猪瘟病毒表位疫苗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟是一种对生猪养殖业具有严重破坏性的猪病,猪瘟疫情的爆发往往会带来巨大的经济损失。因此,世界各国都非常重视对猪瘟疫情的监控和防制。猪瘟病毒是猪瘟的病原体。我国自20世纪50年代成功研制出“54-III”系兔化弱毒疫苗(C株)后,所采取的疫苗免疫政策,在控制我国猪瘟流行方面发挥了重大的作用。该疫苗毒株的安全性和有效性已经为世界所公认。然而,近年来疫苗免疫失败和猪瘟散发性流行呈上升趋势。另外,传统疫苗免疫后的猪只和猪瘟病毒野毒株感染后的猪只在血清学上无法有效地区分。这些正严重影响着我国的生猪养殖业和生猪及猪肉制品贸易的发展。因此,基于我们提出的表位疫苗战略,我们研究一种新型的猪瘟病毒疫苗――猪瘟病毒表位标记疫苗。
     本研究选取了猪瘟病毒囊膜糖蛋白E2上著名的保守线性中和表位TAVSPTTLR为靶点,制备了一系列基于该表位的重组免疫原。在此基础上我们开展了系统性研究。我们对这些重组免疫原的抗原性和免疫原性进行了研究和分析,确定了满足于候选疫苗基本条件的重组免疫原。我们利用猪瘟病毒兔化弱毒疫苗的兔体模型进行了攻毒/防护试验,发现含有6个TAVSPTTLR表位的重组免疫原可以在模型动物体内诱导抗病毒免疫,使之抵御病毒攻击。进一步地,在病毒体外中和试验中,我们证明该候选疫苗诱导机体产生了具有抗病毒活性的体液免疫反应。这些结果都表明,该候选疫苗具有防护猪瘟病毒感染的能力。本研究主要发现:(1)保守线性中和表位TAVSPTTLR周围序列为该表位特异性中和抗体的诱导提供了结构性信息;(2)基于TAVSPTTLR的表位重组免疫原可代偿该序列周围天然环境对其诱导中和抗体所提供的贡献,诱导产生中和抗体,提供免疫防护。
     本论文围绕猪瘟病毒E2蛋白上保守线性中和表位TAVSPTTLR开展的一系列工作,加深了对该表位性质的认识,为进一步开发基于该表位的猪瘟病毒标记疫苗提供了夯实的基础。同时,本论文也证明了基于保守线性中和表位的表位疫苗战略是“理论上站得住,实践上有可能”的。
Classical swine fever (CSF) is a swine disease having devastating impact on the livestock industry, and the outbreaks of the classical swine fever usually cause great economic losses. Therefore, the surveillance, prophylaxis and control of the CSF outbreaks are treated seriously all over the world. Classical swine fever virus (CSFV) is the etiological agent of classical swine fever. In the 1950s’the“54-III”live attenuated vaccine (the C strain) was successfully developed in China by adaptation of a highly virulent strain of classical swine fever virus to the rabbits, and the immunoprophylaxis strategy using this vaccine has been proved to make great contributions to the control of the CSF epidemics in China. The safety and efficacy of this vaccine have been widely recognized throughout the world. However, the failures in immunization with this vaccine and the sporadic CSF epidemics have been seen on the rise in the recent years. Besides, the vaccinated pigs could hardly be differentiated from those infected by the field strains serologically. All these mentioned above are now severely affected the livestock industry development and the international trading of pigs and pork products. Hence, we aim to develop a new CSFV vaccine– the CSFV epitope marker vaccine based on our epitope-vaccine strategy.
