基于苯并噻唑和三联吡啶荧光探针的设计合成及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,荧光探针由于在环境保护、生物成像以及医学诊断等领域显示出重要的应用价值而越来越多地受到材料和化学研究工作者的重视。尽管目前用于检测环境和生物体常见金属离子和化学物质的荧光探针有很多,但是针对过渡族重金属离子、有毒中性化学物质的荧光探针还较少,并且多数不能在生物体外的极端环境下应用。此外,由于荧光探针的工作环境复杂性,许多荧光探针会与多种物质结合并产生相同的荧光响应,选择性较差。这一现象在金属离子,尤其是过渡族重金属离子的探测过程中十分普遍。
     针对上述问题,本文开展了可用于过渡族金属离子和中性化学物质以及极端环境下pH检测的荧光探针的研究:设计并合成了一系列具有高灵敏度和高选择性,可用于环境检测和生物成像的荧光探针,探讨了荧光探针的构效关系以及溶剂效应对荧光探针性能的影响;改进了Job's曲线法,以测定淬灭型荧光探针的配位比;研究了共轭体系对于荧光探针识别基团的性能影响及其在扩大探测范围方面的应用;深入研究了利用分子内电荷转移(Intramolecular Charge Transfer, ICT)机理使荧光探针具有区分相似金属离子的方法,探讨了溶剂极性、探针结构对于荧光探针选择性探测能力的影响,并总结出一般规律;通过生物成像实验探讨了ZC-F系列荧光探针的生物相容性和膜透性及其在生物体内定位和离子识别的能力。
     设计合成了一种基于ICT机理的新型Co2+荧光探针2,6-双(4-二苯氨基苯乙烯羰基)吡啶(PhPy)。通过紫外-可见吸收光谱和荧光光谱等分析手段,系统研究了该探针的光学性能及其对Co2+的选择性探测能力。研究发现,该探针可实现对Co2+高灵敏度、高选择性的荧光识别,而对其他常见的或与Co2+具有相似化学结构的金属离子几乎没有荧光响应,可用于Co2+的定量检测和实时监控;通过对Job's曲线法进行改进,使其可用于淬灭型荧光探针的配位比的测定,确定了PhPy与Co2+的化学计量比;此外,PhPy还表现出了显著的溶剂显色效应,随溶剂极性的变化,该探针的荧光发射谱具有较大的位移,表明其在极性探测中有潜在应用价值。
     基于联氨对丙二腈基团的消去作用设计并合成了一种反应型荧光探针2-(4-(4-苯并噻唑基苯乙炔基)苯乙烯基)丙二腈(BP)。研究表明该探针溶剂显色效应显著,对联氨具有极高的灵敏度,检出限低至0.11ppb,优于美国国家标准,并且其他自然界常见离子对其没有干扰,选择性良好;该探针对联氨的检测范围宽泛,响应速度快,荧光信号可在2.5分钟内达到稳定,具备实时、定量检测痕量联氨的能力;此外,BP自身荧光信号极弱,为增强型荧光响应,可以有效降低探针自身的干扰,提高了检测的可信度。
     设计合成了一种可用于强酸性环境下pH检测的荧光探针4-(4-(苯并噻唑基苯乙炔基)苯胺(BA)。通过偶联反应将具有较大共轭平面和适中吸电子能力的苯并噻唑与氨基共轭连接,合成了基于ICT机理的荧光探针BA;紫外-可见吸收光谱和荧光发射谱研究表明,溶剂极性对该探针的荧光性能影响极大,但是对吸收谱影响较小,并且随着溶剂极性的增加,荧光探针BA出现明显的荧光发射谱红移、斯托克斯位移增大以及荧光寿命和量子效率降低的现象,表明BA分子内部的ICT效应显著;该探针对强酸性环境下pH值的变化较为敏感,其pH定量检测范围低至0.5~2.5,并且具有较高的灵敏度和良好的选择性;通过理论计算对荧光探针BA进行了分子构型优化,结果表明,受到ICT效应与溶剂效应双重影响,质子化前后探针分子BA的电荷排布与电荷转移情况发生了较大变化,HOMO-LUMO能隙增大,进而导致了荧光增强和发光峰蓝移。
     选用三联吡啶为识别基团,以水溶性的香豆素衍生物为发光基团,通过一系列化学反应,设计合成了两种可用于探测Zn2+的荧光探针(E)-3-(3-(4-(2,2’:6’,2”-三联吡啶基)-4’-苯基)丙烯酰基)-7-二乙胺基香豆素(ZC-F4)和3-(4-(2,2’:6’,2”-三联吡啶)-4’-苯乙烯基)-7-甲氧基香豆素(ZC-F7);两种荧光探针性能对比发现ZC-F4具有更长波长的吸收和荧光发射,这是由于该探针引入了给电子能力更强的二乙胺基;荧光探针ZC-F4和ZC-F7均展现了较高的灵敏度和良好的选择性,在Zn2+含量低至10nM (0.65ppb)时即发出明显的荧光响应信号,并且几乎不受其他金属离子干扰。pH滴定实验表明ZC-F4在pH为6-9之间具有良好的稳定性,适用于人体生理环境,而Job's曲线分析则证明这两种探针与Zn2+的配比关系均为1:1;通过理论计算探究了ZC-F4的探测机理,发现三联吡啶与Zn2+结合后吸电子能力增强,导致ZC-F4内部的电荷重排增强,而三联吡啶末端的两个吡啶环起到了扩大共轭面积,增强ICT效应的作用;细胞成像实验发现与ZC-F4和ZC-F7共培养的细胞生长正常,表明这两种探针探针具有膜透性,可用于细胞内的Zn2+标记和荧光成像。
     将识别基团三联吡啶与基于苯并噻唑的荧光团共轭相连,获得了两种具有较高量子效率、对Zn2+和Cd2+具有不同荧光响应信号的荧光探针2-(4-((4-(2,2’,6’,2”-三联吡啶基)-4’-苯基)乙炔基)苯基)苯并噻唑(ZC-F1)和2-(4-((7-((4-(2,2’:6’,2”-三联吡啶)4’-苯基)乙炔基)-9,9-双(2-(2-乙氧基乙氧基)乙基)-9氢-芴)-2-乙炔基)苯基)-苯并噻唑(ZC-F2)。这两种探针与Zn2+和Cd2+均形成了1:1化学计量比的配合物,都可以通过荧光颜色的不同区分Zn2+和Cd2+;滴定实验表明ZC-F1与ZC-F2的灵敏度极高,可用于浓度在ppb级别的Zn2+和Cd2+区分探测,而对比选择性实验则证明这两种探针具有良好的选择性,不受其他金属离子的干扰;通过理论计算深入研究这两种探针区分Zn2+和Cd2+的机理,结果发现由于Zn2+和Cd2+之间电负性的差异,使得其对荧光探针的发射谱位移具有不同影响,进而导致不同波长的荧光发射;双光子测试研究发现ZC-F2具有较高的双光子吸收截面,并且ZC-F2-Zn具有比ZC-F2-Cd更高的双光子吸收截面,这也是由于Zn2+具有较高的电负性造成的;荧光探针ZC-F2在细胞内Zn2+和Cd2+成像实验表明ZC-F2具有细胞膜透性,与探针共培养的细胞生长正常,可以用于细胞内的离子定位和成像,在细胞内主要集中在细胞器表面。
     通过对比ZC-F1和ZC-F2的性能,研究总结了基于ICT机理设计可区分探测相似结构金属离子的一般规律,发现扩大共轭面积可以提高探针的光学性能,得到长波长的荧光发射,利于生物应用,但是会降低分辨效果;同时,溶剂极性对于区分效果有明显的影响,极性越大的溶剂里,Zn2+和Cd2+对应的发射谱峰位差别越大,因此选择共轭面积恰当的发光基团和合理的溶剂具有重要意义。
Rescently, fluorescent probes has attracted much more attention for its significant useage in environmental protection, bio-imaging and medical treatment. However, although there are many probes towards metal ions and chemicals common for biology and environmental use, little studies on probes for trasition-metal ions and toxic neutral chemicals have been reported, and most of the which can not be used in vitro under extreme environment. In addition, many fluorescent probes will coordinate with two or more chemicals, resulting in similar fluorescence signal responses and poor selectivity, because of their complex nature and complicated working environments.This phenomenon can be observed in the probes for metal ions, especiallythose for transition-metal ions.
