基于微波调控技术的量子非局域关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子非局域性和量子关联是量子力学的两个独特的性质。作为两种不同的量子资源,在量子信息处理中扮演者十分重要的作用。到目前为止,在实验上已经利用纠缠光子对、原子的纠缠、囚禁离子的纠缠、原子与光子之间的纠缠、单个中子不同自由度之间的纠缠以及超导量子比特的纠缠等验证了量子非局域性(Bell不等式和无不等式形式的Hardy非局域性)。量子关联被认为是量子力学中一个比量子纠缠更基本的概念。量子关联是近年来的一个研究热点,吸引了很多研究者的兴趣。然而,在实际的条件下,量子系统不可避免的与周围的环境发生相互作用。这将导致量子系统发生退相干。因此,研究在退相干环境中量子关联的动力学是十分必要的。本文我们研究了在驱动腔系统(如电路量子电动力学系统)中基于量子非破坏性测量验证两体和三体量子非局域性以及在局域的退相干信道中两体量子态的量子关联的动力学。主要的研究内容如下:
     1.在驱动腔系统中,当二能级原子(量子比特)色散耦合于腔场且考虑原子与腔场之间所有的统计量子关联(即超越了平均场近似),通过探测驱动腔的稳态透射谱可以实现对腔内两个二能级原子的量子非破坏性测量,即透射谱中每一个透射峰标记相应的计算基态且透射峰的相对高度等于相应的计算基态在被探测态中的叠加几率。基于这类量子非破坏性测量,不需要惯常的量子态层析技术就可以确定制备的量子态的存在。利用这类测量可以确定局域的经典变量之间的非局域关联函数。因此,表征两体量子非局域性的Bell不等式和梯子型Hardy非局域性可以被有效地验证。
     2.作为两体量子非局域性验证的自然推广,基于驱动腔系统中三个二能级原子的量子非破坏性测量,对三种三比特量子态(GHZ态、W态和两体可分的三比特态),我们提出了验证三体量子非局域性(Mermin不等式和Svetlichny不等式)的实验上可行的方案。研究结果表明Mermin不等式可以被这三种量子态违背,但Svetlichny不等式只会被GHZ和W态违背。这意味着只有Svetlichny不等式才能表征真正的三体量子非局域性。因此,Svetlichny不等式的违背可以看作真正的三体纠缠存在的鲁棒的判据。
     3.研究了在三类局域的退相干信道(比特翻转、相位翻转和比特-相位翻转信道)中一类两比特量子态的几何量子关联的动力学。我们发现,在退相干信道中这类态的几何量子关联存在四种动力学行为:单调地衰减到零;单调衰减过程中存在一个突变点;单调衰减过程中存在两个突变点;先在有限的时间内保持不变然后再单调地衰减到零。同时可以发现没有几何量子关联的突然死亡发生。进一步地,建立了在这三类退相干信道中几何量子关联的演化所满足的因式分解定律。一旦给定了退相干信道的类型,不需要借助于初态本身,从这个定律可得几何量子关联演化的下界。
     4.研究了在五类局域的退相干信道(退相、相位翻转、bit/trit翻转、bit/trit相位翻转和退极化信道)中一类含有两个参数的qubit-qutrit态的经典关联、测量诱导扰动量化的量子关联和量子纠缠的动力学。我们发现,在一定条件下,经典关联保持不变或单调地衰减到零。测量诱导扰动存在三种动力学行为:单调地衰减到零;单调地衰减到一个非零的稳定值(即剩余量子关联存在);先从零单调地增加到最大值再单调地减小到零。与量子纠缠的突然死亡现象不同,经典关联和测量诱导扰动都不会出现突然死亡。以非惯性系框架下的情况为例,我们研究了由Unruh效应产生的一类qubit-qutrit态的测量诱导扰动及其在这五类局域的退相干信道中的动力学。我们发现,随着加速参数的增加测量诱导扰动而减小。在退相干信道中这类态的测量诱导扰动单调地衰减到零或者一个非零的稳定值。对相同的退相干参数,随着加速参数的增加测量诱导扰动而减小
Quantum nonlocality and quantum correlation are two unique properties of quantum mechanics. As different kinds of quantum resources, they play important roles in quantum information processing. Up to now, quantum nonlocality characterized by Bell inequality and Hardy's nonlocality without inequality has been experimentally tested with the entanglement of photons, atoms, trapped ions, an atom and a photon, two degrees of freedom of single neutron, superconducting qubits, etc. Quantum correlation is considered as a more fundamental concept than quantum entanglement in quantum mechanics. In recent years, many researchers focus their attentions on this hot research topic. However, in a realistic condition, a quantum system would inevitably interact with its surrounding environments. This leads to decoherence of this system occurs. Thus it is necessary to study the dynamics of quantum correlation under decoherence. In this dissertation, we study how to test bipartite and tripartite quantum nonlocality in a driven cavity (eg. circuit QED system) based on quantum nondemolition measurements (QNDs) and the dynamics of quantum correlation under local decoherence channels. The major results are listed as follows:
     1. For two two-level atoms (qubits) dispersively coupled to a driven cavity and considering all the statistical quantum correlations between atoms and cavity (i.e., beyond the mean-field approximation), the QND measurement of two two-level atoms can be realized by detecting steady-state transmission spectra of the driven cavity. Specifically, each peak in the transmission spectra marks one of the computational basis states and the relevant height of such a peak corresponds to the superposed probability of computational basis states in the detected states. With this kind of QND measurements, the generated Bell states can be robustly confirmed without conventional quantum state tomography. Further, the nonlocal correlation functions between local classical variables can be determined by QND measurements. In this way, bipartite quantum nonlocality characterized by Bell inequality and ladder-like Hardy's nonlocality can be efficiently tested.