     In this study, a series of recombinant immunogens targeted on TAVSPTTLR, the well-known conserved linear neutralizing epitope on the glycoprotein E2 of classical swine fever virus, were prepared. Systemic research was performed on the basis of these immunogens. The antigenicity and immunogenicity of these immunogens were analyzed, identifying several immunogens which satisfied the basic requirement of a vaccine candidate. The challenge/protection test was performed on the rabbit model of the live attenuated vaccine to evaluate their potential as vaccine candidates, discovering that the immunogen, which contain 6 copies of the epitope in a single molecule, could provide the susceptible animals protection against virus challenge. We further demonstrated through the in vitro neutralization test that the vaccine candidate managed to induce antiviral humoral immunity. These results demonstrated that the vaccine candidate was able to protect the susceptible animals from CSFV infection. In this work, we discovered: (1) the natural microenvironment of the epitope contributed essential structural information for the induction of the epitope-specific neutralizing antibodies; (2) the immunogens focused on TAVSPTTLR managed to induce neutralizing antibodies and provide protection, compensating the contribution rendered by the epitope context.
     The work on the TAVSPTTLR epitope made a better understanding of this conserved linear neutralizing epitope on the CSFV E2 glycoprotein, which provided a solid foundation for the further development of the marker CSFV epitope vaccines. Besides, the work was proof-of-concept, demonstrating the epitope vaccine strategy based on the conserved linear neutralizing epitope stood sound not only in theory but also in practice.
引文
[1] Hanson R P. Origin of hog cholera. J Am Vet Med Assoc, 1957, 131: 211-218.
    [2]殷震,刘景华.动物病毒学. 2版.北京:科学出版社, 1997: 652-664.
    [3] Collett M S, Moennig V, Horzinek M C. Recent advances in pestivirus research. J Gen Virol, 1989, 70(Pt 2): 253-266.
    [4] Heinz F X, Collett M S, Purcell R H, et al. Family flaviviridae // Fauquet C M, Mayo M A, Maniloff J, et al. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Virus. San Diego: Academic Press, 2004: 981–998.
    [5] Westaway E G, Brinton M A, Gaidamovich S. et al. Togaviridae. Intervirology, 1985, 24: 125-139.
    [6] Thiel H J, Stark R, Weiland E, et al. Hog cholera virus: molecular composition of virions from a pestivirus. J Virol, 1991, 65: 4705-4712.
    [7] Ribbens S, Dewulf J, Koenen F, et al. An experimental infection (II) to investigate the importance of indirect classical swine fever virus transmission by excretions and secretions of infected weaner pigs. J Vet Med B Infect Dis Vet Public Health, 2004, 51: 438-442.
    [8]刘九生.猪瘟的危害与防制.中国猪业, 2009, 1: 28-34.
    [9] Ribbens S, Dewulf J, Koenen F, et al. Transmission of classical swine fever. A review. Vet Q,2004, 26: 146-155.
    [10]蔡宝祥.家畜传染病学. 3版.北京:农业出版社, 1996.
    [11] Meyers G, Rumenapf T, Thiel H J. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology, 1989, 171: 555-567.
    [12] Moormann R J, Warmerdam P A, Meer B, et al. Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein E1. Virology, 1990, 177: 184-198.
    [13] Beer M, Reimann I, Hoffmann B, et al. Novel marker vaccines against classical swine fever. Vaccine, 2007, 25: 5665-5670.
    [14] Ruggli N, Tratschin J D, Mittelholzer C, et al. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol, 1996, 70: 3478-3487.
    [15] Katayama K, Kurihara C, Fukushi S, et al. Characterization of the hog cholera virus 5' terminus. Virus Genes, 1995, 10: 185-187.
    [16] Behrens S E, Grassmann C W, Thiel H J, et al. Characterization of an autonomous subgenomic pestivirus RNA replicon. J Virol, 1998, 72: 2364-2372.
    [17] Stark R, Meyers G, Rumenapf T, et al. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol, 1993, 67: 7088-7095.
    [18] Tews B A, Schurmann E M, Meyers G. Mutation of cysteine 171 of pestivirus Erns RNase prevents homodimer formation and leads to attenuation of classical swine fever virus. J Virol, 2009, 0: JVI.01710-08v1.
    [19] Schneider R, Unger G, Stark R, et al. Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science,1993, 261: 1169-1171.
