抗猪瘟嵌合DNA疫苗及TRIF的DNA疫苗佐剂效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(classical swine fever, CSF)是由猪瘟病毒(classical swine fever virus, CSFV)引起的、猪的一种高度致死性传染病,在世界许多国家和地区广泛流行,在国际兽医局制定的《国际动物卫生法典》中,猪瘟被列入A类16种法定传染病之一。我国也作为Ⅰ类动物疫病加以重点控制。自50年代以来,我国自行研制的猪瘟兔化弱毒疫苗(“C”株)的广泛应用,在控制猪瘟的爆发流行中发挥了重要作用。然而,猪瘟兔化弱毒疫苗五十多年的长期使用,并未能有效控制猪瘟的发生和传播。近年来,我国猪瘟发生呈明显上升态势,并出现诸如散发流行、慢性猪瘟、持续感染和妊娠母猪带毒综合征等新特点。病毒逃避机体的免疫清除和在猪体内局部的持续存留;疫苗制品质量问题;运输和保存不当导致疫苗效力降低或失效;以及疫苗株毒力的回复突变等是其主要原因。因此,在欧美一些国家已明确禁止使用猪瘟弱毒活疫苗接种。我国是养猪大国,猪瘟的发生和流行,是制约农村养猪业发展的瓶颈。为满足对猪瘟预防、控制和最终根除的需要,研制新一代抗猪瘟疫苗制品以替代传统猪瘟兔化弱毒疫苗,势在必行。
     本研究在对猪瘟病毒囊膜糖蛋白E2和Erns保护性抗原区域结构分析的基础上,利用RT-PCR技术,以猪瘟病毒石门(Shimen)株基因组RNA为模板,扩增E2和Erns抗原编码区序列,与组织纤溶酶原激活剂(tPA)信号肽cDNA序列融合,克隆到真核表达载体pcDNA3.1(+)中,构建重组质粒ptPAs/△E2/△Erns和ptPAs/△E2,以及使用E2信号肽构建pE2s/△E2/△Erns和pE2s/E2。转染PK15细胞,检测目的基因的表达。
     用所构建的重组质粒免疫BALB/c雌性小鼠,免疫3次,每次间隔2周,设pcDNA3.1(+)及PBS阴性对照,第三次免疫2周后采血,分离血清。分别以原核表达并纯化的E2或Erns蛋白为包被抗原,间接ELISA方法检测血清抗体水平;以纯化的E2或Erns蛋白为刺激原,MTT法检测小鼠脾淋巴细胞增殖情况;以猪瘟病毒Shimen株或刀豆蛋白A(ConcanavalinA, ConA)为刺激原,Elispot法检测IFN-y分泌情况。结果表明,除pcDNA3.1(+)和PBS对照组外,各重组质粒免疫后小鼠血清抗体水平持续上升,与对照组相比差异显著(p<0.05)。融合tPA信号肽DNA疫苗免疫组的血清OD492nm值与E2信号肽DNA疫苗免疫组相比差异显著(P<0.05)。猪瘟病毒Shimen株或E2或Ems蛋白刺激后,嵌合E2和Erns基因DNA疫苗免疫组小鼠脾细胞分泌的IFN-y和T细胞增殖效果高于单价DNA疫苗组(p<0.05),含有tPA信号肽组高于E2自然信号肽组,融合E2和Erns的ptPAs/△E2/△Erns和pE2s/△E2/△Erns组要优于只含有E2的单基因组。以上结果表明,在诱导免疫应答方面嵌合DNA疫苗要优于单价DNA疫苗,tPA信号肽组优于E2信号肽组。
     在小鼠实验的基础上,选取诱导免疫效果较好的ptPAs/△E2/△Erns免疫CSFV血清抗体阴性猪,pE2s/E2和pcDNA3.1(+)同时免疫作为对照,免疫3次,每次间隔2周,第三次免疫2周后,以105TCID50剂量的CSFV Shimen强毒株经肌肉注射途径攻击。观察猪体临床症状,记录猪体体温。并分别在攻毒后第0、4、8、12天后采血分离血清,以及采集鼻拭子和频死猪组织样品。中和试验检测血清中和抗体水平,间接ELISA检测血清抗体IgG水平,RT-PCR检测猪瘟病毒在组织样品和血清样品中复制情况等。结果表明,嵌合DNA疫苗免疫后产生的血清中和抗体水平、白细胞数量明显高于非融合DNA疫苗,pcDNA3.1(+)对照组攻毒后实验猪全部死亡,pE2s/E2免疫组部分猪死亡,而ptPAs/△E2/△Erns免疫组全部猪存活,说明具有tPA信号肽的嵌合DNA疫苗ptPAs/△E2/△Erns具有针对猪瘟病毒完全的免疫保护效果,而E2信号肽单基因DNA疫苗pE2s/E2只具有针对猪瘟病毒部分的免疫保护。
     在此研究基础上,以p干扰素TIR结构域衔接蛋白(TRIF)作为分子佐剂和重组质粒ptPAs/△E2/△Erns或pE2s/E2同时免疫BALB/c雌性小鼠,免疫3次,每次间隔2周。第三次免疫2周后采血分离血清,分别以原核表达E2或Erns为包被抗原,间接ELISA方法检测血清抗体水平;以猪瘟病毒Shimen株或刀豆蛋白A(ConcanavalinA, ConA)为刺激原,Elispot法检测IFN-γ分泌情况。结果表明,重组质粒ptPAs/△E2/△Erns或pE2s/E2与TRIF同时免疫后小鼠血清抗体水平持续上升,但与非佐剂组相比差异不显著(P>0.05)。猪瘟病毒Shimen株刺激后,TRIF和DNA疫苗共免疫组小鼠脾细胞分泌的IFN-γ数量明显高于非佐剂DNA疫苗组(p<0.05)。以上结果表明,TRIF共免疫可显著增强DNA疫苗诱导细胞免疫水平。
     以重组质粒ptPAs/△E2/△Erns和TRIF、pE2s/E2和TRIF免疫CSFV血清抗体阴性猪,免疫3次,每次间隔2周,第三次免疫2周后,以105TCID50剂量的CSFVShimen强毒株经肌肉注射途径攻击。分别于攻毒后第0、4、8、12天采血分离血清,中和试验检测血清中和抗体水平,间接ELISA检测血清抗体IgG水平,RT-PCR检测组织样品中CSFV分布、计算白细胞数量,观察猪体临床症状并记录猪体体温变化情况等。结果表明,ptPAs/△E2/△Erns和TRIF、pE2s/E2和TRIF共免疫DNA疫苗猪强毒攻毒后,白细胞数量明显高于非佐剂DNA疫苗,血清中和抗体水平与非佐剂组无明显差异,但DNA疫苗共免疫TRIF佐剂组猪只全部存活,说明TRIF能提高DNA疫苗的免疫效果,并诱导具有针对CSFV强毒株攻击的完全免疫保护。