     To solve these problems, studies on fluorescence probes for transition-metal ions, neutral chemicals and strong acidic pH detection are performed in this paper. A series of fluorescent probes for environmental detection and bio-imaging with high sensitivity and selectivity are designed and synthesized and their structure-property relationship and solvent effect are studied. Job's plot analysis are improved for "ON-OFF" probes To get insight into the sensing mechanism of fluorescent probes based on ICT effect for recognizing similar metal ions and and summarize a common rule, the effect of conjugated system and solvent molecules on the sensing properties of fluorescence probes are also discussed. In addition, the biocompatibility and membrane permeability of ZC-F series fluorescent probes have been confirmed through bio-imaging experiments.
     A novel fluorescence chemosensor based on intramolecular charge transfer (ICT) mechanism was designed and synthesized and its photophysical properties were characterized. By coordinating of Co2+and central2,6-dicarbonylpyridinyl function group, the chemosensor2,6-bis(4-diphenylamino-styrylcarbonyl)pyridine (PhPy) showed nearly complete fluorescence quenching towards Co2+while no fluorescence response to other competing cations, suggesting its potential usage in quantitative and real-time detection of Co2+. By improving Job's plot analysis to make it suitable for "ON-OFF" fluorescent probes, the stoichiometry between PhPy and Co2+was determined. Furthermore, PhPy also exhibited significant solvatochromic effect depending on the polarity of solvent, indicating its potential usage as polarity probes.
     A new both fluorescent and colorimetric probe2-(4-((4-(benzo[d]thiazol-2-yl) phenyl)ethynyl)benzylidene)malononitrile (BP) based on reaction and ICT effect is designed and synthesized. The probe responds rapidly towards hydrazine and exhibits an apparent color changes from yellow to a colorless state, indicating that this probe can be used as a color indicator for hydrazine. Meanwhile, the probe also shows a significant enhancement on fluorescence by around120-fold after the addition of hydrazine in a broad band (410-700nm). With a detection limit as low as0.11ppb, the probe can detect hydrazine in a wide concentration range because of the blunted sensing functional group. The contrast test shows nearly no interruption from some common elements in water, suggesting the high selectivity of this probe towards hydrazine. Moreover, the theoretical calculation based on density functional theory (DFT) is also performed to get insight into the sensing mechanism and two different ICT modes are found. This hydrazine probe would be a promising candidate for the applications in environment protection, water treatment and safety inspection.
     A fluorescent pH sensor4-((4-(benzothiazol-2-yl)phenyl)ethynyl)aniline (BA) for strong acid environment based on ICT effect was realized to exhibit high stability, sensitivity and selectivity. The absorption and fluorescent emission spectra suggest that solvent molecules have significant influence on the fluorescent properties of BA, while minor effect on absorption can be observed, indicating strong ICT effect in this probe. This probe can be used to detect acidity within the range of0.5~2.5with high sensitivity and selectivity. Theoretical calculations are carried out to find that great changes of electronic locations before and after protonation lead to larger HOMO-LUMO energy gap and fluorescence enhancement. The design strategy may help to develop probes for targets at high concentration.
     By introducing terpyridine as recognizing function and water soluble coumarin as fluorophore, two new fluorescent probes (E)-3-(3-(4-([2,2':6',2"-terpyridin]-4'-yl)phenyl)acryloyl)-7-(diethylamino)-2H-chromen-2-one (ZC-F4) and3-((4-([2,2':6',2"-terpyridin]-4'-yl)phenyl)ethynyl)-7-methoxy-2H-chromen-2-one (ZC-F7) are designed and synthesized. Comparing with ZC-F7, ZC-F4has absorption and emission spectra located at longer wavelength because of its stronger electronic donor. Both these two probes exhibit good selectivity and sensitivity towards Zn2+even at10nM (0.65ppb) with significant variation of emission wavelength (more than100nm shifts). One can observe the emission colour converted from green to red. pH titration suggest good stability of ZC-F4under pH6-9for biology use. Job's plot test suggests a1:1stoichiometry between probes and Zn2+, and the theoretical calculation based on density functional theory has been carried out to get insight into the sensing mechanism. Furthermore, the imaging of Zn2+in cells are also applied to test their feasibility in biology. These two fluorescence probes would be a promising candidate for the applications in cell-imaging, environment protection, water treatment and safety inspection.
     By conjugating terpyridine as receptor and fluorophore based on benzothiazole, two new fluorescent probes2-(4-((4-([2,2',6',2"-terpyridin]-4'-yl)phenyl)ethynyl) phenyl)benzo-[d]thiazole (ZC-F1) and2-(4-((7-((4-([2,2':6',2"-terpyridin]-4'-yl) phenyl)ethynyl)-9,9-bis(2-(2-ethoxyethoxy)ethyl)-9H-fluoren-2-yl)ethynyl)phenyl)-be nzo[d]thiazole (ZC-F2) with different fluorescence response towards Zn2+and Cd2+are designed and synthesized. Baring high fluorescence quantum yield, both of these probes recognize Zn2+and Cd2+with stoichiometry of1:1. Titration experiments suggest high sensitivity of these probes even at ppb level without interuption from other metal ions. To get insight into the sensing mechanism of these probes, theoretical calculations are carried out and the difference between the electronegativity of Zn2+and Cd2+is confirmed to be the root cause, which induces different emission spectra shift, leading to different emission color. Studies on two-photon absorption (TPA) suggest high TPA cross-section (8) of ZC-F2, while ZC-F2-Zn has higher8, which can be ascribed to higher electronegativity of Zn2+. In addition, cell imaging experiments of ZC-F2towards Zn2+and Cd2+certify its membrane permeability and biocompatibility, suggest its potential use in metal ions positioning in vivo
     Some rules for designing fluorescent probes which can be used to distinguish similar metal ions based on ICT mechanism are summarized through comparison of ZC-F1and ZC-F2. By enlarging the conjugating system, a probe with higher optical properties, longer emission wavelength for biology use can be expected, accompany with lower recognizing ability. Meanwhile, solvent polarity is found to be influential in the distinguishment. larger distinction between Zn2+and Cd2+can be observed in solvents with higher polarity. Thus, rational choice of conjugation system and solvents is of great importance.
引文
[1]T. Ozawa, H. Yoshimura, S. B. Kim. Advances in fluorescence and bioluminescence imaging. Analytical Chemistry,2013,85(2):590-609.
    [2]Y. Yang, Q. Zhao, W. Feng, F. Li. Luminescent Chemodosimeters for Bioimaging. Chemical Reviews,2012,113(1):192-270.
    [3]A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice. Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews,1997,97(5):1515-1566.
    [4]A. Roda, M. Guardigli. Analytical chemiluminescence and bioluminescence:latest achievements and new horizons. Analytical and Bioanalytical Chemistry,2012,402(1): 69-76.
    [5]A. Nadler, C. Schultz. The power of fluorogenic probes. Angewandte Chemie International Edition,2013,52(9):2408-2410.
    [6]B. Valeur, I. Leray. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews,2000,205(1):3-40.
    [7]H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, J. Yoon. A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions. Chemical Society Reviews,2008,37(8):1465-1472.
    [8]L. Xue, Q. Liu, H. Jiang. Ratiometric Zn2+Fluorescent Sensor and New Approach for Sensing Cd2+by Ratiometric Displacement. Organic Letters,2009,11(15):3454-3457.
    [9]M. Sakabe, D. Asanuma, M. Kamiya, R. J. Iwatate, K. Hanaoka, T. Terai, T. Nagano, Y. Urano. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. Journal of the American Chemical Society, 2013,135(1):409-414.
    [10]N. I. Shank, H. H. Pham, A. S. Waggoner, B. A. Armitage. Twisted cyanines:a non-planar fluorogenic dye with superior photostability and its use in a protein-based fluoromodule. Journal of the American Chemical Society,2013,135(1):242-251.
