细胞色素P450 CYP6DZ7在B型烟粉虱对噻虫嗪抗性中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,烟粉虱Bemisia tabaci (Gennadius)已经成为国内一种重要的农业害虫。由于杀虫剂大量的使用,烟粉虱对很多药剂都产生了抗性,加大了防治难度。噻虫嗪作为新烟碱类药剂的典型代表,是目前防治烟粉虱较好的药剂。为了延长噻虫嗪的田间使用寿命,延缓烟粉虱抗性发展,本研究利用现代生物技术,系统地研究了烟粉虱(B型)对噻虫嗪的代谢抗性机制。本研究首次筛选获得了适合定量检测烟粉虱代谢酶系基因表达的内参基因,率先克隆了烟粉虱体内细胞色素P450CYP6DZ7基因,并阐明了抗性与敏感种群CYP6DZ7基因表达差异、在不同发育阶段和不同组织内的表达特性,最后通过RNAi技术和原核表达技术,初步揭示了CYP6DZ7基因在烟粉虱对噻虫嗪抗性中的作用。相关研究将为烟粉虱的抗性预防与治理提供重要的理论依据。主要研究内容及结论如下:
     1烟粉虱的内参基因的筛选
     本文选用了15个候选内参基因,应用实时荧光定量PCR对在生物和非生物处理下的烟粉虱的内参基因进行评估,应用软件geNorm和Normfinder进行分析。结果显示,烟粉虱体内至少有2个内参基因在各种实验处理下可以稳定表达。值得注意的是,不同生物处理条件下(包括不同寄主植物、植物病毒、烟粉虱不同发育阶段、烟粉虱组织差异以及不同的生物型),RPL29是最稳定的内参基因。相比而言,在不同非生物条件下(光周期、温度和杀虫剂敏感性等),EFlα、PPIA、NADH、SDHA和HSP40基因能稳定表达。
     2烟粉虱细胞色素P450CYP6DZ7基因的克隆及序列分析
     应用cDNA末端快速扩增技术(rapid amplification of cDNA ends, RACE)克隆P450基因CYP6DZ7全长序列,结果显示该基因开发阅读框架为1668bp,预测编码555个氨基酸残基。由P450命名委员会的David Nelson命名为CYP6DZ7。与20个昆虫CYP6基因比对以及BLAST分析,结果表明噻虫嗪抗性和敏感品系氨基酸序列是一致的。
     3烟粉虱抗性、敏感品系CYP6DZ7基因表达量的分析
     通过荧光定量PCR检测CYP6DZ7的表达量,发现噻虫嗪抗性品系TH-2000中该基因的表达量是敏感品系TH-S的9倍,TH-R品系中的表达量是TH-S中的7倍。结果显示药剂噻虫嗪处理条件下CYP6DZ7基因表达量上调,表明该基因被噻虫嗪明显的诱导。
     4烟粉虱细胞色素P450基因CYP6DZ7在不同发育阶段和不同组织内的表达量的分析
     通过荧光定量PCR测定了该基因各个发育龄期和组织的表达量,表明该基因在各个发育阶段的表达量是一致的,其中卵期是最低的,但是与若虫和成虫并未形成显著差异。组织间的定量结果表明腹部中该基因的表达量最高,胸部是最低的,差异达到4倍。
     5烟粉虱在药剂处理下,CYP6DZ7基因表达量的变化
     为了验证本研究的假设,检测不同时间段2000mg,/L的噻虫嗪处理的TH-R品系中CYP6DZ7基因表达量,同时处理TH-S,结果表明该基因的表达量与噻虫嗪抗性密切相关。
     6利用RNAi技术揭示CYP6DZ7基因在抗噻虫嗪中的作用
     通过RNA干扰(RNAi)沉默TH-R中的CYP6DZ7基因以进一步研究其功能。结果表明双链RNA注射72h后,CYP6DZ7基因的表达量降低>600%,表明该基因能够通过RNAi技术成功敲除。生物测定结果表明进行干扰以后的抗性品系具有更高的死亡率。总而言之,研究结果表明基因CYP6DZ7烟粉虱的噻虫嗪抗性中起到重要作用。
     7CYP6DZ7在E.Coli中的原核表达
     本研究利用PET表达系统重组质粒,并成功在大肠杆菌细胞中表达CYP6DZ7蛋白。通过SDS-PAGE电泳分析,在63kDa处发现一条特异性条带,表明目的基因得到成功表达,为下一步烟粉虱抗性机制研究和抗性治理奠定了基础。
In recent years, Bemisia tabaci (Gennadius) B biotype has been one of the most destructive invasive pests in many cropping systems worldwide. This whitefly species has developed high resistance to several insecticides commonly used in the world. Thiamethoxam is an important insecticide which has been widely used for the control of this pest. So, the resistance mechanism of the pest to thiamethoxam is a key for sustainable control of this pest. In this study, the resistance mechanisms of B. tabaci B biotype were analyzed using molecular biology method. The main conclusions were listed as follows:
     1. Selection of reference gene in B. tabaci
     In this study,15candidate reference genes in B. tabaci were evaluated under a diverse set of biotic and abiotic conditions using two Excel-based algorithms geNorm and Normfinder. In summary, at least two reference genes were selected to normalize gene expressions in B. tabaci under experimental conditions, respectively. Specifically, for biotic conditions including host plant, acquisition of plant virus, developmental stage, tissue, and whitefly biotype, ribosomal protein L29was the most stable reference gene. In contrast, the expression of elongation factor1alpha, peptidylprolyl isomeraseA, NADH dehydrogenase, succinate dehydrogenase complex subunit A and heat shock protein40were consistently stable across various abiotic conditions including photoperiod, temperature, and insecticide susceptibility.