     综上所述,本文首次构建了由CSFV主要抗原E2和Erns编码基因融合组成的抗猪瘟嵌合DNA疫苗,并对其在机体内诱导免疫效力进行了研究。在此基础上,研究了细胞通路信号分子TRIF共免疫对DNA疫苗免疫保护效果的影响。初步证实了抗猪瘟嵌合DNA疫苗可以诱导猪体增强的抵抗CSFV强毒株致死攻击的免疫保护,TRIF可显著提高DNA疫苗的细胞免疫应答和抗病毒作用,这些工作为新型抗猪瘟DNA疫苗的研制奠定了坚实的基础。
Classical swine fever (CSFV) is a contagious disease of swine and leads to severe economic losses worldwide. According to "Animal Health Code", CSF was an OIE (Office International des Epizooties) listed disease. CSF was identified as class one contagious animal diseases in our country. From 1950s, hog cholera lapinized virus (Chinese "C" strain), a live attenuated CSF vaccine, was developed by our country and used to control CSFV spread. Though a live attenuated CSF vaccine is effective to control outbreak of CSF, a lot of new features of CSF such as sporadic epidemics, chronic infection, sustainable contagion and pregnancy with CSFV were recently observed. So, it is necessary to develop a new marker vaccine.
     In this study, E2 and Ems encoded sequences were amplified by RT-PCR using genomic RNA of CSFV strain Shimen as template, and then fused with nature E2 or tissue plasminogen activator (tPA) signal sequences to construct recombinant DNA vaccines, including ptPAs/△E2, ptPAs/△E2/△Erns, pE2s/△E2/△Erns and pE2s/E2. PK15 cells were transfected with the four plasmids to detect the expression of the foreign genes, respectively. The female BALB/c mice immunized with the recombinant plasmids for 3 times with 2 weeks interval. Antibody titers were tested by indirect ELISA using the purified E2 or Ems protein by prokaryotic expression as the coating antigen. CSFV or ConcanavalinA (ConA) was used as stimulus to detect splenocyte proliferation by MTT assay or to detect IFN-y secreting by Elispot assay. The results showed that the serum antibody titers in the four immunization groups were significantly increased compared to pcDNA3.1(+) group (p<0.05). Two weeks after the last inoculation mice immunized with plasmid fused with tPA signal exhibited significantly higher OD492nm than those immunized with nature E2 signal (p<0.05). After CSFV or protein stimulation, splenocyte isolated from mice immunized with chimeric DNA vaccine induced more IFN-γsecreting cells and enhanced spleen cell proliferation than that immunized with the single gene vaccine. Mice immunized with DNA vaccines fused with tPA signals induced better immune responses compared to that immunized with DNA vaccines with E2 signal.