     2. As a natural generalization of the test of bipartite quantum nonlocality, based on the QND measurements of three two-level atoms in a driven cavity, we propose an experimentally feasible proposal to test tripartite quantum nonlocality characterized by Mermin inequality and Svetlichny inequality, for three kinds of three-qubit GHZ, W and biseparable states. It can be found that Mermin inequality can be violated for these three kinds of three-qubit states, while Svetlichny inequality can only be violated by GHZ and W states. This implies that only Svetlichny inequality can characterize genuine tripartite quantum nonlocality. Thus, the violation of Svetlichny inequality can be considered as a robust criterion of the existence of genuine tripartite quantum entanglement.
     3. The dynamics of geometric measure of quantum discord (GMQD) for a class of two-qubit states under local decoherence channels (bit flip, phase flip and bit-phase flip) is investigated. It can be found that four kinds of dynamical behaviors of the GMQD under decoherence channels exist:monotonic decay to zero; existing a sudden change point during the monotonic decay; existing two sudden change points during the monotonic decay; first keeping unchanged in a finite interval and then monotonic decay to zero. Meanwhile, it can be also found that no sudden death of the GMQD occurs. Furthermore, a relevant factorization law concerning the evolution of the GMQD under decoherence channels is established. From this law, once the decoherence channels are given, the lower bound of GMQD can be obtained, without resorting to the initial quantum state itself.
     4. We investigate the dynamics of classical correlation, quantum correlation quantified by measurement-induced disturbance (MID) and quantum entanglement for a class of two-parameter qubit-qutrit states under local decoherence channels (dephasing, phase flip, bit/trit flip, bit/trit phase flip and depolarizing). It can be seen that, under certain conditions, classical correlation may be keep unchanged or decay monotonically. MID shows three kinds of dynamical behaviors:monotonic decay to zero; monotonic decay to a nonzero steady value (i.e., residual quantum correlation exists); first increasing from zero to a maximal value and then decay to zero in a monotonic way. Different from the sudden death of quantum entanglement, no sudden death of classical and quantum correlations occurs. Taking the cases in noninertial frames as an example, we study the MID and its dynamics for a class of qubit-qutrit states generated by Unruh effect under these five kinds of local decoherence channels. It can be found that the MID decreases as the acceleration parameter increases. The MID under local decoherence channels can monotonically decay to zero or a nonzero steady value. For the same decoherence parameter, the MID decreases as the acceleration parameter increases.
