin in serum with a cationic polythiophene [J]. Analytical chemistry,2009,82(4):1326-1333.
    [133]Tang Y, Feng F, He F, et al. Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative [J]. Journal of the American Chemical Society,2006,128(46):14972-14976.
    [134]Zhang Y, Li Z, Cheng Y, et al. Colorimetric detection of microRNA and RNase H activity in homogeneous solution with cationic polythiophene derivative [J]. Chemical Communications,2009 (22):3172-3174.
    [135]Liu X, Tang Y, Wang L, et al. Optical detection of mercury (II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides [J]. Advanced Materials,2007,19(11): 1471-1474.
    [136]Li C, Numata M, Takeuchi M, et al. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP [J]. Angewandte Chemie,2005,117(39): 6529-6532.
    [137]Tang Y, Feng F, Yu M, et al. Direct visualization of glucose phosphorylation with a cationic polythiophene [J]. Advanced Materials,2008,20(4):703-705.
    [138]Kroto H W, Heath J R, O'Brien S C, et al. C 60:buckminsterfullerene [J]. Nature,1985,318(6042): 162-163.
    [139]Li H, Zhang Y, Luo Y, et al. Nano-C60:A novel, effective, fluorescent sensing platform for biomolecular detection [J]. Small,2011,7(11):1562-1568.
    [140]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [141]Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors:graphitic microtubules [J]. Physical Review Letters,1992,68(10):1579.
    [142]Geim A K, Novoselov K S. The rise of graphene [J]. Nature materials,2007,6(3):183-191.
    [143]Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature,2005,438(7065):197-200.
    [144]Yang W, Ratinac K R, Ringer S P, et al. Carbon nanomaterials in biosensors:should you use nanotubes or graphene [J]. Angewandte Chemie International Edition,2010,49(12):2114-2138.
    [145]Hummers Jr W S, Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339-1339.
    [146]Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. Journal of the American Chemical Society,2008,130(18): 5856-5857.
    [147]Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nature nanotechnology, 2009,4(4):217-224.
    [148]Paredes J I, Villar-Rodil S, Martinez-Alonso A, et al. Graphene oxide dispersions in organic solvents [J]. Langmuir,2008,24(19):10560-10564.
    [149]Compton O C, Nguyen S B T. Graphene oxide, gighly reduced graphene oxide, and graphene: versatile building blocks for carbon-based Materials [J]. Small,2010,6(6):711-723.
    [150]Kim F, Cote L J, Huang J. Graphene Oxide:surface activity and two-dimensional assembly [J]. Advanced Materials,2010,22(17):1954-1958.
    [151]Eda G, Chhowalla M. Chemically derived graphene oxide:towards large-area thin-film electronics and optoelectronics [J]. Advanced Materials,2010,22(22):2392-2415.
    [152]Mattevi C, Eda G, Agnoli S, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films [J]. Advanced Functional Materials, 2009,19(16):2577-2583.
    [153]Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J]. Nature nanotechnology,2008,3(5):270-274.
    [154]Swathi R S, Sebastian K L. Resonance energy transfer from a dye molecule to graphene [J]. The Journal of chemical physics,2008,129(5):054703.
    [155]Swathi R S, Sebastian K L. Distance dependence of fluorescence resonance energy transfer [J]. Journal of Chemical Sciences,2009,121(5):777-787.
    [156]Swathi R S, Sebastian K L. Long range resonance energy transfer from a dye molecule to graphene has (distance)"4 dependence [J]. The Journal of chemical physics,2009,130(8):086101.
    [157]Loh K P, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications [J]. Nature chemistry,2010,2(12):1015-1024.
    [158]Chen D, Feng H, Li J. Graphene oxide:preparation, functionalization, and electrochemical applications [J]. Chemical reviews,2012,112(11):6027-6053.
    [159]Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials [J]. Chemical Society Reviews,2012,41(6):2283-2307.
    [160]Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules [J]. Angewandte Chemie,2009,121(26):4879-4881.
    [161]He S, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis [J]. Advanced Functional Materials,2010,20(3):453-459.
    [162]Dong H, Gao W, Yan F, et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules [J]. Analytical chemistry,2010,82(13):5511-5517.
    [163]Lu Z, Zhang L, Deng Y, et al. Graphene oxide for rapid microRNA detection [J]. Nanoscale,2012, 4(19):5840-5842.