     Serum-negative pigs were immunized with ptPAs/△E2/△Erns, pE2s/E2 and pcDNA3.1(+) separately with 3 times at a 2 week interval, for ptPAs/△E2/AEms has induced a better immune responses in mice model and pE2s/E2 and pcDNA3.1(+) were used as control group. Two weeks after the last immunization, all the pigs were intramuscularly challenged with 3×105 TCID50 Shimen strain CSFV. The temperature and clinical symptom was monitored and recorded daily and the blood and nasal swab samples were collected on days 0,4,8,12 post-challenge. After challenge neutralizing antibody titers was evaluated by virus neutralization assay, IgG antibody titers were detected by ELISA. CSFV genomic RNA in tissue or serum samples was tested by RT-PCR. Our results demonstrated that the pigs vaccinated with chimeric DNA vaccine fused with tPA signal induced higher titer of neutralizing antibody than those vaccinated with native E2 vaccine. The pigs inoculated with pcDNA3.1 (+) were all dead, pigs immunized with pE2s/E2 were partly dead and pigs immunized with ptPAs/△E2/AErns were all survived.
     Adaptor protein TRIF as molecular adjuvant of DNA vaccines was investigated. Female BALB/c mice immunized with pRK-TRIF plasmid for 3 times at 2-week interval, and pRK was used as negative control. Antibody titers were detected by indirect ELISA using the purified E2 or Erns protein as the coating antigen. CSFV or ConA was used as stimulus to induce IFN-γsecreting. The results showed that the serum antibody titers were not significantly increased with TRIF. After CSFV or protein stimulation, splenocyte isolated from mice immunized with the mixture of DNA vaccine and TRIF induced more IFN-γsecreting cells and higher level of spleen cell proliferation than non-adjuvant DNA immunized mice.
     Serum-negative pigs were immunized with ptPAs△E2AErns and TRIF or pE2s/E2 and TRIF separately, with 3 times at a 2 week interval. Two weeks after the last immunization, all the pigs were intramuscularly challenged with 3×105 TCID50 Shimen strain CSFV. The temperature and clinlcal symptom was monitored and recorded daily. The blood and nasal swab samples were collected on days 0,4,8,12 post-challenge. After challenge neutralizing antibody titers were evaluated by virus neutralization assay, and IgG antibody titers were detected by ELISA and and CSFV genomic RNA in tissue or serum samples was tested by RT-PCR. The results showed that the pigs co-vaccinated with DNA vaccine and TRIF were more white cell numbers than non-TRIF vaccine. But pigs immunized with DNA vaccine and TRIF revealed similar neutralizing antibody titers compared to that immunized with DNA vaccine alone. All of pigs co-immunized with DNA vaccine and TRIF survived.
     In summary, we first constructed chimeric DNA vaccines encoded E2 and Ems, and examined their efficacies in mice and pigs. We also investigated the immune responses in mice and pigs co-immunized with DNA vaccine and TRIF. Our results demonstrated that chimeric DNA vaccine could induce higher humoral and cellular immune responses in mice and protection against CSFV in pigs. TRIF as molecular adjuvant could enhance the cellular immune responses of DNA vaccines. These results will be contributed to develop a novel DNA vaccine against CSFV.
引文
Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A.,2001, Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413,732-738.
    An, L.L., Rodriguez, F., Harkins, S., Zhang, J., Whitton, J.L.,2000, Quantitative and qualitative analyses of the immune responses induced by a multivalent minigene DNA vaccine. Vaccine 18, 2132-2141.
    Andrew, M., Morris, K., Coupar, B., Sproat, K., Oke, P., Bruce, M., Broadway, M., Morrissy, C., Strom, D., 2006, Porcine interleukin-3 enhances DNA vaccination against classical swine fever. Vaccine 24,3241-3247.
    Andrew, M.E., Morrissy, C.J., Lenghaus, C., Oke, P.G., Sproat, K.W., Hodgson, A.L., Johnson, M.A., Coupar, B.E.,2000, Protection of pigs against classical swine fever with DNA-delivered gp55. Vaccine 18,1932-1938.
    Armengol, E., Wiesmuller, K.H., Wienhold, D., Buttner, M., Pfaff, E., Jung, G., Saalmuller, A.,2002, Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J Gen Virol 83,551-560.
    Aynaud, J.M., Launais, M.,1978, [Hog cholera:immunization of young pigs with the Thiverval strain vaccine in the presence of colostral immunity]. Dev Biol Stand 41,381-387.
    Becker, K., Pan, D., Whitley, C.B.,1999, Real-time quantitative polymerase chain reaction to assess gene transfer. Hum Gene Ther 10,2559-2566.
    Bin, L.H., Xu, L.G., Shu, H.B.,2003, TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J Biol Chem 278,24526-24532.
    Brown, E.A., Zhang, H., Ping, L.H., Lemon, S.M.,1992, Secondary structure of the 5'nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res 20,5041-5045.