    [II]N. K. Tafreshi, X. Huang, V. E. Moberg, N. M. Barkey, V. K. Sondak, H. Tian, D. L. Morse, J. Vagner. Synthesis and Characterization of a Melanoma-Targeted Fluorescence Imaging Probe by Conjugation of a Melanocortin 1 Receptor (MC1R) Specific Ligand. Bioconjugate Chemistry,2012,23(12):2451-2459.
    [12]G. Liang, X. Li, X. Liu. Electrochemical detection of 9-hydroxyfluorene based on the direct interaction with hairpin DNA. Analyst,2013,138(4):1032-1037.
    [13]K. Komatsu, Y. Urano, H. Kojima, T. Nagano. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. Journal of the American Chemical Society,2007,129(44):13447-13454.
    [14]J. S. Wu, W. M. Liu, X. Q. Zhuang, F. Wang, P. F. Wang, S. L. Tao, X. H. Zhang, S. K. Wu, S. T. Lee. Fluorescence turn on of coumarin derivatives by metal cations:a new signaling mechanism based on C=N isomerization. Organic Letters,2007,9(1):33-36.
    [15]Z. Jiang, H. Lv, J. Zhu, B. Zhao. New fluorescent chemosensor based on quinoline and coumarine for Cu2+. Synthetic Metals,2012,162(23):2112-2116.
    [16]M. Fischer, J. Georges. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chemical Physics Letters,1996, 260(1-2):115-118.
    [17]A. Nag, D. Goswami. Solvent effect on two-photon absorption and fluorescence of rhodamine dyes. Journal of Photochemistry and Photobiology a-Chemistry,2009,206(2-3): 188-197.
    [18]W. Liu, S. Pu, D. Jiang, S. Cui, G. Liu, C. Fan. Fluorescent probes for Al(Ⅲ) and Cr(Ⅲ) based on a photochromic diarylethene bearing a fluorescent rhodamine unit. Microchimica Acta,2011,174(3-4):1-8.
    [19]M. Z. Tian, X. J. Peng, J. L. Fan, J. Y. Wang, S. G. Sun. A fluorescent sensor for pH based on rhodamine fluorophore. Dyes and Pigments,2012,95(1):112-115.
    [20]Y. Wang, H. Q. Wu, J. H. Sun, X. Y. Liu, J. Luo, M. Q. Chen. A novel chemosensor based on rhodamine derivative for colorimetric and fluorometric detection of Cu2+ in aqueous solution. Journal of Fluorescence,2012,22(3):799-805.
    [21]J. Yin, X. Ma, G. Wei, D. Wei, Y. Du. A highly selective and sensitive sugar-rhodamine "turn-on" fluorescent sensor for divalent copper ion detection in acetonitrile. Sensors and Actuators B:Chemical,2013,177(0):213-217.
    [22]P. A. Bouit, K. Kamada, P. Feneyrou, G. Berginc, L. Toupet, O. Maury, C. Androud. Two-Photon Absorption-Related Properties of Functionalized BODIPY Dyes in the Infrared Range up to Telecommunication Wavelengths. Advanced Materials,2009,21(10-11): 1151-1154.
    [23]M. Isik, T. Ozdemir, I. S. Turan, S. Kolemen, E. U. Akkaya. Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BODIPY-based reagents. Organic Letters,2013,15(1):216-219.
    [24]T. K. Khan, M. Ravikanth.3-(Pyridine-4-thione)BODIPY as a chemodosimeter for detection of Hg(II) ions. Dyes and Pigments,2012,95(1):89-95.
    [25]Q. Li, Y. Guo, S. Shao. A BODIPY based fluorescent chemosensor for Cu(Ⅱ) ions and homocysteine/cysteine. Sensors and Actuators B:Chemical,2012,171-172(0):872-877.
    [26]L. Y. Niu, Y. S. Guan, Y. Z. Chen, L. Z. Wu, C. H. Tung, Q. Z. Yang. BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine. Journal of the American Chemical Society,2012,134(46): 18928-18931.
    [27]C. A. Osorio-Martinez, A. Urias-Benavides, C. F. A. Gomez-Duran, J. Banuelos,1. Esnal, I. Lopez Arbeloa, E. Pena-Cabrera.8-AminoBODIPYs:Cyanines or Hemicyanines? The Effect of the Coplanarity of the Amino Group on Their Optical Properties. The Journal of Organic Chemistry,2012,77(12):5434-5438.
    [28]J. C. Carlson, L. G. Meimetis, S. A. Hilderbrand, R. Weissleder. BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes. Angewandte Chemie International Edition,2013,52(27):6917-6920.
    [29]H. Wang, H. Wu, L. Xue, Y. Shi, X. Li. A naphthalimide fluorophore with efficient intramolecular PET and ICT Processes:Application in molecular logic. Organic & Biomolecular Chemistry,2011,9(15):5436-5444.
    [30]B. Zhu, C. Gao, Y. Zhao, C. Liu, Y. Li, Q. Wei, Z. Ma, B. Du, X. Zhang. A 4-hydroxynaphthalimide-derived ratiometric fluorescent chemodosimeter for imaging palladium in living cells. Chemical Communications,2011,47(30):8656-8658.
    [31]Z. J. Chen, L. M. Wang, G. Zou, M. S. Teng, J. J. Yu. Highly Selective Fluorescence Turn-on Chemosensor Based on Naphthalimide Derivatives for Detection of Trivalent Chromium Ions. Chinese Journal of Chemistry,2012,30(12):2844-2848.
    [32]V. Mohan, A. Nijamudheen, S. K. Das, P. K. Sahu, U. P. Kar, A. Rahaman, M. Sarkar. Ion interactions with a new ditopic naphthalimide-based receptor:a photophysical, NMR and theoretical (DFT) study. Chemphyschem,2012,13(17):3882-3892.
    [33]W. Sun, W. H. Li, J. Li, J. Zhang, L. P. Du, M. Y. Li. Naphthalimide-based fluorescent off/on probes for the detection of thiols. Tetrahedron,2012,68(27-28):5363-5367.
    [34]Z. Ma, W. Sun, L. Chen, J. Li, Z. Liu, H. Bai, M. Zhu, L. Du, X. Shi, M. Li. A novel hydrazino-substituted naphthalimide-based fluorogenic probe for tert-butoxy radicals. Chemical Communications,2013,49(56):6295-6297.
    [35]S. Mukherjee, P. Thilagar. Molecular flexibility tuned emission in "V" shaped naphthalimides:Hg(Ⅱ) detection and aggregation-induced emission enhancement (AIEE). Chemical Communications,2013,49(66):7292-7294.
    [36]A. M. Patellis, J. P. Galy, J. Kister, R. Chicheportiche, J. Elguero. Absorption and fluorescence properties of acridinones, thioacridinones, aminoacridines and related crown ethers. Journal of Heterocyclic Chemistry,2001,38(5):1113-1118.
    [37]R. M. Ei-Shishtawy, P. Almeida. A new Vilsmeier-type reaction for one-pot synthesis of pH sensitive fluorescent cyanine dyes. Tetrahedron,2006,62(33):7793-7798.
    [38]X. J. Feng, P. L. Wu, F. Bolze, H. W. C. Leung, K. F. Li, N. K. Mak, D. W. J. Kwong, J.-F. Nicoud, K. W. Cheah, M. S. Wong. Cyanines as new fluorescent probes for DNA detection and two-photon excited bioimaging. Organic Letters,2010,12(10):2194-2197.
    [39]Z. Q. Guo, S. Nam, S. Park, J. Yoon. A highly selective ratiometric near-infrared fluorescent cyanine sensor for cysteine with remarkable shift and its application in bioimaging. Chemical Science,2012,3(9):2760-2765.
    [40]Z. Lou, P. Li, P. Song, K. Han. Ratiometric fluorescence imaging of cellular hypochlorous acid based on heptamethine cyanine dyes. Analyst,2013,138(21):6291-6295.