     2. Cloning and analysis of CYP6DZ7gene in B. tabaci
     The full sequence of the mRNA was obtained by RACE (rapid amplification of cDNA ends). CYP6DZ7has a1668bp open reading frame (ORF) with a putative protein size of555amino acid. Full gene sequences were named by Dr. David Nelson. The putative full-length protein sequences of CYP6DZ7were compared between the resistant and susceptible strains, and were also compared to the CYP6protein sequences in20insect species identified by BLASTX. This study found that protein sequence of CYP6DZ7in the resistant and susceptible strains were identical.
     3. Relative expression analysis of CYP6DZ7in TH-S, TH-R and TH-2000strain of B.tabaci
     RT-qPCR analyses showed that the expression of CYP6DZ7in TH-2000strain was approximately9-fold higher than that in TH-S strain and was approximately7-fold higher than that in TH-R strain. This result showed that the expression increased when TH-R strain were treated with thiamethoxam, suggesting the CYP6DZ7gene may play an important role in the thiamethoxam resistance of the TH-R strain.
     4. Relative expression analysis of CYP6DZ7in developmental stages and tissues in B.tabaci
     The expression of CYP6DZ7gene in different developmental stages of B. tabaci was examined by RT-qPCR. The result indicated that CYP6DZ7was consistently expressed in all life stages. The expression level of CYP6DZ7was the lowest in eggs but not significantly different from that in nymph or adult. The expression of CYP6DZ7gene was high in abdomen whereas low in the chest. The tissue-dependent expression pattern was validated by RT-qPCR. The expression of CYP6DZ7in abdomen was4-fold higher than that in the chest.
     5. Differential expression of CYP6DZ7gene after treating with thiamethoxam
     To further test our hypothesis, we quantified the expression level of CYP6DZ7of different time course after2000mg/L thiamethoxam treatment and with different treating concentrations in TH-R. At the same time, we quantified the expression level of CYP6DZ7with different treating concentrations in TH-S. The results indicated that the expression of CYP6DZ7gene correlated with thiamethoxam resistance in whiteflies.
     6. RNA interference (RNAi) methods were used to explore the role of P450genes in B.tabaci
     The expression of CYP6DZ7gene in the TH-R strain was partially silenced by RNAi with the double-stranded RNA (dsRNA), which further confirmed the function of CYP6DZ7gene. The results showed that the gene expression of CYP6DZ7decreased>60%by72hr after CYP6DZ7dsRNA injection, which indicated that this gene was successfully knocked down by RNAi. The bioassay tests showed a significantly higher mortalities for the dsRNA-injected adults compared to the control adults injected with buffer. Taken together, our results indicated that CYP6DZ7gene plays an important role in thiamethoxam resistance of the whitefly.
     7. Expression of CYP6DZ7in E. coli cells
     This study constructed recombinant plasmid using PET expression system, which successfully expressed in E. coli cells. The sresult showed that a63kDa protein was examined and confirmed by SDS-PAGE. Our work laid a foundation for the next resistance mechanism study and resistance management.
引文
[1]Brown JK. The sweet potato or silverleaf whitefies:biotypes of Bemisia tabaci or a species complex? [J]. Ann Rev Entomol,1995,40:511-534.
    [2]Perring TM. The Bemisia tabaci species complex [J]. Crop Prot,2001,20:725-737.
    [3]Chu D, Zhang YJ, Cong B, et al. Sequences analysis of mtDNA COI gene and molecular phylogeny of different geographical populations of Bemisia tabaci (Gennadius) [J]. Agricultural Sciences in China,2005,4:533-541.
    [4]Liu SS, De Barro PJ, Xu J, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly [J]. Science,2007,318:1769-1772.
    [5]伍一军,冷欣夫.杀虫剂的神经毒理学研究进展[J].昆虫学报,2003,46(3):382-389.
    [6]Tomizawa M, Casida J E. Neonicotinoid Insecticide Toxicology:Mechanisms of Selective action [J]. Annu Rev Pharmacol,2005,45:247-268.
    [7]唐振华,毕强.杀虫剂作用的分子行为[M].上海远东出版社,2003:373-420.
    [8]唐振华,陶黎明,李忠.新烟碱类杀虫剂选择作用的分子机理,农药学学报2006,8(4):291-297.
    [9]Dittrich V, Ernst GH. The resistance pattern in whiteflies of Sudanese cotton [J]. Mittellungen der Deutschen Gesellschaft fur Allgemeine and:Angewandte Entomologie,1983,4:96-97.
    [10]Prabhaker NC, Coudriet DL, Meyerdirk DE. Insecticde resistance in the sweetpotato white fly, Bemisia tabaci (Homoptera:Aleyrodidae) [J]. J Econ Entomol,1985, 78:748-752.