    Bruschke, C.J., Hulst, M.M., Moormann, R.J., van Rijn, P.A., van Oirschot, J.T.,1997, Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J Virol 71,6692-6696.
    Buonavoglia, C., Falcone, E., Pestalozza, S., Di Trani, L., D'Amore, E.,1989, A rapid serum neutralization test in microplates for the detection of antibodies to hog cholera virus. J Virol Methods 23, 77-79.
    Caipang, C.M., Hirono, I., Aoki, T.,2009, Modulation of the early immune response against viruses by a teleostean interferon regulatory factor-1 (IRF-1). Comp Biochem Physiol A Mol Integr Physiol 152,440-446.
    Carlos H Romero, P.N.M., Bruce L Homer, Joseph E Shultz and Gene Lollis,2003, POTENTIAL SITES OF VIRUS LATENCY ASSOCIATED WITH
    INDIGENOUS PSEUDORABIES VIRUSES IN FERAL SWINE. Journal of Wildlife Diseases pp.567-575.
    Cheung, A.K.,1989, Detection of pseudorabies virus transcripts in trigeminal ganglia of latently infected swine. J Virol 63,2908-2913.
    Clavijo, A., Lin, M., Riva, J., Zhou, E.M.,2001, Application of competitive enzyme-linked immunosorbent assay for the serologic diagnosis of classical swine fever virus infection. J Vet Diagn Invest 13,357-360.
    Corthier, G.,1976, Swine fever:influence of passive immunity on pig immune response following vaccination with a live virus vaccine (Thiverval strain). Ann Rech Vet 7,361-372.
    Cruciere, C., Bakkali, L., Gonzague, M., Plateau, E.,1991, cDNA probes for the detection of pestiviruses. Arch Virol Suppl 3,191-197. Danko, I., Wolff, J.A.,1994, Direct gene transfer into muscle. Vaccine 12,1499-1502.
    de Smit, A.J., Bouma, A., de Kluijver, E.P., Terpstra, C., Moormann, R.J.,2000, Prevention of transplacental transmission of moderate-virulent classical swine fever virus after single or double vaccination with an E2 subunit vaccine. Vet Q 22,150-153.
    Deng, R., Brock, K.V.,1993,5' and 3'untranslated regions of pestivirus genome:primary and secondary structure analyses. Nucleic Acids Res 21,1949-1957.
    Dong, X.N., Chen, Y., Wu, Y., Chen, Y.H.,2005, Candidate multi-peptide-vaccine against classical swine fever virus induced potent immunity with serological marker. Vaccine 23,3630-3633.
    Dong, X.N., Chen, Y.H.,2006a, Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2. Vaccine 24,1906-1913.
    Dong, X.N., Chen, Y.H.,2006b, Spying the neutralizing epitopes on E2 N-terminal by candidate epitope-vaccines against classical swine fever virus. Vaccine 24,4029-4034.
    Dong, X.N., Chen, Y.H.,2006c, Strategies for mapping neutralizing epitopes:one way and two sides. Vaccine 24,4689-4691.
    Doolan, D.M., Froelicher, E.S.,2006, Efficacy of smoking cessation intervention among special populations:review of the literature from 2000 to 2005. Nurs Res 55, S29-37.
    Elbers, K., Tautz, N., Becher, P., Stoll, D., Rumenapf, T., Thiel, H.J.,1996, Processing in the pestivirus E2-NS2 region:identification of proteins p7 and E2p7. J Virol 70,4131-4135.
    Fan, Y., Zhao, Q., Zhao, Y., Wang, Q., Ning, Y., Zhang, Z.,2008, Complete genome sequence of attenuated low-temperature Thiverval strain of classical swine fever virus. Virus Genes 36, 531-538.
    Floegel-Niesmann, G., Bunzenthal, C., Fischer, S., Moennig, V.,2003, Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J Vet Med B Infect Dis Vet Public Health 50,214-220.
    Guo, Z.S., Wang, L.H., Eisensmith, R.C., Woo, S.L.,1996, Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther 3,802-810.
    Harada, T., Tautz, N., Thiel, H.J.,2000, E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J Virol 74,9498-9506.
    Hennecken, M., Stegeman, J.A., Elbers, A.R., van Nes, A., Smak, J.A., Verheijden, J.H.,2000, Transmission of classical swine fever virus by artificial insemination during the 1997-1998 epidemic in The Netherlands:a descriptive epidemiological study. Vet Q.22,228-233.
    Hergarten, G., Hurter, K.P., Hess, R.G.,2001, [Detection of infection with classical swine fever virus in wild boar:a comparison of different laboratory diagnostic methods.]. Dtsch Tierarztl Wochenschr 108,51-54.
    Higgins, J.A., Ezzell, J., Hinnebusch, B.J., Shipley, M., Henchal, E.A., Ibrahim, M.S.,1998,5'nuclease PCR assay to detect Yersinia pestis. J Clin Microbiol 36,2284-2288.