    [20] Hulst M M, Himes G, Newbigin E, et al. Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology,1994, 200: 558-565.
    [21] Langedijk J P, van Veelen P A, Schaaper W M, et al. A structural model of pestivirus E(rns) based on disulfide bond connectivity and homology modeling reveals an extremely rare vicinal disulfide. J Virol, 2002, 76: 10383-10392.
    [22] Fetzer C, Tews B A, Meyers G. The carboxy-terminal sequence of the pestivirus glycoprotein E(rns) represents an unusual type of membrane anchor. J Virol, 2005, 79: 11901-11913.
    [23] Langedijk J P. Translocation activity of C-terminal domain of pestivirus Erns and ribotoxin L3 loop. J Biol Chem, 2002, 277, 5308-5314.
    [24] Hulst M M, Moormann R J. Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors. J Gen Virol,1997, 78 ( Pt 11): 2779-2787.
    [25] Wang Z, Nie Y, Wang P, et al. Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology, 2004, 330: 332-341.
    [26] Weiland E, Ahl R, Stark R, et al. A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. J Virol, 1992, 66: 3677-3682.
    [27] Konig M, Lengsfeld T, Pauly T, et al. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol, 1995, 69, 6479-6486.
    [28] Windisch J M, Schneider R, Stark R, et al. RNase of classical swine fever virus: biochemical characterization and inhibition by virus-neutralizing monoclonal antibodies. J Virol, 1996, 70: 352-358.
    [29] Meyers G, Saalmuller A, Buttner M. Mutations abrogating the RNase activity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation. J Virol, 1999, 73: 10224-10235.
    [30] Hulst M M, Panoto F E, Hoekman A, et al. Inactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a cytopathogenic virus. J Virol,1998, 72: 151-157.
    [31] Rumenapf T, Unger G, Strauss J H, et al. Processing of the envelope glycoproteins of pestiviruses. J Virol, 1993, 67: 3288-3294.
    [32] Risatti G R, Holinka L G, Lu Z, et al. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine. Virology, 2005, 343: 116-127.
    [33] van Rijn P A, van Gennip H G, de Meijer E J, et al. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia. J Gen Virol, 1993, 74(Pt 10): 2053-2060.
    [34] Wensvoort G, Boonstra J, Bodzinga B G. Immunoaffinity purification and characterization of the envelope protein E1 of hog cholera virus. J Gen Virol, 1990, 71(Pt 3): 531-540.
    [35] Rumenapf T, Stark R, Meyers G, et al. Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. J Virol, 1991, 65: 589-597.
    [36] Wensvoort G, Terpstra C, Boonstra J, et al. Production of monoclonal antibodies against swine fever virus and their use in laboratory diagnosis. Vet Microbiol, 1986, 12: 101-108.
    [37] Wensvoort G. Topographical and functional mapping of epitopes on hog cholera virus with monoclonal antibodies. J Gen Virol, 1989, 70 (Pt 11): 2865-2876.
    [38] Wensvoort G, Terpstra C, de Kluyver E P. Characterization of porcine and some ruminant pestiviruses by cross-neutralization. Vet Microbiol, 1989, 20: 291-306.
    [39] van Rijn P A, Miedema G K, Wensvoort G., et al. Antigenic structure of envelope glycoprotein E1 of hog cholera virus. J Virol, 1994, 68: 3934-3942.
    [40] van Rijn P A, Bossers A, Wensvoort G, et al. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J Gen Virol, 1996, 77(Pt 11): 2737-2745.
    [41] Rumenapf T, Stark R, Heimann M, et al. N-terminal protease of pestiviruses: identification of putative catalytic residues by site-directed mutagenesis. J Virol, 1998, 72: 2544-2547.
    [42] Tratschin J D, Moser C, Ruggli N, et al. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol, 1998, 72: 7681-7684.
    [43] Mayer D, Hofmann M A, Tratschin J D. Attenuation of classical swine fever virus by deletion of the viral N(pro) gene. Vaccine, 2004, 22: 317-328.