引文
[1]张永德.量子力学.第1版.科学出版社,2006.
    [2]A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.1935,47:777.
    [3]N. Bohr. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.1935,48:696.
    [4]D. Bohm. A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables Ⅰ. Phys. Rev.1952,85:166.
    [5]J. S. Bell. On the Einstein Podolsky Rosen Paradox. Physics (Long Island City, N. Y.). 1964,1:195.
    [6]J. S. Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 1966,38:447.
    [7]A. Aspect, P. Grangier, and G. Roger. Experimental Tests of Realistic Local Theories via Bell's Theorem. Phys. Rev. Lett.47:460.
    [8]A. Aspect, P. Grangier, and G. Roger. Experimental Realization of Einstein-Podolsky-Rosen-Bohm, Gedankenexperiment:A New Violation of Bell's Inequalities. Phys. Rev. Lett.1982,49:91.
    [9]A. Aspect, J. Dalibard, and G. Roger. Experimental Tests of Bell's Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett.1982,49:1804.
    [10]M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs. The Einstein-Podolsky-Rosen paradox:From concepts to applications. Rev. Mod. Phys.2009,81:1727.
    [11]P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih. New High-Intensity Source of Polarization-Entangled Photon Pairs. Phys. Rev. Lett.1995, 75:4337.
    [12]W. Tittel, J. Brendel, H. Zbinden, and N. Gisin. Violation of Bell Inequalities by Photons More Than 10 km Apart. Phys. Rev. Lett.1998,81:3563.
    [13]G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger. Violation of Bell's Inequality under Strict Einstein Locality Conditions. Phys. Rev. Lett.1998,81:5039.
    [14]W. Tittel, J. Brendel, N. Gisin, and H. Zbinden. Long-distance Bell-type tests using energy-time entangled photons. Phys. Rev. A 1999,59:4150.
    [15]Y. S. Zhang, Y. F. Huang, C. F. Li, and G. C. Guo. Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys. Rev. A 2002,66: 062315.
    [16]J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd. Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum-and Position-Entangled Photons from Spontaneous Parametric Down Conversion. Phys. Rev. Lett.2004,92:210403.
    [17]H. Takesue and K. Inoue. Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop. Phys. Rev. A 2004,70:031802.
    [18]J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat. Generation of Hyperentangled Photon Pairs. Phys. Rev. Lett.2005,95:260501.
    [19]Y. A. Chen, T. Yang, A. N. Zhang, Z. Zhao, A. Cabello, and J. W. Pan. Experimental Violation of Bell's Inequality beyond Tsirelson's Bound. Phys. Rev. Lett.2006,97: 170408.
    [20]T. Paterek, A. Fedrizzi, S. Groblacher, T. Jennewein, M. Zukowski, M. Aspelmeyer, and A. Zeilinger. Experimental Test of Nonlocal Realistic Theories Without the Rotational Symmetry Assumption. Phys. Rev. Lett.2007,99:210406.
    [21]S. Groblacher, T. Paterek, R. Kaltenbaek, C. Brukner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger. An experimental test of non-local realism. Nature (London) 2007,446: 871.
    [22]M. D. Eisaman, E. A. Goldschmidt, J. Chen, J. Fan, and A. Migdall. Experimental test of nonlocal realism using a fiber-based source of polarization-entangled photon pairs. Phys. Rev. A 2008,77:032339.
    [23]X. S. Ma, A. Qarry, J. Kofler, T. Jennewein, and A. Zeilinger. Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs. Phys. Rev. A 2009,79:042101.
    [24]R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields. Bell-Inequality Violation with a Triggered Photon-Pair Source. Phys. Rev. Lett. 2009,102:030406.