    [11]Dittrich V, Ernst GH, Ruesch O. Resistance mechanisms in sweetpotato whitefly (Homoptera:Aleyrodidac) populations from Sudan, Turkey, Guatemala, and Nicaragua [J]. J Econ Entomol,1990,83(5):1665-1670.
    [12]Elbert A, Nauen R. Bioassays for imidacloprid for a resistance monitoring against the whitefly Bemisia tabaci [J]. Proceedings of Brighton Crop Protection Conference-Pests and Disease,1996,2:731-738.
    [13]Elbert A, Nauen R. Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids [J]. Pest Manag Sci,2000,56:60-64.
    [14]Nauen R, Strobel J, Tietjen K, et al. Aphicidal activity of imidacloprid aganist a tobacco feeding strain of Myzus persicae (Homoptera:Aphididae) from Japan closely related to Myzus nicotianae and highly resistance to carbamates and organophospates [J]. Bull Entomol Res,1996,86:165-171.
    [15]Kranthi KR, Jadhav DR, Kranthi S,et al. Insecticide resistance in five major insect pests of cotton in India [J]. Crop Prot,2002,21:449-460.
    [16]El-Kady H, Denholm I, Devine GJ. Insecticide resistance in Egytian strains of Bemisia tabaci [J]. The BCPC conference pests & diseases,2002,2:787-792.
    [17]Palumbo JC, Coates WE. Air-assisted electrostatic application of pyrethroid and endosulfan mixtures for sweetpotato whitefly (Homoptera:Aleyrodidae) control and spray deposition in cauliflower [J]. J Econ Entomol,1996,89:970-980.
    [18]Denholm I, Cahill M, Byrne FJ, Devonshire AL. Progress with documenting and combating insecticides resistance in Bemisia.1996. In:Gerling D, Mayer RT, editors. Bemisia 1995:taxonomy, biology, damage, control and management. Andover, UK: Intercept:577-603.
    [19]Cahill M, Denholmi I. Managing resistance in the chlomnicotinyl insecticides-rhetoric or reality Nicotinold insecticides and the Nicotinic Acetylchollne Receptor [J]. Tokyo:Springer,1999,253-270.
    [20]Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Pest Manag Sci,2002,58(9):868-875.
    [21]Rauch N, Nauen R. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Archchives Insect Biochem Physiol,2003,54:165-176.
    [22]Gorman K, Wren J, Denholm I. Characterisation of neonicotinoid resistance in Bemisia tabaci from Spain[C]. The BCPC international congress of the crop science & technology,2003,783-788.
    [23]Horowitz AR, Denholm I, Gorman K, et al. Biotype Q of Bemisia tabaci identified in Israel [J]. Phytoparasitica,2003,31:94-98.
    [24]Horowitz AR, Ishaaya I. Managing resistance to insect growth regulators in the sweetpotato whitefly (Homoptera:Aleyodidae) [J]. J Econ Entomol,1994, 87(4):866-871.
    [25]Cahill M, Gorman K, Day S, et al. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptem:Aleyrodidae) [J]. Bull Entomol Res, 1996,86(4):343-349.
    [26]Cahill M, Jarvis W, Gorman K, et al. Resolution of baseline responses and documentation of resistance to buprofezin in Bemisia tabaci (Homoptera:Aleyrodidae) [J]. Bull Entomol Res,1996,86(2):117-122.
    [27]Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Pest Manag Sci,2002,58(9):868-875.
    [28]Horowitz AR, Ishaaya I. Susceptibility of the sweetpotato whitefly (Homoptera: Aleyrodidae) to buprofezin during the cotton season [J]. J Econ Entomo,1992, 85(2):318-324.
    [29]Palumbo JC, Horowitz AR, Prabhaker N. Insecticidal control and resistance management for Bemisia tabaci [J]. Crop Prot,2001,20:739-765.
    [30]Horowitz A R, Mendelson Z, Cahill M, et al. Managing resistance to the insect growth regulator, pyriproxyfen, in Bemisia tabaci [J]. Pestic Sci,1999, 55:272-276.
    [31]Prabhaker N, Coudrietd L, Toscano NC. Effect of synergists on organophosphate and permethrin resistance in asweetpotato whitefly (Homop tera:Aleyrodidae) [J]. J Econ En tomol,1988,81 (1):34-39.
    [32]Devine GJ, Ishaaya I, Horowitz AR, et al. The response of pyriproxyfen-resistant and susceptible Bemisia tabaci (Homoptera:Aleyrodidae) to pyriproxyfen and fenoxycarb alone and in combination with piperonyl butoxide [J]. Pestic Sci,1999, 55(4):405-411.
    [33]Karunker I, Benting J, Lueke B, et al. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae). Insect Biochem Mol Biol,2008, 38:634-644.
    [34]Cahill M, Byrne FJ, Gorman K, et al. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homop tera:Aleyrodidae) [J]. Bull En tomol Res,1995,85(2):181-187.
    [35]Cottage EL A, Gunning RV. ⅩⅣth International symposium on cholinergic mechanisms-function and dysfunction & 2nd misrahi syposium on neurobiology, Switzerland,2002.