    Hooft van Iddekinge, B.J., de Wind, N., Wensvoort, G., Kimman, T.G., Gielkens, A.L., Moormann, R.J., 1996, Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs; influence of different promoters on gene expression and on protection. Vaccine 14,6-12.
    Hulst, M.M., Himes, G., Newbigin, E., Moormann, R.J.,1994, Glycoprotein E2 of classical swine fever virus:expression in insect cells and identification as a ribonuclease. Virology 200,558-565.
    Hulst, M.M., Panoto, F.E., Hoekman, A., van Gennip, H.G., Moormann, R.J.,1998, Inactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a cytopathogenic virus. J Virol 72,151-157.
    Ishikawa, K., Nagai, H., Katayama, K., Tsutsui, M., Tanabayashi, K., Takeuchi, K., Hishiyama, M., Saitoh, A., Takagi, M., Gotoh, K., et al.,1995, Comparison of the entire nucleotide and deduced amino acid sequences of the attenuated hog cholera vaccine strain GPE-and the wild-type parental strain ALD. Arch Virol 140,1385-1391.
    Johnson, C.M., Perez, D.R., French, R., Merrick, W.C., Donis, R.O.,2001, The NS5A protein of bovine viral diarrhoea virus interacts with the alpha subunit of translation elongation factor-1. J Gen Virol 82,2935-2943.
    Jung, R., Soondrum, K., Neumaier, M.,2000, Quantitative PCR. Clin Chem Lab Med 38,833-836.
    Kabelitz, D., Medzhitov, R.,2007, Innate immunity--cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Curr Opin Immunol 19,1-3.
    Kawai, T., Akira, S.,2007, TLR signaling. Semin Immunol 19,24-32.
    Ke, L.D., Chen, Z., Yung, W.K.,2000, A reliability test of standard-based quantitative PCR:exogenous vs endogenous standards. Mol Cell Probes 14,127-135.
    Klupp, B.G., Hengartner, C.J., Mettenleiter, T.C., Enquist, L.W.,2004, Complete, annotated sequence of the pseudorabies virus genome. J Virol 78,424-440.
    Konig, M., Lengsfeld, T., Pauly, T., Stark, R., Thiel, H.J.,1995, Classical swine fever virus:independent induction of protective immunity by two structural glycoproteins. J Virol 69,6479-6486.
    Kummerer, B.M., Stoll, D., Meyers, G.,1998, Bovine viral diarrhea virus strain Oregon:a novel mechanism for processing of NS2-3 based on point mutations. J Virol 72,4127-4138.
    Lin, M., Trottier, E., Pasick, J., Sabara, M.,2004, Identification of antigenic regions of the Erns protein for pig antibodies elicited during classical swine fever virus infection. J Biochem 136,795-804.
    Liu, S.T., Li, S.N., Wang, D.C., Chang, S.F., Chiang, S.C., Ho, W.C., Chang, Y.S., Lai, S.S.,1991, Rapid detection of hog cholera virus in tissues by the polymerase chain reaction. J Virol Methods 35, 227-236.
    Liu, Y.J.,2005, IPC:professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23,275-306.
    Loirat, D., Li, Z., Mancini, M., Tiollais, P., Paulin, D., Michel, M.L.,1999, Muscle-specific expression of hepatitis B surface antigen:no effect on DNA-raised immune responses. Virology 260,74-83.
    Markowska-Daniel, I., Collins, R.A., Pejsak, Z.,2001, Evaluation of genetic vaccine against classical swine fever. Vaccine 19,2480-2484.
    Marques, J.T., Williams, B.R.,2005, Activation of the mammalian immune system by siRNAs. Nat Biotechnol 23,1399-1405.
    Marsac, D., Loirat, D., Petit, C., Schwartz, O., Michel, M.L.,2002, Enhanced presentation of major histocompatibility complex class l-restricted human immunodeficiency virus type 1 (HIV-1) Gag-specific epitopes after DNA immunization with vectors coding for vesicular stomatitis virus glycoprotein-pseudotyped HIV-1 Gag particles. J Virol 76,7544-7553.
    Marusawa, H., Hijikata, M., Chiba, T., Shimotohno, K.,1999, Hepatitis C virus core protein inhibits Fas-and tumor necrosis factor alpha-mediated apoptosis via NF-kappaB activation. J Virol 73, 4713-4720.
    Mayer, D., Hofmann, M.A., Tratschin, J.D.,2004, Attenuation of classical swine fever virus by deletion of the viral N(pro) gene. Vaccine 22,317-328.
    Mellencamp, M.W., Pfeiffer, N.E., Suiter, B.T., Harness, J.R., Beckenhauer, W.H.,1989, Identification of pseudorabies virus-exposed swine with a gl glycoprotein enzyme-linked immunosorbent assay. J Clin Microbiol 27,2208-2213.