    [164]Yang C. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method [J]. Chemical Communications, 2012,48(2):194-196.
    [165]Li F, Huang Y, Yang Q, et al. A graphene-enhanced molecular beacon for homogeneous DNA detection [J]. Nanoscale,2010,2(6):1021-1026.
    [166]Lu C H, Li J, Liu J J, et al. Increasing the Sensitivity and Single-Base Mismatch Selectivity of the Molecular Beacon Using Graphene Oxide as the "Nanoquencher" [J]. Chemistry-A European Journal, 2010,16(16):4889-4894.
    [167]Tang L, Wang Y, Liu Y, et al. DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay [J]. ACS nano,2011,5(5):3817-3822.
    [168]Jang H, Kim Y K, Kwon H M, et al. A Graphene-based platform for the assay of duplex-DNA unwinding by helicase [J]. Angewandte Chemie,2010,122(33):5839-5843.
    [169]Lin L, Liu Y, Zhao X, et al. Sensitive and rapid screening of T4 polynucleotide kinase activity and inhibition based on coupled exonuclease reaction and graphene oxide platform [J]. Analytical chemistry,2011,83(22):8396-8402.
    [170]Li F, Feng Y, Zhao C, et al. A sensitive graphene oxide-DNA based sensing platform for fluorescence "turn-on" detection of bleomycin [J]. Chemical communications,2011,48(1):127-129.
    [171]Lu C H, Li J, Zhang X L, et al. General approach for monitoring peptide-protein interactions based on graphene-peptide complex [J]. Analytical chemistry,2011,83(19):7276-7282.
    [172]Gu X, Yang G, Zhang G, et al. A new fluorescence turn-on assay for trypsin and inhibitor screening based on graphene oxide [J]. ACS applied materials & interfaces,2011,3(4):1175-1179.
    [173]Zhang M, Yin B C, Wang X F, et al. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity [J]. Chemical Communications,2011,47(8):2399-2401.
    [174]Feng D, Zhang Y, Feng T, et al. A graphene oxide-peptide fluorescence sensor tailor-made for simple and sensitive detection of matrix metalloproteinase 2 [J]. Chemical communications,2011,47(38): 10680-10682.
    [175]Wang H, Zhang Q, Chu X, et al. Graphene Oxide-Peptide Conjugate as an Intracellular Protease Sensor for Caspase-3 Activation Imaging in Live Cells [J]. Angewandte Chemie International Edition, 2011,50(31):7065-7069.
    [176]Lee J, Kim Y K, Min D H. A new assay for endonuclease/methyltransferase activities based on graphene oxide [J]. Analytical Chemistry,2011,83(23):8906-8912.
    [177]Lee J, Min D H. A simple fluorometric assay for DNA exonuclease activity based on graphene oxide [J]. Analyst,2012,137(9):2024-2026.
    [178]Li J, Lu C H, Yao Q H, et al. A graphene oxide platform for energy transfer-based detection of protease activity [J]. Biosensors and Bioelectronics,2011,26(9):3894-3899.
    [179]Lu C H, Li J, Lin M H, et al. Amplified aptamer-based assay through catalytic recycling of the analyte [J]. Angewandte Chemie,2010,122(45):8632-8635.
    [180]Liu C, Wang Z, Jia H, et al. Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide:a highly sensitive biosensing platform [J]. Chemical Communications,2011,47(16):4661-4663.
    [181]Sheng L, Ren J, Miao Y, et al. PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer[J]. Biosensors and Bioelectronics,2011,26(8): 3494-3499.
    [182]Wang H, Chen T, Wu S, et al. A novel biosensing strategy for screening G-quadruplex ligands based on graphene oxide sheets [J]. Biosensors and Bioelectronics,2012,34(1):88-93.
    [183]Song S, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection of biomolecules [J]. Chemical Society Reviews,2010,39(11):4234-4243.
    [184]Jung J H, Cheon D S, Liu F, et al. A graphene oxide based Immuno-biosensor for pathogen detection [J]. Angewandte Chemie International Edition,2010,49(33):5708-5711
    [185]He Y, Wang Z G, Tang H W, et al. Low background signal platform for the detection of ATP:When a molecular aptamer beacon meets graphene oxide [J]. Biosensors and Bioelectronics,2011,29(1): 76-81.