    [36]Anthony N, Unruh T, Ganser D, et al. Duplication of the Rdl GAB A receptor subunit gene in an insecticide-resistant aphid, Myzus persicae [J]. Mol Generl Genetics, 1998,260:65-75.
    [37]Liu ZW, Williamson MS, Lansdell SJ, et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to the imidacloprid in Nilaparvata lugens (brown planthopper) [J]. Proceeding of the National Academy of Sciences of the United States of America,2005,102(24):8420-8425.
    [38]Nauen R, Denholm I. Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects [J]. Arch Insect Biochem Physiol,2005,58: 200-215.
    [39]Mota Sanchez D, Hollingworth RM, Grafius EJ, et al. Resistance and cross r resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemLineata (Coleoptera:Chrysomelidae) [J]. Pest Manag Sci, 2006,62:30-37.
    [40]Tabashnik BE. Resistance risk assessment:realized heritability of resistance to Bacillus thurngiensis in diamondback moth (Lepidoptera:Plutellidae), tobacco budworm (Lepidoptera:Noctuidae) and Colorado potato beetle (Coleoptera: Chrysomelidae) [J].J Econ Entomol,1992,85:1551-1559.
    [41]Omura T, Ishimura Y, Fujii KY. Cytochrome P450[M]. Kodansha.VCH. Tokyo. 1993.
    [42]Lewis DFV. Cytochrome P450:structure, function and mechanism [M]. Taylor & Francis.1996,79-88.
    [43]Gonzalez FJ, Nebert DW. Evolution of the P450 gene superfamily:animal-plant warfare, molecular drive and human genetic differences in drug oxidation [J]. Trends in Genetics.1990,6(6):182-186.
    [44]Coon MJ, Vaz AD, Bestervelt LL. Peroxidative reactions of diversozymes [J].J FASEB.1996,10:428-434.
    [45]Feyereisen R, Werck-Reichhart D. Cytochromes P450:a success story. Genome Biol, 2000,1(6):1-9.
    [46]Graham SE, Peterson JA. How similar are P450s and what can their differences teach us [J]. ArchBiophys Biochem,1999,369:24-28.
    [47]冷欣夫,邱星辉.细胞色素P450酶系的结构功能与应用前景[M].北京:科学出版社,2001,1-55.
    [48]Nelson DR, Schuler MA, Paquette SM, et al. Comparative genomics of rice and Arabidopsi analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot [J]. Plant Physiol,2004,135(2):756-772.
    [49]Berge JB, Feyereisen R, Amichot M. Cytochrome P450 monooxygenases and insecticide resistance in insects [J]. Trans R Soc Biol Sci,1998, 353(1376):1701-1705.
    [50]Tijet N, Helvig C, Feyereisen R. The cytochrome P450 gene superfamily in Drosophila melanogaster:annotation, intron-exon organization and phylogeny [J]. Gene,2001,262(1-2):189-198.
    [51]Stegeman JJ, Livingston DR. Forms and cunctions of cytochrome P450 [J]. Comp Biochem Physiol,1998,212:1-3.
    [52]邱立红,张文吉,李晓薇.棉铃虫微粒体多功能氧化酶系组分含量及酶活性在不同生长发育阶段的变化规律研究[J].农药学学报,1999.1(1):45-50。
    [53]邱立红,张文吉.微粒体多功能氧化酶系与棉铃虫对氰戊菊酯抗药性的关系[J].昆虫学报,2001,44(4):447-453.
    [54]邱星辉,冷欣夫.棉铃虫加单氧酶活性的组织分布[J].生态学报,2000,2(2):299-303.
    [55]邱星辉,李薇,冷欣夫.棉铃虫不同发育阶段微粒体P450酶系组成和活性比较[J].昆虫学报,2001,44(2):142-147.
    [56]Scott JG, Lee SST. Tissue distribution of microsomal cytochrome P-450 monooxygenases and their inducibility by phenobarbital in the insecticide-resistant LPR strain of house fly, Musca domestica L [J]. Insect Biochem Molec Biol,1993, 23:729-738.
    [57]Wojtasek H, Leal WS. Degradation of an alkaloid pheromone from the pale-brown chater, Phyllopertha diversa (Coleoptera Scarabacidae), by an insect of factory cytochrome P450 [J]. FEBs lett,1999,458:333-336.
    [58]Maibeche-Coisne M, Monti-Dedieu L, Aragon S, et al. A new cytochrome P450 from Drosophila melanogaster, CYP4G15, expressed in the nervous system. Biochem Biophys Res Comm,2000,273:1132-1137.
    [59]Wen Z, Horak CE, Scott JG. CYP9E2, CYP4C21 and related pseudogenes from german cockroaches, Blattella germanica:implications for molecular evolution, expression studies and no menclature of P450s [J]. Gene,2001,272:257-266.
    [60]Kasai S, Tomita T. Male specific expression of a cytochrome P450 (Cyp312al) in Drosophila melanogaster [J]. Biochem Biophys Res Commun,2003, 300(4):894-900.
    [61]Gandhi R, Varak E, Goldberg ML. Molecular analysis of a cytochrome P450 gene of family 4 on the Drosophila X chromosome [J]. DNA Cell Biol,1992,11:397-404.
    [62]Daniele WR, Feyereisen R. Cytochromes P450:a success story [J]. Genome Biol, 2000,1(6):1-9.