    [41]V. Novakova, L. Lochman, I. Zajicova, K. Kopecky, M. Miletin, K. Lang, K. Kirakci, P. Zimcik. Azaphthalocyanines:red fluorescent probes for cations. Chemistry-A European Journal,2013,19(16):5025-5028.
    [42]G. Zheng, Z. Wang, L. Tang, P. Lu, W. P. Weber. Color tunable, ratiometric pH sensor for high and low pH values base on 9-(cycloheptatrienylidene)fluorene derivatives. Sensors and Actuators B-Chemical,2007,122(2):389-394.
    [43]A. R. Morales, K. J. Schafer-Hales, A. I. Marcus, K. D. Belfield. Amine-Reactive Fluorene Probes:Synthesis, Optical Characterization, Bioconjugation, and Two-Photon Fluorescence Imaging. Bioconjugate Chemistry,2008,19(12):2559-2567.
    [44]C. D. Andrade, C. O. Yanez, L. Rodriguez, K. D. Belfield. A series of fluorene-based two-photon absorbing molecules:synthesis, linear and nonlinear characterization, and bioimaging. The Journal of Organic Chemistry,2010,75(12):3975-3982.
    [45]H. F. Shi, H. B. Sun, H. R. Yang, S. J. Liu, G. Jenkins, W. Feng, F. Y. Li, Q. Zhao, B. Liu, W. Huang. Cationic Polyfluorenes with Phosphorescent Iridium(Ⅲ) Complexes for Time-Resolved Luminescent Biosensing and Fluorescence Lifetime Imaging. Advanced Functional Materials,2013,23(26):3268-3276.
    [46]A. J. Clulow, P. L. Burn, P. Meredith, P. E. Shaw. Fluorescent carbazole dendrimers for the detection of nitroaliphatic taggants and accelerants. Journal of Materials Chemistry,2012, 22(25):12507-12516.
    [47]M. E. Reish, S. Nam, W. Lee, H. Y. Woo, K. C. Gordon. A Spectroscopic and DFT Study of the Electronic Properties of Carbazole-Based D-A Type Copolymers. The Journal of Physical Chemistry C,2012,116(40):21255-21266.
    [48]A. W. Schmidt, K. R. Reddy, H.-J. Knolker. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chemical Reviews,2012,112(6):3193-3328.
    [49]S. Goswami, S. Paul, A. Manna. Carbazole based hemicyanine dye for both "naked eye" and 'NIR'fluorescence detection of CN-in aqueous solution:from molecules to low cost devices (TLC plate sticks). Dalton Transactions,2013,42(30):10682-10686.
    [50]L. Yang, W. Zhu, M. Fang, Q. Zhang, C. Li. A new carbazole-based Schiff-base as fluorescent chemosensor for selective detection of Fe3+ and Cu2+.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2013,109(0):186-192.
    [51]S.-L. Lin, L.-H. Chan, R.-H. Lee, M.-Y. Yen, W.-J. Kuo, C.-T. Chen, R.-J. Jeng. Highly Efficient Carbazole-π-Dimesitylborane Bipolar Fluorophores for Nondoped Blue Organic Light-Emitting Diodes. Advanced Materials,2008,20(20):3947-3952.
    [52]X. Ouyang, H. Zeng, W. Ji. Synthesis, strong two-photon absorption, and optical limiting properties of novel C(70)/C(60) derivatives containing various carbazole units. Journal of Physical Chemistry B,2009,113(44):14565-14573.
    [53]H. P. Shi, Y. Cheng, W. J. Jing, J. B. Chao, L. Fang, X. Q. Dong, C. Dong. Experimental and theoretical study of a new carbazole derivative having terminal benzimidazole rings. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,75(2): 525-532.
    [54]S. P. G. Costa, A. M. F. Oliveira-Campos, J. A. Ferreira, G. Kirsch. New Fluorescent 1,3-Benzothiazoles by the Reaction ofHeterocyclic Aldehydes withortho-Aminobenzenethiol. Journal of Chemical Research, Synopses,1997, (9):314-315.
    [55]V. Hrobarikova, P. Hrobarik, P. Gajdos, I. Fitilis, M. Fakis, P. Persephonis, P. Zahradnik. Benzothiazole-Based Fluorophores of Donor-n-Acceptor-π-Donor Type Displaying High Two-Photon Absorption. The Journal of Organic Chemistry,2010,75(9):3053-3068.
    [56]W. Sun, W. Li, J. Li, J. Zhang, L. Du, M. Li. A benzothiazole-based fluorescent probe for thiol bioimaging. Tetrahedron Letters,2012,53(18):2332-2335.
    [57]T. H. Zhu, S. Y. Wang, G. N. Wang, S. J. Ji. Cobalt-catalyzed oxidative isocyanide insertion to amine-based bisnucleophiles:diverse synthesis of substituted 2-aminobenzimidazoles, 2-aminobenzothiazoles, and 2-aminobenzoxazoles. Chemistry-A European Journal,2013, 19(19):5850-5853.
    [58]K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer. Steady-state spectroscopic and fluorescence lifetime measurements of new two-photon absorbing fluorene derivatives. Journal of Fluorescence,2002,12(3-4):449-454.
    [59]C. McDonagh, C. S. Burke, B. D. MacCraith. Optical Chemical Sensors. Chemical Reviews, 2008,108(2):400-422.
    [60]J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications,2001, (18):1740-1741.
    [61]R. S. Mulliken. Molecular Compounds and their Spectra. Ⅲ. The Interaction of Electron Donors and Acceptors. The Journal of Physical Chemistry,1952,56(7):801-822.
    [62]R. S. Mulliken. Molecular Compounds and their Spectra. Ⅱ. Journal of the American Chemical Society,1952,74(3):811-824.
    [63]X. Zhang, Y. B. Jiang. Solvent-dependent intramolecular charge transfer dual fluorescence of p-dimethylaminobenzanilide bearing steric ortho.ortho-dimethyl substituents at amido aniline. Photochemical & Photobiological Sciences,2011,10(11):1791-1796.
    [64]E. Adjaye-Mensah, W. G. Gonzalez, J. Miksovska, J. N. Wilson. Photophysical characterization of a benzo-fused analogue of Brooker's merocyanine:solvent polarity and pH effects. Journal of Physical Chemistry A,2012,116(51):12470-12475.
    [65]J. R. Lakowicz, B. R. Masters. Principles of Fluorescence Spectroscopy, Third Edition: SPIE,2008.
    [66]C. Denneval, O. Moldovan, C. Baudequin, S. Achelle, P. Baldeck, N. Ple, M. Darabantu, Y. Ramondenc. Synthesis and Photophysical Properties of Push-Pull Structures Incorporating Diazines as Attracting Part with a Fluorene Core. European Journal of Organic Chemistry, 2013,2013(25):5591-5602.
    [67]B. Strehmel, A. M. Sarker, H. Detert. The Influence of σ and π Acceptors on Two-Photon Absorption and Solvatochromism of Dipolar and Quadrupolar Unsaturated Organic Compounds. Chemphyschem,2003,4(3):249-259.
    [68]C. K. Wang, K. Zhao, Y. Su, Y. Ren, X. Zhao, Y. Luo. Solvent effects on the electronic structure of a newly synthesized two-photon polymerization initiator. Journal of Chemical Physics,2003,119(2):1208-1213.
    [69]J. Y. Jung, S. J. Han, J. Chun, C. Lee, J. Yoon. New thiazolothiazole derivatives as fluorescent chemosensors for Cr3+ and Al3+. Dyes and Pigments,2012,94(3):423-426.
    [70]S. Kim, J. Y. Noh, K. Y. Kim, J. H. Kim, H. K. Kang, S. W. Nam, S. H. Kim, S. Park, C. Kim, J. Kim. Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging. Inorganic Chemistry,2012,51(6):3597-3602.
    [71]D. Safin. Coumarin-based "turn-on" fluorescent sensor for determination of Al3+:Single crystal X-ray structure and cell staining properties. Dalton Transactions,2013,42(28): 10198-10207.