    [44] Ruggli N, Tratschin J D, Schweizer M, et al. Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro). J Virol, 2003, 77: 7645-7654.
    [45] Ruggli N, Bird B H, Liu L, et al. N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction. Virology, 2005, 340: 265-276.
    [46] Elbers K, Tautz N, Becher P, et al. Processing in the pestivirus E2-NS2 region: identification of proteins p7 and E2p7. J Virol, 1996, 70: 4131-4135.
    [47] Tautz N, Elbers K, Stoll D, et al. Serine protease of pestiviruses: determination of cleavage sites. J Virol, 1997, 71: 5415-5422.
    [48] Xu J, Mendez E, Caron P R, et al. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. J Virol, 1997, 71: 5312-5322.
    [49] Moennig V. Introduction to classical swine fever: virus, disease and control policy. Vet Microbiol, 2000, 73: 93-102.
    [50] Baker J A. Attenuation of hog-cholera virus by serial passage in rabbits. J Am Vet Med Assoc, 1947, 111: 503-505.
    [51] Koprowski H, James T R, Cox, H.R. Propagation of hog cholera virus in rabbits. Proc Soc Exp Biol Med, 1946, 63: 178-183.
    [52] Qiu H.-j, Shen R.-x, Tong G.-z. The Lapinized Chinese Strain Vaccine Against Classical Swine Fever Virus: A Retrospective Review Spanning Half A Century. Scientia Agricultura Sinica, 2006, 5: 1-14.
    [53] Fritzemeier J, Teuffert J, Greiser-Wilke I, et al. Epidemiology of classical swine fever in Germany in the 1990s. Vet Microbiol, 2000, 77: 29-41.
    [54] Hennecken M, Stegeman J A, Elbers A R, et al. Transmission of classical swine fever virus by artificial insemination during the 1997-1998 epidemic in The Netherlands: a descriptive epidemiological study. Vet Q, 2000, 22: 228-233.
    [55] Stegeman A, Elbers A, de Smit H, et al. The 1997-1998 epidemic of classical swine fever in the Netherlands. Vet Microbiol, 2000, 73: 183-196.
    [56] Nielen M, Jalvingh A W, Meuwissen M P, et al. Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997-1998 classical swine fever epidemic in The Netherlands. II. Comparison of control strategies. Prev Vet Med, 1999, 42: 297-317.
    [57] Meuwissen M P, Horst S H, Huirne R B, et al. A model to estimate the financial consequences of classical swine fever outbreaks: principles and outcomes. Prev Vet Med, 1999, 42: 249-270.
    [58] Greiser-Wilke I, Moennig V. Vaccination against classical swine fever virus: limitations and new strategies. Anim Health Res Rev, 2004, 5: 223-226.
    [59] van Oirschot J T. Diva vaccines that reduce virus transmission. J Biotechnol, 1999, 73: 195-205.
    [60] Dong X N, Chen Y H. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine, 2007, 25: 205-230.
    [61] Murphy K P, Travers P, Walport M. Janeway's immunobiology. 7th ed. New York: Garland Science. 2008: 695-696.
    [62] Corthier G, Aynaud J M. Comparison of the immune response in serum and bucco-pharyngeal secretions following immunization by different routes with a live hog cholera virus vaccine (Thiverval strain). Ann Rech Vet, 1977, 8: 159-165.
    [63] Corthier G. Swine fever: influence of passive immunity on pig immune response following vaccination with a live virus vaccine (Thiverval strain). Ann Rech Vet, 1976, 7: 361-372.
    [64] Genghini R, Tiranti I, Wittouck P. Pig chromosome aberrations after vaccination against classical swine fever in field trials. Vaccine, 2002, 20: 2873-2877.
    [65] Genghini R, Tiranti I, Segade G. In vivo effect on pig chromosomes of high dosage vaccine against classic swine fever. Mutat Res, 1998, 422: 357-365.