    [63]Snyder MJ, Stevens JK, Andersen JF. Expression of cytochrome P450 genes of the CYP4 familyinmidgut and fat body of the tabacco hornworm, Manduca Sexta [J]. Arch Biochem Biophys,1995,32(1):13-20.
    [64]Nelson D R. Nelson DR, Schuler MA, et al. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocotand a dicot [J]. Plant Physiol,2004,135(2):756-772.
    [65]Feyereisen R, Kcener JF, Farnsworth DE, et al. Isolation and sequence of cDNA encoding a cytochrome P450 from an insecticide resistant strain of the housefly, Musca domestica [J]. PNAS,1989,86(5):1465-1469.
    [66]Cohen MB, Koener JF, Feyereisen R. Structure and chromosomal localization of CYP6A1, a cytochrome P450-encoding gene from the house fly [J]. Gene,1994,146 (2):267-272.
    [67]Cohen MB, Feyereisen R. A cluster of cytochrome P450 genes of the CYP6 family in the house fly [J]. DNA Cell Biol,1995,14(1):73-82.
    [68]Tomita T, Scott JG. cDNA and deduced protein sequence of CYP6D1:the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly [J]. Insect Biochem Mol Biol,1995,25(2):275-283.
    [69]Waters LC, Zelhof AC, Shaw BJ, et al. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance associated P450 gene in Drosophila [J]. PNAS,1992,89(1):4855-4859.
    [70]Dunkov BC, Guzov VM, Mocelin G, et al. The Drosophila cytochrome P450 gene Cyp6a2:structure, localization, heter ologous expression, and induction by Phenobarbital [J]. DNA Cell Biol,1997,16(11):1345-1356.
    [71]Maitra S, Dombrowski S, Waters I, et al. Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster [J]. Gene,1996, 180(1-2):165-171.
    [72]Wang XP, Hobbs AA. Isolation and sequence analysis of a cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera [J]. Insect Biochem Mol Biol,1995,25(9):1001-1009.
    [73]Ranasinghe C, Hobbs AA. Isolation and characterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera (Hubner): possible involvement of CYP6B7 in pyrethroid resistance [J]. Insect Biochem Mol Biol,1998,28(8):571-580.
    [74]岳丽娜,杨亦桦,武淑文,吴益东.棉铃虫P450基因CYP6AEI2和CYP9AI8的克隆与mRNA表达水平[J].昆虫学报,2007,50(3):234-240.
    [75]Li H, Dai H, Wei H. Molecular cloning and nucleotide sequence of CYP6BF1 from the diamondback moth, Plutella xylostella [J]. J Insect Sci,2005,5:45.
    [76]Carino FA, Koener JF, Plapp Jr FW, et al. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides [J]. Insect Biochem Mol Biol,1994,24:411-418.
    [77]Li XC, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics [J]. Annu Rev Entomol,2006,52:231-253.
    [78]Bautista MAM, Miyata T, Miura K, et al. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin [J]. Insect Biochem Mol Biol,2009,39:38-46.
    [79]Amichot M, Brun A, Cuany A, et al. Expression study of CYP genes in Drosophila strains resistant or sensitive to insecticide.In:lechner MC ed. Cytochrome P450. Paris:John libbey Eurotext.1994,689-692.
    [80]Bautista MAM, Miyata T, Miura K, et al. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin [J]. Insect Biochem Mol Biol,2009,39:38-46.
    [81]Jones CM, Daniels M, Andrews M, et al. Age-specific expression of a P450 monooxygenase (CYP6CM1) correlates with neonicotinoid resistance in Bemisia tabaci [J]. Pestic Biochem Physiol,2011,101:53-58.
    [82]Downward J. RNA interference [J]. BMJ,2004,328(7450):1245-1248.
    [83]Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes [J]. Trends Biotechnol,1990,8(12):340-344.
    [84]Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes [J]. Antonie Van Leeuwenhoek,1994,65(3):205-209.
    [85]Guo S, Kemphues KJ. A gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. Cell,1995,81 (4):611-620.
    [86]Fire A, Xu S, Montgomery MK. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391(6669): 806-811.
    [87]Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants [J]. Science,1999,286(5441):950-952.
    [88]Zamore PD, Tuschl T, Sharp PA, et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals [J]. Cell,2000, 101(1):25-33.
    [89]Bernstein E, Caudy AA, Hammond SM Role for a bidentate ribonuclease in the initiation step of RNA interference [J]. Nature,2001,409(6818):363-366.
    [90]Wianny F, Zemicka-Goetz M. Specific interferen ce w ith gene function by double-stranded RNA in early mouse developm ent [J]. Nat Cell Biol,2000,2 (2):70-75.
    [91]Svoboda P, Stein P, Hayashi H. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference [J]. Development,2000,127(19):4147-4156.
    [92]Elbashir SM, Harborth J, Lendeckel WL. Duplexes of 21-nucleotide RNAs mediates RNA interference in cultured mammalian cells [J]. Nature,2001,411(6836): 494-498.
    [93]Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells [J]. Science,2002,296(5567):550-553.
    [94]Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science,2002,297(5589):2056-2060.
    [95]Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger:short RNAs that silence gene expression [J]. Nature Rev Mol Cell Biol,2003,4:457-467.