    [72]M. Tian, L. Liu, Y. Li, R. Hu, T. Liu, H. Liu, S. Wang, Y. Li. An unusual OFF-ON fluorescence sensor for detecting mercury ions in aqueous media and living cells. Chemical Communications,2014,50(16):2055-2057.
    [73]M. Kumar, N. Kumar, V. Bhalla, P. R. Sharma, Y. Qurishi. A charge transfer assisted fluorescent probe for selective detection of hydrogen peroxide among different reactive oxygen species. Chemical Communications,2012,48(39):4719-4721.
    [74]H. He, D. K. Ng. Differential detection of Zn2+and Cd2+ions by BODIPY-based fluorescent sensors. Chemistry, an Asian journal,2013,8(7):1441-1446.
    [75]Y. Chen, C. Zhu, Z. Yang, J. Li, Y. Jiao, W. He, J. Chen, Z. Guo. A new "turn-on" chemodosimeter for Hg2+:ICT fluorophore formation via Hg2+-induced carbaldehyde recovery from 1,3-dithiane. Chemical Communications,2012,48(42):5094-5096.
    [76]K. Bera, B. K. Maity, M. Nag, M. O. Akram, S. Basak. Photophysical effects of nitric oxide and S-nitrosocysteine on acridine orange:use as sequential sensing platform for NO, cysteine, cysteine-NO and Hg2+ under physiological conditions. Analytical Methods,2014, 6(2):347-350.
    [77]D. Aigner, S. M. Borisov, F. J. Fernandez, J. F. Fernandez Sanchez, R. Saf, I. Klimant. New fluorescent pH sensors based on covalently linkable PET rhodamines. Talanta,2012,99: 194-201.
    [78]H. M. Kim, B. R. Kim, J. H. Hong, J.-S. Park, K. J. Lee, B. R. Cho. A Two-Photon Fluorescent Probe for Calcium Waves in Living Tissue. Angewandte Chemie International Edition,2007,46(39):7445-7448.
    [79]H. M. Kim, C. Jung, B. R. Kim, S.-Y. Jung, J. H. Hong, Y.-G. Ko, K. J. Lee, B. R. Cho. Environment-Sensitive Two-Photon Probe for Intracellular Free Magnesium Ions in Live Tissue. Angewandte Chemie International Edition,2007,46(19):3460-3463.
    [80]G. Masanta, C. S. Lim, H. J. Kim, J. H. Han, H. M. Kim, B. R. Cho. A Mitochondrial-Targeted Two-Photon Probe for Zinc Ion. Journal of the American Chemical Society,2011,133(15):5698-5700.
    [81]C. Chung, D. Srikun, C. S. Lim, C. J. Chang, B. R. Cho. A two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue. Chemical Communications,2011, 47(34):9618-9620.
    [82]G. Masanta, C. H. Heo, C. S. Lim, S. K. Bae, B. R. Cho, H. M. Kim. A Mitochondria-Localized Two-Photon Fluorescent Probe for Ratiometric Imaging of Hydrogen peroxide in Live Tissue. Chemical Communications,2012.
    [83]H. M. Kim, B. R. Cho. Two-Photon Probes for Intracellular Free Metal Ions, Acidic Vesicles, And Lipid Rafts in Live Tissues. Accounts of Chemical Research,2009,42(7):863-872.
    [84]T. Egawa, K. Hanaoka, Y. Koide, S. Ujita, N. Takahashi, Y. Ikegaya, N. Matsuki, T. Terai, T. Ueno, T. Komatsu, T. Nagano. Development of a Far-Red to Near-Infrared Fluorescence Probe for Calcium Ion and its Application to Multicolor Neuronal Imaging. Journal of the American Chemical Society,2011,133(36):14157-14159.
    [85]T. Egawa, K. Hirabayashi, Y. Koide, C. Kobayashi, N. Takahashi, T. Mineno, T. Terai, T. Ueno, T. Komatsu, Y. Ikegaya, N. Matsuki, T. Nagano, K. Hanaoka. Red fluorescent probe for monitoring the dynamics of cytoplasmic calcium ions. Angewandte Chemie International Edition,2013,52(14):3874-3877.
    [86]W. Jiang, Q. Fu, H. Fan, J. Ho, W. Wang. A Highly Selective Fluorescent Probe for Thiophenols. Angewandte Chemie International Edition,2007,119(44):8597-8600.
    [87]W. Jiang, Y. T. Cao, Y. A. Liu, W. Wang. Rational design of a highly selective and sensitive fluorescent PET probe for discrimination of thiophenols and aliphatic thiols. Chemical Communications,2010,46(11):1944-1946.
    [88]T. Forster. Fluoreszenzspektrum und Wasserstoffionen-konzentration. Naturwissenschaften, 1949,36(6):186-187.
    [89]T.-I. Kim, H. J. Kang, G. Han, S. J. Chung, Y. Kim. A highly selective fluorescent ESIPT probe for the dual specificity phosphatase MKP-6. Chemical Communications,2009, (39): 5895-5897.
    [90]J. Wu, W. Liu, J. Ge, H. Zhang, P. Wang. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews,2011,40(7): 3483-3495.
    [91]M. Lan, J. Wu, W. Liu, H. Zhang, W. Zhang, X. Zhuang, P. Wang. Highly sensitive fluorescent probe for thiols based on combination of PET and ESIPT mechanisms. Sensors and Actuators B-Chemical,2011,156(1):332-337.
    [92]J. Jayabharathi, V. Thanikachalam, M. Vennila, K. Jayamoorthy. Potential fluorescent chemosensor based on L-tryptophan derivative:DFT based ESIPT process. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,95(0):446-451.
    [93]A. Brenlla, M. Veiga, J. L. Perez Lustres, M. C. Rios Rodriguez, F. Rodriguez-Prieto, M. Mosquera. Photoinduced proton and charge transfer in 2-(2'-hydroxyphenyl)imidazo[4,5-b]pyridine. Journal of Physical Chemistry B,2013,117(3): 884-896.
    [94]R. Hu, J. A. Feng, D. H. Hu, S. Q. Wang, S. Y. Li, Y. Li, G. Q. Yang. A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angewandte Chemie-International Edition, 2010,49(29):4915-4918.
    [95]Y. Wu, X. Peng, J. Fan, S. Gao, M. Tian, J. Zhao, S. Sun. Fluorescence Sensing of Anions Based on Inhibition of Excited-State Intramolecular Proton Transfer. The Journal of Organic Chemistry,2006,72(1):62-70.
    [96]Q. Chu, D. A. Medvetz, Y. Pang. A Polymeric Colorimetric Sensor with Excited-State Intramolecular Proton Transfer for Anionic Species. Chemistry of Materials,2007,19(26): 6421-6429.
    [97]Y. Xu, Y. Pang. Zinc binding-induced near-IR emission from excited-state intramolecular proton transfer of a bis(benzoxazole) derivative. Chemical Communications,2010,46(23): 4070-4072.
    [98]H. S. Jung, H. J. Kim, J. Vicens, J. S. Kim. A new fluorescent chemosensor for F-based on inhibition of excited-state intramolecular proton transfer. Tetrahedron Letters,2009,50(9): 983-987.
    [99]D. Y. Han, J. M. Kim, J. Kim, H. S. Jung, Y. H. Lee, J. F. Zhang, J. S. Kim. ESIPT-based anthraquinonylcalix 4 crown chemosensor for In3+. Tetrahedron Letters,2010,51(15): 1947-1951.
    [100]A. S. Klymchenko, G. Duportail, Y. Mely, A. P. Demchenko. Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proceedings of the National Academy of Sciences of the United States of America,2003,100(20): 11219-11224.
    [101]A. S. Klymchenko, S. V. Avilov, A. P. Demchenko. Resolution of Cys and Lys labeling of alpha-crystallin with site-sensitive fluorescent 3-hydroxyflavone dye. Analytical Biochemistry,2004,329(1):43-57.
    [102]V. V. Shynkar, A. S. Klymchenko, C. Kunzelmann, G. Duportail, C. D. Muller, A. P. Demchenko, J. M. Freyssinet, Y. Mely. Fluorescent biomembrane probe for ratiometric detection of apoptosis. Journal of the American Chemical Society,2007,129(7):2187-2193.