    [66] van Zijl M, Wensvoort G, de Kluyver E, et al. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. J Virol, 1991, 65: 2761-2765.
    [67]余兴龙,涂长春,李作生,等以重组mE2蛋白为抗原建立检测猪瘟病毒抗体间接ELISA方法的研究.中国预防兽医学报, 1999, 22(3): 220-222.
    [68] Andrew M E, Morrissy C J, Lenghaus C, et al. Protection of pigs against classical swine fever with DNA-delivered gp55. Vaccine, 2000, 18: 1932-1938.
    [69] Hulst M M, Westra D F, Wensvoort G, et al. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol, 1993, 67: 5435-5442.
    [70] Bouma A, de Smit A J, de Kluijver E P, et al. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus. Vet Microbiol, 1999, 66: 101-114.
    [71] de Smit A J, Bouma A, de Kluijver E P, et al. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination. Vet Microbiol, 2001, 78: 307-317.
    [72] Bouma A, de Smit AJ, de Jong M C, et al. Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus. Vaccine, 2000, 18: 1374-1381.
    [73] Moormann R J, Bouma A, Kramps J A, et al. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol, 2000, 73: 209-219.
    [74] Thomsen D R, Marotti K R, Palermo D P, et al. Pseudorabies virus as a live virus vector for expression of foreign genes. Gene, 1987, 57: 261-265.
    [75] Whealy M E, Baumeister K, Robbins A K, et al. A herpesvirus vector for expression of glycosylated membrane antigens: fusion proteins of pseudorabies virus gIII and human immunodeficiency virus type 1 envelope glycoproteins. J Virol, 1988, 62: 4185-4194.
    [76] Hooft van Iddekinge B J, de Wind N, Wensvoort G, et al. Comparison of the protectiveefficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs; influence of different promoters on gene expression and on protection. Vaccine, 1996, 14: 6-12.
    [77] Peeters B, Bienkowska-Szewczyk K, Hulst M et al. Biologically safe, non-transmissible pseudorabies virus vector vaccine protects pigs against both Aujeszky's disease and classical swine fever. J Gen Virol, 1997, 78(Pt 12): 3311-3315.
    [78] Kaplan C. Vaccinia virus: a suitable vehicle for recombinant vaccines? Arch Virol, 1989, 106: 127-139.
    [79] Hammond J M, McCoy R J, Jansen E S, et al. Vaccination with a single dose of a recombinant porcine adenovirus expressing the classical swine fever virus gp55 (E2) gene protects pigs against classical swine fever. Vaccine, 2000, 18: 1040-1050.
    [80] Widjojoatmodjo M N, van Gennip H G, Bouma A, et al. Classical swine fever virus E(rns) deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. J Virol, 2000, 74: 2973-2980.
    [81] van Gennip H G, Bouma A, van Rijn P A, et al. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV. Vaccine, 2002, 20: 1544-1556.
    [82] Risatti G R, Holinka L G, Carrillo C, et al. Identification of a novel virulence determinant within the E2 structural glycoprotein of classical swine fever virus. Virology, 2006, 355: 94-101.
    [83] Wolff J A, Malone R W, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science, 1990, 247: 1465-1468.
    [84] Tang D C, DeVit M, Johnston S A. Genetic immunization is a simple method for eliciting an immune response. Nature, 1992, 356: 152-154.
    [85]周鹏程,陆宇,陈建国,等猪瘟病毒E2(gp55)基因的克隆表达及其DNA疫苗的初步研究.微生物学报, 2000, 40(3): 243-252.
    [86] Hammond J M, Jansen E S, Morrissy C J, et al. A prime-boost vaccination strategy using naked DNA followed by recombinant porcine adenovirus protects pigs from classical swine fever. Vet Microbiol, 2001, 80: 101-119.
    [87] Yu X, Tu C, Li H, et al. DNA-mediated protection against classical swine fever virus. Vaccine, 2001, 19: 1520-1525.