    [186]Wen Y, Peng C, Li D, et al. Metal ion-modulated graphene-DNAzyme interactions:design of a nanoprobe for fluorescent detection of lead (Ⅱ) ions with high sensitivity, selectivity and tunable dynamic range [J]. Chemical Communications,2011,47(22):6278-6280.
    [187]Zhao X H, Kong R M, Zhang X B, et al. Graphene-DNAzyme based biosensor for amplified fluorescence "Turn-On" detection of Pb2+with a high selectivity [J]. Analytical chemistry,2011, 83(13):5062-5066.
    [188]Wen Y, Xing F, He S, et al. A graphene-based fluorescent nanoprobe for silver (Ⅰ) ions detection by using graphene oxide and a silver-specific oligonucleotide [J]. Chemical communications,2010, 46(15):2596-2598.
    [189]Huang W T, Shi Y, Xie W Y, et al. A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide:use for detection of Hg2+ and molecular logic gate operation [J]. Chemical Communications,2011,47(27):7800-7802.
    [190]Zhang M, Yin B C, Tan W, et al. A versatile graphene-based fluorescence "on/off'switch for multiplex detection of various targets [J]. Biosensors and Bioelectronics,2011,26(7):3260-3265.
    [191]Liu M, Zhao H, Chen S, et al. Label-free fluorescent detection of Cu (Ⅱ) ions based on DNA cleavage-dependent graphene-quenched DNAzymes [J]. Chem. Commun.,2011,47(27):7749-7751.
    [192]Xie W Y, Huang W T, Li N B, et al. Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide [J]. Chemical Communications,2012,48(1): 82-84.
    [193]Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs [J]. Journal of the American Chemical Society,2008,130(33):10876-10877.
    [194]Zhang L, Xia J, Zhao Q, et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs [J]. Small,2010,6(4):537-544.
    [195]Wang Y, Li Z, Hu D, et al. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells [J]. Journal of the American Chemical Society,2010,132(27):9274-9276.
    [196]Lu C H, Zhu C L, Li J, et al. Using graphene to protect DNA from cleavage during cellular delivery [J]. Chemical Communications,2010,46(18):3116-3118.
    [197]Mao H Y, Laurent S, Chen W, et al. Graphene:promises, facts, opportunities, and challenges in nanomedicine [J]. Chemical reviews,2013,113(5):3407-3424.
    [198]Artiles M S, Rout C S, Fisher T S. Graphene-based hybrid materials and devices for biosensing [J]. Advanced drug delivery reviews,2011,63(14):1352-1360.
    [199]Xing H, Wong N Y, Xiang Y, et al. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery [J]. Current opinion in chemical biology,2012,16(3): 429-435.
    [200]Chung C, Kim Y K, Shin D, et al. Biomedical applications of graphene and graphene oxide [J]. Accounts of chemical research,2013,46(10):2211-2224.
    [201]Robinson J T, Tabakman S M, Liang Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy [J]. Journal of the American Chemical Society, 2011,133(17):6825-6831.
    [202]Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery [J]. Nano research,2008,1(3):203-212.
    [203]Huang J, Zong C, Shen H, et al. Mechanism of cellular uptake of graphene oxide studied by surface-enhanced raman spectroscopy [J]. Small,2012,8(16):2577-2584.
    [204]Needleman H. Lead poisoning [J]. Annual Review of Medicine,2004,55:209-222.
    [205]Butler O T, Cook J M, Harrington C F, et al. Atomic spectrometry update. Environmental analysis [J]. Journal of Analytical Atomic Spectrometry,2007,22(2):187-221.
    [206]Kwon J Y, Jang Y J, Lee Y J, et al. A highly selective fluorescent chemosensor for Pb2+[J]. Journal of the American Chemical Society,2005,127(28):10107-10111.
    [207]He Q, Miller E W, Wong A P, et al. A selective fluorescent sensor for detecting lead in living cells [J]. Journal of the American Chemical Society,2006,128(29):9316-9317.
    [208]Domaille D W, Que E L, Chang C J. Synthetic fluorescent sensors for studying the cell biology of metals [J]. Nature Chemical Biology,2008,4(3):168-175.
    [209]Li F, Feng Y, Zhao C, et al. Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead [J]. Chemical Communication,2011,47(43):11909-11911.