    [103]F. Wang, J. S. Wu, X. Q. Zhuang, W. J. Zhang, W. M. Liu, P. F. Wang, S. K. Wu. A highly selective fluorescent sensor for fluoride in aqueous solution based on the inhibition of excited-state intramolecular proton transfer. Sensors and Actuators B-Chemical,2010, 146(1):260-265.
    [104]D. A. Yushchenko, J. A. Fauerbach, S. Thirunavukkuarasu, E. A. Jares-Erijman, T. M. Jovin. Fluorescent ratiometric MFC probe sensitive to early stages of alpha-synuclein aggregation. Journal of the American Chemical Society,2010,132(23):7860-7861.
    [105]Z. Liu, W. He, Z. Guo. Metal coordination in photoluminescent sensing. Chemical Society Reviews,2013,42(4):1568-1600.
    [106]A. Chaicham, S. Sahasithiwat, T. Tuntulani, B. Tomapatanaget. Highly effective discrimination of catecholamine derivatives via FRET-on/off processes induced by the intermolecular assembly with two fluorescence sensors. Chemical Communications,2013, 49(81):9287-9289.
    [107]C. Zhang, J. Zhao, S. Wu, Z. Wang, W. Wu, J. Ma, S. Guo, L. Huang. Intramolecular RET Enhanced Visible Light-Absorbing Bodipy Organic Triplet Photosensitizers and Application in Photooxidation and Triplet-Triplet Annihilation Upconversion. Journal of the American Chemical Society,2013,135(28):10566-10578.
    [108]J. Zhang, M. K. R. Fischer, P. Bauerle, T. Goodson. Energy Migration in Dendritic Oligothiophene-Perylene Bisimides. The Journal of Physical Chemistry B,2012,117(16): 4204-4215.
    [109]A. Sahana, A. Banerjee, S. Lohar, B. Sarkar, S. K. Mukhopadhyay, D. Das. Rhodamine-based fluorescent probe for Al3+ through time-dependent PET-CHEF-FRET processes and its cell staining application. Inorganic Chemistry,2013,52(7):3627-3633.
    [110]H. J. Son, S. Jin, S. Patwardhan, S. J. Wezenberg, N. C. Jeong, M. So, C. E. Wilmer, A. A. Sarjeant, G. C. Schatz, R. Q. Snurr, O. K. Farha, G. P. Wiederrecht, J. T. Hupp. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. Journal of the American Chemical Society,2013,135(2):862-869.
    [111]R. Kojima, H. Takakura, T. Ozawa, Y. Tada, T. Nagano, Y. Urano. Rational design and development of near-infrared-emitting firefly luciferins available in vivo. Angewandte Chemie International Edition,2013,52(4):1175-1179.
    [112]X. Zhang, Y. Xiao, X. Qian. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+Ions in Living Cells. Angewandte Chemie International Edition,2008,47(42): 8025-8029.
    [113]E. Pusztai, S. Jang, I. S. Toulokhonova, I. A. Guzei, R. West, R. Hu, B. Z. Tang. Synthesis of highly fluorescent diquinaldinatoalumino silole derivatives. Chemistry-A European Journal,2013,19(27):8742-8745.
    [114]G. A. Knauer, J. H. Martin, R. M. Gordon. COBALT IN NORTHEAST PACIFIC WATERS. Nature,1982,297(5861):49-51.
    [115]P. J. Santander, Y. Kajiwara, H. J. Williams, A. Ian Scott. Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorganic and Medicinal Chemistry,2006,14(3):724-731.
    [116]A. Frank, J. McPartlin, R. Danielsson. Nova Scotia moose mystery-A moose sickness related to cobalt-and vitamin B12 deficiency. Science of the Total Environment,2004, 318(1-3):89-100.
    [117]K. Al-Habsi, E. H. Johnson, I. T. Kadim, A. Srikandakumar, K. Annamalai, R. Al-Busaidy, O. Mahgoub. Effects of low concentrations of dietary cobalt on liveweight gains, haematology, serum vitamin B12 and biochemistry of Omani goats. Veterinary Journal, 2007,173(1):133-139.
    [118]A. Anderson, D. Meyer, F. Mayer. Heavy metal toxicities:levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Australian Journal of Agricultural Research,1973,24(4):557-571.
    [119]C. Reimann, F. Koller, G. Kashulina, H. Niskavaara, P. Englmaier. Influence of extreme pollution on the inorganic chemical composition of some plants. Environmental Pollution, 2001,115(2):239-252.
    [120]H.-Y. Luo, X.-B. Zhang, C.-L. He, G.-L. Shen, R.-Q. Yu. Synthesis of dipicolylamino substituted quinazoline as chemosensor for cobalt(Ⅱ) recognition based on excited-state intramolecular proton transfer. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,70(2):337-342.
    [121]M. Shamsipur, M. Sadeghi, K. Alizadeh, H. Sharghi, R. Khalifeh. An efficient and selective flourescent optode membrane based on 7-[(5-chloro-8-hydroxy-7-quinolinyl)methyl]-5,6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzo dioxatriazacyclopentadecine-3,11(4H,12H)-dione as a novel fluoroionophore for determination of cobalt(Ⅱ) ions. Analytica Chimica Acta,2008,630(1):57-66.
    [122]H.-W. Gao, H.-Y. Wang, S.-Y. Zhang, J.-F. Zhao. Establishment of the light-absorption ratio variation approach and application to determination of Co(ii) in the ng/ml-1 level and novel characterization of Co(ii) and Zn(ii) complexes with 1,5-di(2-hydroxy-5-sulfophenyl)-3-cyanoformazan. New Journal of Chemistry,2003,27(11): 1649.
    [123]C. Chang, H. Y. Au-Yeung, E. J. New. A Selective Reaction-Based Fluorescent Probe for Detecting Cobalt in Living Cells. Chemical Communications,2012,48(43):5268-5270.
    [124]D. Maity, V. Kumar, T. Govindaraju. Reactive probes for ratiometric detection of Co2+and Cu+based on excited-state intramolecular proton transfer mechanism. Organic letters,2012, 14(23):6008-6011.
    [125]R. G. Bates. Definitions of pH Scales. Chemical Reviews,1948,42(1):1-61.
    [126]R. MartinezZaguilan, B. F. Chinnock, S. WaldHopkins, M. Bernas, D. Way, M. Weinand, M. H. Witte, R. J. Gillies. [Ca2+](i) and pH(in) homeostasis in Kaposi sarcoma cells. Cellular Physiology and Biochemistry,1996,6(3):169-184.
    [127]R. A. Gottlieb, A. Dosanjh. Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells:possible relevance to cystic fibrosis. Proceedings of the National Academy of Sciences,1996,93(8):3587-3591.
    [128]K. Xu, A. M. Klibanov. pH Control of the Catalytic Activity of Cross-Linked Enzyme Crystals in Organic Solvents. Journal of the American Chemical Society,1996,118(41): 9815-9819.
    [129]G. Mattock, G. R. Taylor, M. A. Paul. pH Measurement and Titration. Journal of The Electrochemical Society,1963,110(2):31C-31C.
    [130]M. Lee, N. G. Gubernator, D. Sulzer, D. Sames. Development of pH-responsive fluorescent false neurotransmitters. Journal of the American Chemical Society,2010,132(26): 8828-8830.
    [131]S. Madhu, M. R. Rao, M. S. Shaikh, M. Ravikanth.3,5-Diformylboron dipyrromethenes as fluorescent pH sensors. Inorganic Chemistry,2011,50(10):4392-4400.
    [132]R. P. Cox, H. F. Higginbotham, B. A. Graystone, S. Sandanayake, S. J. Langford, T. D. M. Bell. A new fluorescent H+ sensor based on core-substituted naphthalene diimide. Chemical Physics Letters,2012,521(0):59-63.