    [88] Markowska-Daniel I, Collins R A, Pejsak Z. Evaluation of genetic vaccine against classical swine fever. Vaccine, 2001, 19: 2480-2484.
    [89] Donnelly J J, Ulmer J B, Shiver J W, et al. DNA vaccines. Annu Rev Immunol, 1997, 15: 617-648.
    [90] Chen Y H, Xiao Y, Yu T, et al. Epitope vaccine: a new strategy against HIV-1. ImmunolToday, 1999, 20: 588-589.
    [91] Xiao Y, Liao M, Lu Y, et al. Epitope-vaccines: a new strategy to induce high levels of neutralizing antibodies against HIV-1. Immunobiology, 2000, 201: 323-331.
    [92] Xiao Y, Lu Y, Chen Y H. Epitope-vaccine as a new strategy against HIV-1 mutation. Immunol Lett, 2001, 77: 3-6.
    [93] Liu Z, Xiao Y, Chen Y H. Epitope-vaccine strategy against HIV-1: today and tomorrow. Immunobiology, 2003, 208: 423-428.
    [94] Chen Y H, Yu T, Bai Y, et al. Immunogenicity of the GPGRAFY epitope on synthetic peptides. Immunol Lett, 1999, 69: 353-354.
    [95] Liao M, Lu Y, Xiao Y, et al. Induction of high level of specific antibody response to the neutralizing epitope ELDKWA on HIV-1 gp41 by peptide-vaccine. Peptides, 2000, 21: 463-468.
    [96] Lu Y, Xiao Y, Ding J, et al. Immunogenicity of neutralizing epitopes on multiple-epitope vaccines against HIV-1. Int Arch Allergy Immunol, 2000, 121: 80-84.
    [97] Lu Y, Xiao Y, Ding J, et al. Multiepitope vaccines intensively increased levels of antibodies recognizing three neutralizing epitopes on human immunodeficiency virus-1 envelope protein. Scand J Immunol, 2000, 51: 497-501.
    [98] Xiao Y, Dong X, Chen Y H. Induction of high levels of antibodies recognizing the neutralizing epitope ELDKWA and the D- or K-position-mutated epitopes by candidate epitope vaccines against HIV-1. Int Arch Allergy Immunol, 2000, 122: 287-292.
    [99] Xiao Y, Dong X N, Chen Y H. Induction of monoclonal antibody with predefined ELNKWA epitope specificity by epitope vaccine. Hybridoma, 2000, 19: 347-350.
    [100] Xiao Y, Zhao Y, Lu Y, et al. Epitope-vaccine induces high levels of ELDKWA-epitope-specific neutralizing antibody. Immunol Invest, 2000, 29: 41-50.
    [101] Yu T, Bai Y, Dierich M P, et al. Induction of high levels of epitope-specific antibodies by epitope/peptide candidate vaccines against human immunodeficiency virus type-1 (HIV-1). Microbiol Immunol, 2000, 44: 105-110.
    [102] Dong X N, Xiao Y, Chen Y H. ELNKWA-epitope specific antibodies induced by epitope-vaccine recognize ELDKWA- and other two neutralizing-resistant mutated epitopes on HIV-1 gp41. Immunol Lett, 2001, 75: 149-152.
    [103] Lu Y, Ding J, Chen Y H. Immunogenicity and specificity of the candidate multi-epitope-vaccines against HIV-1. Immunopharmacol Immunotoxicol, 2001, 23: 487-494.
    [104] Tian H, Xiao Y, Qin L, et al. Antigenicity and predefined specificities of the multi-epitope vaccine in candidate consisting of neutralizing epitope and mutated epitopes suggested a new way against HIV-1 mutation. Immunobiology, 2001, 204: 434-441.
    [105] Tian H, Xiao Y, Zhu M, et al. HIV epitope-peptides in aluminum adjuvant induced high levels of epitope-specific antibodies. Int Immunopharmacol, 2001, 1: 763-768.