    [210]Coffin J, Haase A, Levy J A, et al. Human immunodeficiency viruses [J]. Science,1986,232(4751): 697.
    [211]Arts E J, Wainberg M A. Human immunodeficiency virus type 1 reverse transcriptase and early events in reverse transcription [J]. Advances in virus research,1996,46:99-166.
    [212]Smerdon S J, J,Jger J, Wang J, et al. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1 [J]. Proceedings of the National Academy of Sciences,1994,91(9):3911-3915.
    [213]Hannoush R N, Carriero S, Min K L, et al. Selective inhibition of HIV-1 reverse transcriptase (HIV-1 RT) RNase H by small RNA hairpins and dumbbells [J]. Chembiochem,2004,5(4):527-533.
    [214]Sluis-Cremer N, Tachedjian G. Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors [J]. Virus research,2008,134(1):147-156.
    [215]Budihas S R, Gorshkova I, Gaidamakov S, et al. Selective inhibition of HTV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones [J]. Nucleic acids research, 2005,33(4):1249-1256.
    [216]Chan K C, Budihas S R, Le Grice S F J, et al. A capillary electrophoretic assay for ribonuclease H activity [J]. Analytical biochemistry,2004,331(2):296-302.
    [217]Hogrefe H H, Hogrefe R I, Walder R Y, et al. Kinetic analysis of Escherichia coli RNase H using DNA-RNA-DNA/DNA substrates [J]. Journal of Biological Chemistry,1990,265(10):5561-5566.
    [218]Kanaya E, Kanaya S. Kinetic analysis of Escherichia coli ribonuclease HI using oligomeric DNA/RNA substrates suggests an alternative mechanism for the interaction between the enzyme and the substrate [J]. European Journal of Biochemistry,1995,231(3):557-562.
    [219]Rizzo J, Gifford L K, Zhang X, et al. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity [J]. Molecular and cellular probes,2002,16(4):277-283.
    [220]Wahba A S, Esmaeili A, Damha M J, et al. A single-label phenylpyrrolocytidine provides a molecular beacon-like response reporting HIV-1 RT RNase H activity [J]. Nucleic acids research,2010,38(3): 1048-1056.
    [221]Chen Y, Yang C J, Wu Y, et al. Light-switching excimer beacon assays for ribonuclease H kinetic study [J]. ChemBioChem,2008,9(3):355-359.
    [222]Parniak M A, Min K L, Budihas S R, et al. A fluorescence-based high-throughput screening assay for inhibitors of human immunodeficiency virus-1 reverse transcriptase-associated ribonuclease H activity [J]. Analytical biochemistry,2003,322(1):33-39.
    [223]Hu D, Pu F, Huang Z, et al. A quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition [J]. Chemistry-A European Journal,2010,16(8):2605-2610.
    [224]Xie X, Xu W, Li T, et al. Colorimetric detection of HTV-1 ribonuclease H asctivity by gold nanoparticles [J]. Small,2011,7(10):1393-1
    [225]Wang K, Tang Z, Yang C J, et al. Molecular engineering of DNA:molecular beacons [J]. Angewandte Chemie International Edition,2009,48(5):856-870.
    [226]Broude N E. Stem-loop oligonucleotides:a robust tool for molecular biology and biotechnology [J]. TRENDS in Biotechnology,2002,20(6):249-256.
    [227]Yang C J, Lin H, Tan W. Molecular assembly of superquenchers in signaling molecular interactions [J]. Journal of the American Chemical Society,2005,127(37):12772-12773.
    [228]Yamamoto R, Kumar P K R. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1 [J]. Genes to Cells,2000,5(5):389-396.
    [229]Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins [J]. Analytical biochemistry,2001,294(2):126-131.
    [230]Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins [J]. Analytical chemistry,2005,77(4):1147-1156.
    [231]Vicens M C, Sen A, Vanderlaan A, et al. Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection [J]. ChemBioChem,2005,6(5):900-907.
    [232]Tang D, Tang J, Li Q, et al. Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I [J]. Analytical chemistry,2011, 83(19):7255-7259.
    [233]Li J J, Chu Y, Lee B Y H, et al. Enzymatic signal amplification of molecular beacons for sensitive DNA detection [J]. Nucleic acids research,2008,36(6):e36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700