    [133]O. V. Grygorovych, S. M. Moskalenko, B. A. Marekha, A. O. Doroshenko. Heterogeneous Wide Range pH-sensing Materials Allowing Ratiometric Fluorescence Detection Based on Structurally Rigid Analogs of 2,6-distyrylpyridine. Journal of Fluorescence,2010,20(1): 115-124.
    [134]J. Han, K. Burgess. Fluorescent Indicators for Intracellular pH. Chemical Reviews,2009, 110(5):2709-2728.
    [135]L. Yuan, W. Lin, Y. Xie, S. Zhu, S. Zhao. A native-chemical-ligation-mechanism-based ratiometric fluorescent probe for aminothiols. Chemistry-A European Journal,2012, 18(45):14520-14526.
    [136]L. Wang, C. Li. pH responsive fluorescence nanoprobe imaging of tumors by sensing the acidic microenvironment. Journal of Materials Chemistry,2011,21(40):15862-15871.
    [137]U. C. Saha, K. Dhara, B. Chattopadhyay, S. K. Mandal, S. Mondal, S. Sen, M. Mukherjee, S. van Smaalen, P. Chattopadhyay. A New Half-Condensed Schiff Base Compound:Highly Selective and Sensitive pH-Responsive Fluorescent Sensor. Organic Letters,2011,13(17): 4510-4513.
    [138]M. Su, Y. Liu, H. Ma, Q. Ma, Z. Wang, J. Yang, M. Wang. 1,9-Dihydro-3-phenyl-4-pyrazolo[3,4-]quinolin-4-one, a novel fluorescent probe for extreme pH measurement. Chemical Communications,2001, (11):960-961.
    [139]S. Ohkuma, B. Poole. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proceedings of the National Academy of Sciences,1978,75(7):3327-3331.
    [140]C. Huang, S. J. Yan, Y. M. Li, R. Huang, J. Lin. Synthesis of polyhalo acridones as pH-sensitive fluorescence probes. Bioorg Med Chem Lett,2010,20(15):4665-4669.
    [141]W. Liu, R. Sun, J.-F. Ge, Y.-J. Xu, Y. Xu, J.-M. Lu, I. Itoh, M. Ihara. Reversible Near-Infrared pH Probes Based on Benzo[a]phenoxazine. Analytical Chemistry,2013.
    [142]M. H. Lee, J. H. Han, J. H. Lee, N. Park, R. Kumar, C. Kang, J. S. Kim. Two-color probe to monitor a wide range of pH values in cells. Angewandte Chemie International Edition,2013, 52(24):6206-6209.
    [143]S. Chen, Y. Hong, Y. Liu, J. Liu, C. W. Leung, M. Li, R. T. Kwok, E. Zhao, J. W. Lam, Y. Yu, B. Z. Tang. Full-range intracellular pH sensing by an aggregation-induced emission-active two-channel ratiometric fluorogen. Journal of the American Chemical Society,2013, 135(13):4926-4929.
    [144]S. S. Narayanan, F. Scholz. A comparative study of the electrocatalytic activities of some metal hexacyanoferrates for the oxidation of hydrazine. Electroanalysis,1999,11(7): 465-469.
    [145]U. Ragnarsson. Synthetic methodology for alkyl substituted hydrazines. Chemical Society Reviews,2001,30(4):205-213.
    [146]K. Yamada, K. Yasuda, N. Fujiwara, Z. Siroma, H. Tanaka, Y. Miyazaki, T. Kobayashi. Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochemistry Communications,2003,5(10):892-896.
    [147]S. Garrod, M. E. Bollard, A. W. Nicholls, S. C. Connor, J. Connelly, J. K. Nicholson, E. Holmes. Integrated Metabonomic Analysis of the Multiorgan Effects of Hydrazine Toxicity in the Rat. Chemical Research in Toxicology,2005,18(2):115-122.
    [148]I. Cruz Vieira, K. Omuro Lupetti, O. Fatibello-Filho. Sweet Potato (Ipomoea Batatas(L.)Lam.) Tissue as a Biocatalyst in a Paraffin/Graphite Biosensor for Hydrazine Determination in Boiler Feed Water. Analytical Letters,2002,35(14):2221-2231.
    [149]A. Serov, C. Kwak. Direct hydrazine fuel cells:A review. Applied Catalysis B: Environmental,2010,98(1-2):1-9.
    [150]X. Chen, Y. Xiang, Z. Li, A. Tong. Sensitive and selective fluorescence determination of trace hydrazine in aqueous solution utilizing 5-chlorosalicylaldehyde. Anal Chim Acta,2008, 625(1):41-46.
    [151]M. G. Choi, J. Hwang, J. O. Moon, J. Sung, S.-K. Chang. Hydrazine-Selective Chromogenic and Fluorogenic Probe Based on Levulinated Coumarin. Organic Letters, 2011,13(19):5260-5263.
    [152]J. Wang, L. Chen. Hydrazine Detection Using a Tyrosinase-Based Inhibition Biosensor. Analytical Chemistry,1995,67(20):3824-3827.
    [153]J. Liu, Y. Li, J. Jiang, X. Huang. C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability. Dalton Transactions,2010,39(37): 8693-8697.
    [154]Z. Zhao, G. Zhang, Y. Gao, X. Yang, Y. Li. A novel detection technique of hydrazine hydrate: modality change of hydrogen bonding-induced rapid and ultrasensitive colorimetric assay. Chemical Communications,2011,47(48):12816-12818.
    [155]A. Umar, M. M. Rahman, S. H. Kim, Y.-B. Hahn. Zinc oxide nanonail based chemical sensor for hydrazine detection. Chemical Communications,2008, (2):166-168.
    [156]C. A. Reilly, S. D. Aust. Peroxidase Substrates Stimulate the Oxidation of Hydralazine to Metabolites which Cause Single-Strand Breaks in DNA. Chemical Research in Toxicology, 1997,10(3):328-334.
    [157]J.-W. Mo, B. Ogorevc, X. Zhang, B. Pihlar. Cobalt and copper hexacyanoferrate modified carbon fiber microelectrode as an all-solid potentiometric microsensor for hydrazine. Electroanalysis,2000,12(1):48-54.
    [158]S. D. Zelnick, D. R. Mattie, P. C. Stepaniak. Occupational exposure to hydrazines:treatment of acute central nervous system toxicity. Aviation, space, and environmental medicine,2003, 74(12):1285-1291.
    [159]A. B. Brown, T. L. Gibson, J. C. Baum, T. Ren, T. M. Smith. Fluorescence-enhancement sensing of ammonia and hydrazines via disruption of the internal hydrogen bond in a carbazolopyridinophane. Sensors and Actuators B:Chemical,2005,110(1):8-12.
    [160]A. A. Ensafi, B. Rezaei. Flow injection determination of hydrazine with fluorimetric detection. Talanta,1998,47(3):645-649.
    [161]G. E. Collins, S. L. Rose-Pehrsson. Fluorescent detection of hydrazine, monomethylhydrazine, and 1,1-dimethylhydrazine by derivatization with aromatic dicarbaldehydes. Analyst,1994,119(8):1907-1913.
    [162]S. W. Thomas, T. M. Swager. Trace Hydrazine Detection with Fluorescent Conjugated Polymers:A Turn-On Sensory Mechanism. Advanced Materials,2006,18(8):1047-1050.
    [163]J. Fan, W. Sun, M. Hu, J. Cao, G. Cheng, H. Dong, K. Song, Y. Liu, S. Sun, X. Peng. An ICT-based ratiometric probe for hydrazine and its application in live cells. Chemical Communications,2012,48(65):8117-8119.
    [164]B. L. Vallee, K. H. Falchuk. The biochemical basis of zinc physiology. Physiological Reviews,1993,73(1):79-118.
    [165]J. M. Berg, Y. Shi. The Galvanization of Biology:A Growing Appreciation for the Roles of Zinc. Science,1996,271(5252):1081-1085.
    [166]C. J. Frederickson, A. I. Bush. Synaptically released zinc:Physiological functions and pathological effects. BioMetals,2001,14(3):353-366.