    [106] Tian H, Xiao Y, Zhu M, et al. Induction of monoclonal antibodies with predefined epitope-specificity by epitope-vaccines. Immunol Lett, 2001, 75: 161-162.
    [107] Lu Y, Ding J, Liu W, et al. A candidate vaccine against influenza virus intensively improved the immunogenicity of a neutralizing epitope. Int Arch Allergy Immunol, 2002, 127: 245-250.
    [108] Liu W, Li H, Chen Y H. N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol Med Microbiol, 2003, 35: 141-146.
    [109] Liu Z, Wang Z, Chen Y H. Predefined spacers between epitopes on a recombinant epitope-peptide impacted epitope-specific antibody response. Immunol Lett, 2005, 97: 41-45.
    [110] Li H, Ding J, Chen Y H. Recombinant protein comprising multi-neutralizing epitopes induced high titer of antibodies against influenza A virus. Immunobiology, 2003, 207: 305-313.
    [111] Li H, Liu Z Q, Ding J, et al. Recombinant multi-epitope vaccine induce predefined epitope-specific antibodies against HIV-1. Immunol Lett, 2002, 84: 153-157.
    [112] Liu Z, Chen Y H. Design and construction of a recombinant epitope-peptide gene as a universal epitope-vaccine strategy. J Immunol Methods, 2004, 285: 93-97.
    [113] Liu W, Peng Z, Liu Z, et al. High epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine, 2004, 23: 366-371.
    [114] Liu W, Chen Y H. High epitope density in a single protein molecule significantly enhances antigenicity as well as immunogenicity: a novel strategy for modern vaccine development and a preliminary investigation about B cell discrimination of monomeric proteins. Eur J Immunol, 2005, 35: 505-514.
    [115] Dong X N, Wei K, Liu Z Q, et al. Candidate peptide vaccine induced protection against classical swine fever virus. Vaccine, 2002, 21: 167-173.
    [116] Dong X N, Chen Y, Wu Y, et al. Candidate multi-peptide-vaccine against classical swine fever virus induced potent immunity with serological marker. Vaccine, 2005, 23: 3630-3633.
    [117] Dong X N, Chen Y H. Spying the neutralizing epitopes on E2 N-terminal by candidate epitope-vaccines against classical swine fever virus. Vaccine, 2006, 24: 4029-4034.
    [118] Dong X N, Chen Y H. Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2.Vaccine, 2006, 24: 1906-1913.
    [119] Dong X N, Qi Y, Ying J, et al. Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine, 2006, 24: 426-434.
    [120] Liu S, Tu C, Wang C, et al. The protective immune response induced by B cell epitope of classical swine fever virus glycoprotein E2. J Virol Methods, 2006, 134: 125-129.
    [121] Liu S, Yu X, Wang C, et al. Quadruple antigenic epitope peptide producing immune protection against classical swine fever virus. Vaccine, 2006, 24: 7175-7180.
    [122]朱立平,陈学清.免疫学常用实验方法.北京:人民军医出版社, 2000.
    [123]金伯泉.细胞和分子免疫学实验技术.西安:第四军医大学出版社, 2002.
    [124] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.
    [125] Geysen H M, Meloen R H, Barteling S J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci USA, 1984, 81: 3998-4002.
    [126] Lin M, Lin F, Mallory M, et al. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J Virol, 2000, 74: 11619-11625.
    [127] Kosmidou A, Ahl R, Thiel H J, et al. Differentiation of classical swine fever virus (CSFV) strains using monoclonal antibodies against structural glycoproteins. Vet Microbiol, 2005, 47: 111-118.
    [128] Zhang F, Yu M, Weiland E, et al. Characterization of epitopes for neutralizing monoclonal antibodies to classical swine fever virus E2 and Erns using phage-displayed random peptide library. Arch Virol, 2006, 151: 37-54.
    [129] Edward S, Sands J J. Antigenic comparison of hog cholera virus isolates from Europe, America and Asia using monoclonal antibodies. DTW (Dtsch Tieraerztl. Wochenschr), 1990: 79-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700