    Mettenleiter, T.C.,2000, Aujeszky's disease (pseudorabies) virus:the virus and molecular pathogenesis--state of the art, June 1999. Vet Res 31,99-115.
    Meyers, G., Rumenapf, T., Thiel, H.J.,1989, Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171,555-567.
    Meyers, G., Saalmuller, A., Buttner, M.,1999, Mutations abrogating the RNase activity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation. J Virol 73, 10224-10235.
    Meyers, G., Thiel, H.J.,1995, Cytopathogenicity of classical swine fever virus caused by defective interfering particles. J Virol 69,3683-3689.
    Miyake, K.,2007, Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19,3-10.
    Moormann, R.J., Warmerdam, P.A., van der Meer, B., Schaaper, W.M., Wensvoort, G., Hulst, M.M., 1990, Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein El. Virology 177,184-198.
    Moretta, L., Bottino, C., Pende, D., Castriconi, R., Mingari, M.C., Moretta, A.,2006, Surface NK receptors and their ligands on tumor cells. Semin Immunol 18,151-158.
    Moser, C., Stettler, P., Tratschin, J.D., Hofmann, M.A.,1999, Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol 73,7787-7794.
    Nishimori, T, Yamada, S., Shimizu, M.,1996, Production of monoclonal antibodies against classical swine fever virus and their use for antigenic characterization of Japanese isolates. J Vet Med Sci 58,707-710.
    Pittler, H.,1986, [Control of the European hog cholera with regard to new European Community regulations. Changes in state preventive measures relating to district vaccinations]. Tierarztl Prax 14,55-65.
    Pomeranz, L.E., Reynolds, A.E., Hengartner, C.J.,2005, Molecular biology of pseudorabies virus:impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69,462-500.
    Poole, T.L., Wang, C., Popp, R.A., Potgieter, L.N., Siddiqui, A., Collett, M.S.,1995, Pestivirus translation initiation occurs by internal ribosome entry. Virology 206,750-754.
    Reed, K.E., Gorbalenya, A.E., Rice, C.M.,1998, The NS5A/NS5 proteins of viruses from three genera of the family flaviviridae are phosphorylated by associated serine/threonine kinases. J Virol 72, 6199-6206.
    Rice, C.M.,1996, Flaviviridae:The viruses and their replication.. In Fields virology.,931-960.
    Rijnbrand, R., van der Straaten, T, van Rijn, P.A., Spaan, W.J., Bredenbeek, P.J.,1997, Internal entry of ribosomes is directed by the 5'noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol 71,451-457.
    Robertson, S.E., Hull, B.P., Tomori, O., Bele, O., LeDuc, J.W., Esteves, K.,1996, Yellow fever:a decade of reemergence. JAMA 276,1157-1162.
    Rock, D.L., Hagemoser, W.A., Osorio, F.A., McAllister, H.A.,1988, Transcription from the pseudorabies virus genome during latent infection. Brief report. Arch Virol 98,99-106.
    Roic, B., Depner, K.R., Jemersic, L., Lipej, Z., Cajavec, S., Toncic, J., Lojkic, M., Mihauevic, Z.,2007, Serum antibodies directed against classical swine fever virus and other pestiviruses in wild boar (Sus scrofa) in the Republic of Croatia. Dtsch Tierarztl Wochenschr 114,145-148.
    Ruggli, N., Tratschin, J.D., Mittelholzer, C., Hofmann, M.A.,1996, Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 70,3478-3487.
    Rumenapf, T., Stark, R., Meyers, G., Thiel, H.J.,1991, Structural proteins of hog cholera virus expressed by vaccinia virus:further characterization and induction of protective immunity. J Virol 65, 589-597.
    Rumenapf, T., Unger, G., Strauss, J.H., Thiel, H.J.,1993, Processing of the envelope glycoproteins of pestiviruses. J Virol 67,3288-3294.
    Schulz,O., Diebold, S.S., Chen, M., Naslund, T.I., Nolte, M.A., Alexopoulou, L., Azuma, Y.T., Flavell, R.A., Liljestrom, P., Reis e Sousa, C.,2005, Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433,887-892.
    Schutten, M., van den Hoogen, B., van der Ende, M.E., Gruters, R.A., Osterhaus, A.D., Niesters, H.G., 2000, Development of a real-time quantitative RT-PCR for the detection of HIV-2 RNA in plasma. J Virol Methods 88,81-87.
    Shannon, A.D., Morrissy, C., Mackintosh, S.G., Westbury, H.A.,1993, Detection of hog cholera virus antigens in experimentally-infected pigs using an antigen-capture ELISA. Vet Microbiol 34, 233-248.
    Stark, R., Meyers, G., Rumenapf, I, Thiel, H.J.,1993, Processing of pestivirus polyprotein:cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol 67, 7088-7095.