    [167]A. Voegelin, S. Pfister, A. C. Scheinost, M. A. Marcus, R. Kretzschmar. Changes in Zinc Speciation in Field Soil after Contamination with Zinc Oxide. Environmental Science& Technology,2005,39(17):6616-6623.
    [168]X. Xie, T. G. Smart. A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature,1991,349(6309):521-524.
    [169]K. R. Gee, Z.-L. Zhou, W.-J. Qian, R. Kennedy. Detection and Imaging of Zinc Secretion from Pancreatic β-Cells Using a New Fluorescent Zinc Indicator. Journal of the American Chemical Society,2002,124(5):776-778.
    [170]A.1. Bush, W. H. Pettingell, M. D. Paradis, R. E. Tanzi. Modulation of A beta adhesiveness and secretase site cleavage by zinc. Journal of Biological Chemistry,1994,269(16): 12152-12158.
    [171]M. P. Cuajungco, G. J. Lees. Zinc Metabolism in the Brain:Relevance to Human Neurodegenerative Disorders. Neurobiology of Disease,1997,4(3-4):137-169.
    [172]J.-Y. Koh, S. W. Suh, B. J. Gwag, Y. Y. He, C. Y. Hsu, D. W. Choi. The Role of Zinc in Selective Neuronal Death After Transient Global Cerebral Ischemia. Science,1996, 272(5264):1013-1016.
    [173]E. Kimura, S. Aoki, E. Kikuta. T. Koike. A macrocyclic zinc(II) fluorophore as a detector of apoptosis. Proceedings of the National Academy of Sciences,2003,100(7):3731-3736.
    [174]P. D. Zalewski,I. J. Forbes, R. F. Seamark, R. Borlinghaus, W. H. Betts, S. F. Lincoln, A. D. Ward. Flux of intracellular labile zinc during apoptosis (gene-directed cell death) revealed by a specific chemical probe, Zinquin. Chemistry & Biology,1994,1(3):153-161.
    [175]A. Truong-Tran, J. Carter, R. Ruffin, P. Zalewski. The role of zinc in caspase activation and apoptotic cell death. Biometals,2001,14(3-4):315-330.
    [176]A. N. Anthemidis, C.-P. P. Karapatouchas. Flow injection on-line hydrophobic sorbent extraction for flame atomic absorption spectrometric determination of cadmium in water samples. Microchimica Acta,2008,160(4):455-460.
    [177]Z. Xu, K.-H. Baek, H. N. Kim, J. Cui, X. Qian, D. R. Spring, I. Shin, J. Yoon. Zn2T-Triggered Amide Tautomerization Produces a Highly Zn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor. Journal of the American Chemical Society,2009. 132(2):601-610.
    [178]N. Y. Baek, C. H. Heo, C. S. Lim, G. Masanta, B. R. Cho. H. M. Kim. A highly sensitive two-photon fluorescent probe for mitochondrial zinc ions in living tissue. Chemical Communications,2012,48(38):4546-4548.
    [179]X. Chen. J. Shi, Y. Li, F. Wang. X. Wu, Q. Guo, L, Liu. Two-photon fluorescent probes of biological Zn(Ⅱ) derived from 7-hydroxyquinoline. Organic Letters,2009.11(19): 4426-4429.
    [180]T. Cheng, T. Wang. W. Zhu, X. Chen, Y. Yang, Y. Xu, X. Qian. Red-emission fluorescent probe sensing cadmium and pyrophosphate selectively in aqueous solution. Organic Letters, 2011,13(14):3656-3659.
    [181]X. Meng, S. Wang, Y. Li, M. Zhu, Q. Guo.6-Substituted quinoline-based ratiometric two-photon fluorescent probes for biological Zn2+detection. Chemical Communications, 2012,48(35):4196-4198.
    [182]K. Sreenath, J. R. Allen, M. W. Davidson, L. Zhu. A FRET-based indicator for imaging mitochondrial zinc ions. Chemical Communications,2011,47(42):11730-11732.
    [183]Y. Pourghaz, P. Dongare, D. W. Thompson, Y. Zhao. Click functionalized poly(p-phenylene ethynylene)s as highly selective and sensitive fluorescence turn-on chemosensors for Zn2+ and Cd2+ions. Chemical Communications,2011,47(39):11014-11016.
    [184]S. Yin, J. Zhang, H. Feng, Z. Zhao, L. Xu, H. Qiu, B. Tang. Zn2+-selective fluorescent turn-on chemosensor based on terpyridine-substituted siloles. Dyes and Pigments,2012, 95(2):174-179.
    [185]S. Amatori, G. Ambrosi, M. Fanelli, M. Formica, V. Fusi, L. Giorgi, E. Macedi, M. Micheloni, P. Paoli, R. Pontellini, P. Rossi, M. A. Varrese. Multi-use NBD-based tetra-amino macrocycle:fluorescent probe for metals and anions and live cell marker. Chemistry-A European Journal,2012,18(14):4274-4284.
    [186]G. Zhang, H. Li, S. Bi, L. Song, Y. Lu, L. Zhang, J. Yu, L. Wang. A new turn-on fluorescent chemosensor based on diketopyrrolopyrrole (DPP) for imaging Zn2+in living cells. Analyst, 2013,138(20):6163-6170.
    [187]A. M. S. Mendes, G. P. Duda, C. W. A. d. Nascimento, M. O. Silva. Bioavailability of cadmium and lead in a soil amended with phosphorus fertilizers. Scientia Agricola,2006,63: 328-332.
    [188]G. Jiang, L. Xu, S. Song, C. Zhu, Q. Wu, L. Zhang, L. Wu. Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology,2008,244(1):49-55.
    [189]C. B. Murray, D. J. Norris, M. G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [190]S. Satarug, J. R. Baker, S. Urbenjapol, M. Haswell-Elkins, P. E. B. Reilly, D. J. Williams, M. R. Moore. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters,2003,137(1-2):65-83.
    [191]T. Jin, Y. Lu, M. Nordberg. Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology,1997,18(3):872-872.
    [192]A. C. Davis, C. P. Calloway Jr, B. T. Jones. Direct determination of cadmium in urine by tungsten-coil inductively coupled plasma atomic emission spectrometry using palladium as a permanent modifier. Talanta,2007,71(3):1144-1149.
    [193]G. Kaya, M. Yaman. Online preconcentration for the determination of lead, cadmium and copper by slotted tube atom trap (STAT)-flame atomic absorption spectrometry. Talanta, 2008,75(4):1127-1133.
    [194]T. Cheng, Y. Xu, S. Zhang, W. Zhu, X. Qian, L. Duan. A Highly Sensitive and Selective OFF-ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell. Journal of the American Chemical Society,2008,130(48):16160-16161.
    [195]T. Cheng, T. Wang, W. Zhu, Y. Yang, B. Zeng, Y. Xu, X. Qian. Modulating the selectivity of near-IR fluorescent probes toward various metal ions by judicious choice of aqueous buffer solutions. Chemical Communications,2011,47(13):3915-3917.
    [196]Y. Yang, T. Cheng, W. Zhu, Y. Xu, X. Qian. Highly Selective and Sensitive Near-Infrared Fluorescent Sensors for Cadmium in Aqueous Solution. Organic Letters,2010,13(2): 264-267.
    [197]M. Taki, M. Desaki, A. Ojida, S. Iyoshi, T. Hirayama, I. Hamachi, Y. Yamamoto. Fluorescence Imaging of Intracellular Cadmium Using a Dual-Excitation Ratiometric Chemosensor. Journal of the American Chemical Society,2008,130(38):12564-12565.
    [198]M. Mameli, M. C. Aragoni, M. Arca, C. Caltagirone, F. Demartin, G. Farruggia, G. De Filippo, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, S. Murgia, L. Prodi, A. Pintus, N. Zaccheroni. A Selective, Nontoxic, OFF-ON Fluorescent Molecular Sensor Based on 8-Hydroxyquinoline for Probing Cd2+in Living Cells. Chemistry-A European Journal, 2010,16(3):919-930.
    [199]L. Xue, C. Liu, H. Jiang. Highly Sensitive and Selective Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions in Aqueous Media. Organic Letters,2009,11(7): 1655-1658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700