    [96]Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA [J]. Genes Dev,2005,19(24):2979-2990.
    [97]Leuschner PJ, Ameres SL, Kueng S. Cleavage of the siRNA passenger strand during RISC assembly in human cells [J]. EMBO Rep,2006,7(3):314-320.
    [98]Rand TA, Petersen S, Du F. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation [J]. Cell,2005,123(4):621-629.
    [99]Vaistij FE, Jones L, Baulcombe DC. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase [J]. Plant Cell,2002,14(4):857-867.
    [100]Volpe T, Schramke V, Hamilton G, et al. RNA interference is required for normal centromere function in fission yeast [J]. Chromosome Res,2003,11:137-146.
    [101]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell, 2004,116(2):281-297.
    [102]Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs [J]. Cell, 2001,107(3):297-307.
    [103]Plasterk RHA. RNA Silencing:The Genome's Immune System [J]. Science,2002, 296:1263-1265.
    [104]Ketting RF, Fischer SE, Bernstein E. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans [J]. Genes Dev,2001,15(20):2654-2659.
    [105]Ambros V. The functions of animal microRNAs [J]. Nature,2004, 431(7006):350-355.
    [106]Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex [J]. Science,2002,297(5589):2056-2060.
    [107]Denli AM, Tops BB, Plasterk RH. Processing of primary microRNAs by the Microprocessor complex [J]. Nature,2004,432(7014):231-235.
    [108]Meister G, Landthaler M, Dorsett Y. Sequence-specific inhibition of microRNA and siRNA-induced RNA silencing [J]. RNA,2004,10(3):544-550.
    [109]Du T, Zamore PD. microPrimer:the biogenesis and function of microRNA [J]. Development,2005,132(21):4645-4652.
    [110]Lecellier CH, Dunoyer P, Arar K. A cellular microRNA mediates antiviral defense in human cells [J]. Science,2005,308(5721):557-560.
    [111]Giraldez AJ, Cinalli RM, Glasner ME. MicroRNAs regulate brain morphogenesis in zebrafish [J]. Science,2005,308(5723):833-838.
    [112]He L, Hannon G.J. MicroRNAs:Small RNAs with a big role in gene regulation [J]. Nat Rev Genet,2004,5(7):522-531.
    [113]Mao YB, Cai WJ, Wang JW, et al. Silencing a cotton bollworm P450 monooxygenase gene by plantmediated RNAi impairs larval tolerance to gossypol [J]. Nature Biotechnol,2007,25:1307-1313.
    [114]Price DRG, Gatehouse JA. RNAi-mediated crop protection against insects [J]. Trends Biotechnol,2008,26(7):393-400.
    [115]Araujoa RN, Santosa A, Pintoa FS, et al. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera:Reduviidae) by dsRNA ingestion or injection [J]. Insect Biochem Mol Biol,2006,36:683-693.
    [116]Caplen NJ, Zheng Z, Falgout B, et al. Inhibition of viral gene expression and replication in Mosquito cells by dsRNA-triggered RNA interference [J]. Mol Thera, 2002,6:243-251.
    [117]Upadhyay SK, Chandrashekar K, Thakur N, et al. RNA interference for the control of whiteflies (Bemisia tabaci) by oral route [J]. J Biosci,2011,36:153-161.
    [118]Lu ZC, Wan FH. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius) [J]. J Exp Biol,2011, 214:764-769.
    [119]Ober KA, Jockusch EL. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle [J]. Tribolium castaneum Develop Biol,2006,294(2):391-405.
    [120]Rajagopal R, Sivakumar S, Agrawal N, et al. Silencing of midgut Aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin [J]. J Biol Chem,2002,277:46849-46851.
    [121]Soberon M, Lopez LP, Lopez I, et al. Engineering modified Bt toxins to counter insect resistance [J]. Science,2007,318:1640-1642.
    [122]Levin DM, Breuer LN, Zhuang S, et al. A hemocyte-specific integrin required for hemocytic encapsulation in the tobacco hornworm, Manduca sexta [J]. Insect Biochem Mol Biol,2005,35:369-380.
    [123]Yang ZX, Wen LZ, Wu QJ, et al. Effects of injecting cadherin gene dsRNA on growth and development in diamond-back moth Plutella xylostella (Lepidoptera:Plutellidae) [J]. JApp Entomol,2008,132(9):1341-1346.
    [124]Sivakumar S, Rajagopal R, Venkatesh GR, et al. Knockdown of Aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cryl Ac [5]. J Biol Chem,2007,282:7312-7319.
    [125]Tabunoki H, Higurashi S, Ninagi O, et al. Carotenoidbinding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae [J]. FEBS Lett,2004,567:175-178.
    [126]Ohnishi A, Hull JJ, Matsumoto S. Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway [J]. PNAS,2006,103:4398-4403.
    [127]Huang J, Zhang Y, Li M, et al. RNA -interferen ce-mediated silencing of bursicon gene induces defects in wing expansion of silkworm [J]. FEBS Lett,2007, 581:697-701.
    [128]Caplen NJ, Fleenorb J, Fire A, et al. Morgan dsRNA-mediated gene silencing in cultured Drosophila cells:a tissue culture model for the analysis of RNA interference [J].Gene,2000,252:95-105.