    Stark, R., Rumenapf, T., Meyers, G., Thiel, H.J.,1990, Genomic localization of hog cholera virus glycoproteins. Virology 174,286-289.
    Stegeman, A., Elbers, A.R., Bouma, A., de Smit, H., de Jong, M.C.,1999, Transmission of classical swine fever virus within herds during the 1997-1998 epidemic in The Netherlands. Prev Vet Med 42, 201-218.
    Susa, M., Konig, M., Saalmuller, A., Reddehase, M.J., Thiel, H.J.,1992, Pathogenesis of classical swine fever:B-lymphocyte deficiency caused by hog cholera virus. J Virol 66,1171-1175.
    Takeshita, F., Tanaka, T., Matsuda, T., Tozuka, M., Kobiyama, K., Saha, S., Matsui, K., Ishii, K.J., Coban, C., Akira, S., Ishii, N., Suzuki, K., Klinman, D.M., Okuda, K., Sasaki, S.,2006, Toll-like receptor adaptor molecules enhance DNA-raised adaptive immune responses against influenza and tumors through activation of innate immunity. J Virol 80,6218-6224.
    Tang, D.C., DeVit, M., Johnston, S.A.,1992, Genetic immunization is a simple method for eliciting an immune response. Nature 356,152-154.
    Thiel, H.J., Stark, R., Weiland, E., Rumenapf, T., Meyers, G.,1991, Hog cholera virus:molecular composition of virions from a pestivirus. J Virol 65,4705-4712.
    Thiel, R.P., Oesterling, J.E., Wojno, K.J., Partin, A.W., Chan, D.W., Carter, H.B., Stamey, T.A., Prestigiacomo, A.R., Brawer, M.K., Petteway, J.C., Carlson, G., Luderer, A.A.,1996, Multicenter comparison of the diagnostic performance of free prostate-specific antigen. Urology 48, 45-50.
    Thiery, R., Boutin, P., Arnauld, C., Jestin, A.,1994, Pseudorabies virus latency:a quantitative approach by polymerase chain reaction. Acta Vet Hung 42,277-287.
    Tratschin, J.D., Moser, C., Ruggli, N., Hofmann, M.A.,1998, Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol 72,7681-7684.
    Trinchieri, G., Sher, A.,2007, Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7,179-190.
    Tu, C., Lu, Z., Li, H., Yu, X., Liu, X., Li, Y., Zhang, H., Yin, Z.,2001, Phylogenetic comparison of classical swine fever virus in China. Virus Res 81,29-37.
    van Rijn, P.A., Miedema, G.K., Wensvoort, G., van Gennip, H.G., Moormann, R.J.,1994, Antigenic structure of envelope glycoprotein E1 of hog cholera virus. J Virol 68,3934-3942.
    van Rijn, P.A., van Gennip, R.G., de Meijer, E.J., Moormann, R.J.,1992, A preliminary map of epitopes on envelope glycoprotein E1 of HCV strain Brescia. Vet Microbiol 33,221-230.
    Vandeputte, J., Chappuis, G.,1999, Classical swine fever:the European experience and a guide for infected areas. Rev Sci Tech 18,638-647.
    Vengust, G., Grom, J., Bidovec, A., Kramer, M.,2006, Monitoring of classical swine fever in wild boar (Sus scrofa) in Slovenia. J Vet Med B Infect Dis Vet Public Health 53,247-249.
    Wang, X., Li, X., Currie, R.W., Willette, R.N., Barone, F.C., Feuerstein, G.Z.,2000, Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-lbeta mRNA in ischemic brain tolerance. J Neurosci Res 59,238-246.
    Wang, Y., Wang, Q., Lu, X., Zhang, C., Fan, X., Pan, Z., Xu, L., Wen, G., Ning, Y., Tang, F., Xia, Y.,2008, 12-nt insertion in 3'untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology 374,390-398.
    Weiland, E., Ahl, R., Stark, R., Weiland, F., Thiel, H.J.,1992, A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. J Virol 66,3677-3682.
    Wensvoort, G., Boonstra, J., Bodzinga, B.G.,1990, Immunoaffinity purification and characterization of the envelope protein E1 of hog cholera virus. J Gen Virol 71 (Pt 3),531-540.
    Wensvoort, G., Terpstra, C., de Kluijver, E.P., Kragten, C., Warnaar, J.C.,1989, Antigenic differentiation of pestivirus strains with monoclonal antibodies against hog cholera virus. Vet Microbiol 21, 9-20.
    Whiteside, T.L., Gambotto, A., Albers, A., Stanson, J., Cohen, E.P.,2002, Human tumor-derived genomic DNA transduced into a recipient cell induces tumor-specific immune responses ex vivo. Proc Natl Acad Sci U S A 99,9415-9420.
    Wienhold, D., Armengol, E., Marquardt, A., Marquardt, C., Voigt, H., Buttner, M., Saalmuller, A., Pfaff, E.,2005, Immunomodulatory effect of plasmids co-expressing cytokines in classical swine fever virus subunit gp55/E2-DNA vaccination. Vet Res 36,571-587.
    Wild, T.F., Bernard, A., Spehner, D., Villeval, D., Drillien, R.,1993, Vaccination of mice against canine distemper virus-induced encephalitis with vaccinia virus recombinants encoding measles or canine distemper virus antigens. Vaccine 11,438-444.
    Wildbaum, G., Netzer, N., Karin, N.,2002, Plasmid DNA encoding IFN-gamma-inducible protein 10 redirects antigen-specific T cell polarization and suppresses experimental autoimmune encephalomyelitis. J Immunol 168,5885-5892.
    Windisch, J.M., Schneider, R., Stark, R., Weiland, E., Meyers, G., Thiel, H.J.,1996, RNase of classical swine fever virus:biochemical characterization and inhibition by virus-neutralizing monoclonal antibodies. J Virol 70,352-358.
    Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., Felgner, P.L.,1990, Direct gene transfer into mouse muscle in vivo. Science 247,1465-1468.
    Wong, M.L., Peng, B.Y., Liu, J.J., Chang, T.J.,2001, Cloning and sequencing of full-length cDNA of classical swine fever virus LPC strain. Virus Genes 23,187-192.
    Wu, H.X., Wang, J.F., Zhang, C.Y., Fu, L.Z., Pan, Z.S., Wang, N., Zhang, P.W., Zhao, W.G.,2001, Attenuated lapinized chinese strain of classical swine fever virus:complete nucleotide sequence and character of 3'-noncoding region. Virus Genes 23,69-76.
    Xu, Z.L., Mizuguchi, H., Ishii-Watabe, A., Uchida, E., Mayumi, T., Hayakawa, T.,2002, Strength evaluation of transcriptional regulatory elements for transgene expression by adenovirus vector. J Control Release 81,155-163.
    Yi, G.H., Zhang, C.Y., Cao, S., Wu, H.X., Wang, Y.,2003, De novo RNA synthesis by a recombinant classical swine fever virus RNA-dependent RNA polymerase. Eur J Biochem 270,4952-4961.
    Yu, M., Wang, L.F., Shiell, B.J., Morrissy, C.J., Westbury, H.A.,1996, Fine mapping of a C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestiviruses. Virology 222,289-292.
    Yu, X., Tu, C., Li, H., Hu, R., Chen, C., Li, Z., Zhang, M., Yin, Z.,2001, DNA-mediated protection against classical swine fever virus. Vaccine 19,1520-1525.
    Zhang, F., Yu, M., Weiland, E., Morrissy, C., Zhang, N., Westbury, H., Wang, L.F.,2006, Characterization of epitopes for neutralizing monoclonal antibodies to classical swine fever virus E2 and Erns using phage-displayed random peptide library. Arch Virol 151,37-54.
    王海根;汤赛冬,周.周.张.张.,2002,检测猪瘟抗原的夹心ELISA诊断试剂盒的制备、标化和应用的研究.上海畜牧兽医通讯2002年02期
    左建民,周.,王琦等,2004,EBV-LMP2基因密码子优化对其蛋白表达及免疫效果的影响.现代免疫学24卷4期.
    肖明,张楚瑜,祝志展,吴海祥,2001,猪瘟病毒基因组非编码区的定性定量与结构分析.科学通报,544-551。
    林毅,冯.张.杨.邓.李.,2000,规模化猪场4种猪瘟免疫程序的免疫效果比较.中国兽医科技2000年04期
    姚卫东,于.田.,2002,猪伪狂犬病的分子生物学进展.黑龙江畜牧兽医(4)44-45.
    殷震,刘.,1997,动物病毒学(第二版)[M].
    刘志杰,任.,温建新,刘文华,邹玲,韩先杰,魏笑笑;,2008,用地高辛标记的核酸探针检测猪伪狂犬病毒野毒感染的研究.畜牧兽医学报2008年11期
    张德明,庄.,许盛武,杨承华,,2002,用ELISA检测肌肉液中的伪狂犬病毒抗体.福建农业学报2002-03-010.
    杨利峰,杨.周.彭.赵.,2007,猪瘟RT-PCR ELISA诊断方法的建立.中国兽医学报2007年03期
    温国元,万.潘.张.,2004,应用荧光定量PCR技术快速定量检测猪瘟病毒.武汉大学学报2004年06期
    陈焕春,吴.,方六荣,李学伍,怀济森,周复春,,1997,3种不同方法检测猪伪狂犬病毒血清抗体的比较.中国兽医杂志1997-02-001.
    黄骏明,1991,应用斑点-ELISA检测猪瘟血清抗体的研究.中国预防兽医学报1991年03期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700