    [129]Travantya EA, Adelmanb ZN, Franza AWE, et al. Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti [J]. Insect Biochem Mol Biol,2004,34 (7):607-613.
    [130]Berns K, Hijmans EM, Mullenders J. A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J]. Nature,2004, 428(6981):431-437.
    [131]Paddison PJ, Silva JM, Conklin DS. A resource for large-scale RNA-interference-based screens in mammals [J]. Nature,2004,428(6981):427-431.
    [132]Silva JM, Li MZ, Chang K. Second-generation shRNA libraries covering the mouse and human genomes [J]. Nat Genet,2005,37(11):1281-1288.
    [133]Janitz M, Vanhecke D, Lehrach H. High-throughput RNA interference in functional genomics [J]. Handb Exp Pharmacol,2006, (173):97-104.
    [134]Luo B, Heard AD, Lodish HF. Small interfering RNA production by enzymatic engineering of DNA (SPEED) [J]. PNAS,2004,101(15):5494-5499.
    [135]Sen G, Wehrman TS, Myers JW. Restriction enzyme-generated siRNA (REGS) vectors and libraries [J]. Nat Genet,2004,36(2):183-189.
    [136]Shirane D, Sugao K, Namiki S. Enzymatic production of RNAi libraries from cDNAs [J]. Nat Genet,2004,36(2):190-196.
    [137]Naka K, Dansako H, Kobayashi N. Hepatitis C virus NS5B delays cell cycle progression by inducing interferon-beta via Toll-like receptor 3 signaling pathway without replicating viral genomes [J]. Virology,2006,346(2):348-362.
    [138]Li H, Fu X, Chen Y. Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma [J]. Gastroenterology,2005,128(7): 2029-2041.
    [139]Fabrick JA, Kanost MR, Baker JE,2004. RNAi-induced silencing of embryonic tryptophan oxyg enase in the Pyralid moth, Plodia interpunctella [J]. J Insect Sci, 4:15-24.
    [140]Baum JA, Bogaert T, Clinton W, et al. Control of coleopteran insect pests through RNA interference [J]. Nature Biotechnol,2007,25:1322-1326.
    [141]Price DRG, Gatehouse JA. RNAi-mediated crop protection against insects [J]. Trends Biotechnol,2008,26(7):393-400.
    [142]Ghanim M, Kontsedalov S, Czosnek H. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius) [J]. Insect Biochem Mol Biol,2007,37:732-738.
    [143]Ginzinger DG. Gene quantification using real-time quantitative PCR:an emerging technology hits the mainstream [J]. Exp Hematol,2002,30:503-512.
    [144]Bustin SA, Benes V, Nolan T, et al. Quantitative real-time RT-PCR a perspective [J]. J Mol Endocrinol,2005,34:597-601.
    [145]Kubista M, Andrade JM, Bengtsson M, et al. The real-time polymerase chain reaction [J]. Mol Aspects Med,2006,27:95-125.
    [146]van Guilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis [J]. Biotech,2008,44:619-626.
    [147]Thellin O, Zorzi W, Lakaye B, et al. Housekeeping genes as internal standards:use and limits [J]. J Biotech,1999,75:291-295.
    [148]Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantization [J]. Biotech,2000,29:332-337.
    [149]Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations [J]. Biotech Lett,2004,26:509-515.
    [150]Tunbridge EM, Eastwood SL, Harrison PJ. Changed relative to what? Housekeeping genes and normalization strategies human brain gene expression studies [J]. Biol Psychiatry,2011,69:173-179.
    [151]Radonic A, Thulke S, Mackay IM, et al. Guideline to reference gene selection for quantitative real-time PCR [J]. Biochem Bioph Res Co,2004,313:856-862.
    [152]Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biol,2002,3:1-12.
    [153]Ponton F, Chapuis MP, Pernice M, et al. luation of potential reference genes for reverse transcription qPCR studies of physiological responses in Drosophila melanogaster [J]. J Insect Physiol,2011,57:841.
    [154]Zhou XG, Tarver MR, Bennett GW, et al. Two hexamerin genes from the termite Reticulitermes flavipes:sequence, expression, and proposed functions in caste regulation [J]. Gene,2006,76:47-58.
    [155]Andersen CL, Jensen JL,(?)rntoft TF. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Res,2004,64:5245-5250.
    [156]Mahadav A, Kontsedalov S, Czosnek H, et al. Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes [J]. Insect Biochem Mol Biol,2009,39:668-676.
    [157]Ghanim M, Kontsedalov S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities [J]. Pest Manag Sci, 2009,65:939-942.
    [158]Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments [J]. Clin Chem,2009, 55:611-622.
    [159]Willems E, Mateizel I, Kemp C, et al. Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells [J]. Int J Dev Biol,2006, 50:627-635.
    [160]Hoogewijs D, Houthoofd K, Matthijssens F, et al. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans [J]. BMC Mol Biol,2008,9:9.
    [161]Langnaese K, John R, Schweizer H, et al. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model [J]. BMC Mol Biol,2008,9:53.
    [162]Tatsumi K, Ohashi K, Taminishi S, et al. Reference gene selection for real-time RT-PCR in regenerating mouse livers [J]. Biochem Bioph Res Co,2008,374: 106-110.
    [163]Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.) [J]. BMC Plant Biol, 2010,10:71.
    [164]Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems [J]. J Mol Endocrinol,2002,29:23-39.
    [165]Gutierrez L, Mauriat M, Guenin S, et al. The lack of a systematic validation of reference genes:a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants [J]. J Plant Biotech,2008,6:609-618.
    [166]Shen GM, Jiang HB, Wang XN, et al. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera:Tephritidae) [J]. BMC Mol Biol,2010,11:7.
    [167]Hornakova D, Matouova P, Kindl J, et al. Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages [J]. Anal Biochem,2010,397:118-120.
    [168]Jiang H, Liu Y, Tang P, et al. Validation of endogenous reference genes for insecticide-induced and developmental expression profiling of Liposcelis bostrychophila (Psocoptera:Liposcelididae) [J]. Molecular Biol Rep,2009, 37:1019-1029.
    [169]Scharlaken B, de Graaf DC, Goossens K, et al. Reference gene selection for insect expression studies using quantitative real-time PCR:The head of the honeybee, Apis mellifera, after a bacterial challenge [J]. J Insect Sci,2008,8:33.
    [170]Hiel MBV, Wielendaele PV, Temmerman L, et al. Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions [J]. BMC Mol Biol,2009,10:56.
    [171]Shen YM, Li Y, Ye F, et al. Identification of suitable reference genes for measurement of gene expression in human cervical tissues [J]. Anal Biochem,2010, 405:224-229.
    [172]Olsvik P, Lie K, Jordal AE, et al. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon [J]. BMC Mol Bio,2005,16:21.
    [173]Silver N, Best S, Jiang J, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR [J]. BMC Mol Biol,2006,7:33.
    [174]Marie-Pierre C, Donya TE, Tim D, et al. Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust [J]. BMC Mol Biol,2011,12:7.
    [175]Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J]. J Mol Endocrinol,2000,25:169-193.
    [176]de Boer M, de Boer T, Marien J, et al. Reference genes for qRT-PCR tested under various stress conditions in Folsomia candida and Orchesella cincta (Insecta, Collembola) [J]. BMC Mol Biol,2009,10:5
    [177]Huggett J, Dheda K, Bustin SZ, et al. Real-time RT-PCR normalisation; strategies and considerations [J]. Genes Immu,2005,6:279-284.
    [178]Kylee J, Veazey, Michael C. Golding selection of stable reference genes for quantitative RT-PCR comparisons of mouse embryonic and extra-embryonic stem cells [J]. PLoS One,2011,6:e27592.
    [179]Li XC, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics [J]. Annu Rev Entomol,2006, 52:231-253.
    [180]Feng YT, Wu QJ, Wang SL, et al. Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera, Aleyrodidae) [J]. Pest Manag Sci,2010,66:313-318.
    [181]Lee SST, Scott JG Tissue distribution of microsomal cytochrome P-450 monooxygenases and their inducibility by phenobarbital in house fly, Musca domestica L [J]. Insect Biochem Mol Biol,1992,22:699-711.
    [182]Zhu F, Parthasarathy R, Bai H, et al. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum [J]. PNAS,2010,107:8557-8562.
    [183]Bautista MAM, Miyata T, Miura K, et al. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin [J]. Insect Biochem Mol Biol,2009, 39:38-46.
    [184]Li XC, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics [J]. Annu Rev Entomol,2006, 52:231-253.
    [185]Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, et al. Gene knockdown by RNAi in the pea aphid, Acyrtosiphonpisum [J]. BMC Biotechnol,2007,7:63.
    [186]Sant'Anna MRV, Alexander B, Bates PA, et al. Gene silencing in Phlebotomine sand flies, Xanthine dehydrogenase knock down by dsRNA microinjections[J]. Insect Biochem Mol Biol,2008,38:652-660.
    [187]Tomoyasu Y, Miller SC, Tomita S, et al. Exploring systemic RNA interference in insects, a genome-wide survey for RNAi genes in Tribolium [J]. Genome Biol,2008, 9:R10.
    [188]Zhu F, Parthasarathy R, Bai H, et al. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum [J]. PNAS,2010,107:8557-8562.
    [189]Zhang JZ, Liu XJ, Zhang JQ, et al. Silencing of two alternative splicing-derived mRNA variants of chitinsynthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen) [J]. Insect Biochem Mol Biol,2010, 40:824-83.
    [190]魏巍,刘璇,黄小国等.猪瘟病毒囊膜糖蛋白E2的原核表达及重组蛋白ELISA应用[J].畜牧与兽医,2008,40(6):70-72.
    [191]FassR, van de WalleM, Shiloach A. Use of high density cultures of Escherichia colifor high level production of recombinat Pseudomonas aeruginos aexotoxin A [J]. Appl Microbiol Biotechnol,1991,36(1):65-91.
    [192]潘滨,吴建祥,李桂新等.烟草曲茎病毒复制相关蛋白基因原核表达条件优化[J].浙江大学学报:农业与生命科学版,2007,33(1):24-28.
    [193]王秋霞,张美英,张改平等.猪囊尾蚴排泄分泌抗原Ts881蛋白原核表达条件的优化[J].华北农学报,2009,24(3):59-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700