    [25]G. Lima, G. Vallone, A. Chiuri, A. Cabello, and P. Mataloni. Experimental Bell inequality violation without the postselection loophole. Phys. Rev. A 2010,81: 040101.
    [26]F. Bussieres, J. A. Slater, J. Jin, N. Godbout, and W. Tittel. Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers. Phys. Rev. A 2010,81: 052106.
    [27]T. Scheidl, R. Ursin, J. Kofler, S. Ramelow, X. S. Ma, T. Herbst, L. Ratschbacher, A. Fedrizzi, N. K. Langford, T. Jennewein, and A. Zeilinger. Violation of local realism with freedom of choice. Proceedings of the National Academy of Sciences 2010,107: 19708.
    [28]E. Pomarico, J. D. Bancal, B. Sanguinetti, A. Rochdi, and N. Gisin. Various quantum nonlocality tests with a commercial two-photon entanglement source. Phys. Rev. A 2011,83:052104.
    [29]M. S. Palsson, J. J. Wallman, A. J. Bennet, and G. J. Pryde. Experimentally demonstrating reference-frame-independent violations of Bell inequalities. Phys. Rev. A 2012,86:032322.
    [30]M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe and D. J. Wineland. Experimental Violation of a Bell's Inequalitiy with efficient detection. Nature (London)2001,409:791.
    [31]D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, and A. Kuzmich. Entanglement of Remote Atomic Qubits. Phys. Rev. Lett.2006,96:030405.
    [32]D. N. Matsukevich, P. Maunz, D. L. Moehring, S. Olmschenk, and C. Monroe. Bell Inequality Violation with Two Remote Atomic Qubits. Phys. Rev. Lett.2008,100: 150404.
    [33]D. L. Moehring, M. J. Madsen, B. B. Blinov, and C. Monroe. Experimental Bell Inequality Violation with an Atom and a Photon. Phys. Rev. Lett.2004,93:090410.
    [34]D. N. Matsukevich, T. Chaneliere, M. Bhattacharya, S. Y. Lan, S. D. Jenkins, T. A. B. Kennedy, and A. Kuzmich. Entanglement of a Photon and a Collective Atomic Excitation. Phys. Rev. Lett.2005,95:040405.
    [35]J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter. Observation of Entanglement of a Single Photon with a Trapped Atom. Phys. Rev. Lett.2006,96:030404.
    [36]B. Weber, H. P. Specht, T. Miiller, J. Bochmann, M. Miicke, D. L. Moehring, and G. Rempe. Photon-Photon Entanglement with a Single Trapped Atom. Phys. Rev. Lett. 2009,102:030501.
    [37]M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley, A. D. O'Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, and M. Martinis. Violation of Bell's Inequalitiy in Josephson phase qubits. Nature (London) 2009,461:504.
    [38]Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, and H. Rauch. Violation of a Bell-like inequality in single-neutron interferometry. Nature (London) 2003,425:45.
    [39]S. Sponar, J. Klepp, C. Zeiner, G. Badurek, and Y. Hasegawa. Violation of a Bell-like inequality for spin-energy entanglement in neutron polarimetry. Phys. Lett. A 2010,374: 431.
    [40]J. F. Clauser, M. A. Home, A. Shimony, and R. A. Holt. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett.1969,23:880.
    [41]G. Svetlichny. Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 1987,35:3066.
    [42]N. D. Mermin. Extreme Quantum Entanglement in a Superposition of Macroscopically Distant States. Phys. Rev. Lett.1990,65:1838.
    [43]N. Gisin and A. Peres. Maximal violation of Bell's inequality for arbitrarily large spin. Phys. Lett. A 1992,162:15.
    [44]M. Seevinck and G. Svetlichny. Bell-Type Inequalities for Partial Separability in N-Particle Systems and Quantum Mechanical Violations. Phys. Rev. Lett.2002,89: 060401.
    [45]D. Collins, N. Gisin, S. Popescu, D. Roberts, and V. Scarani. Bell-Type Inequalities to Detect True n-Body Nonseparability. Phys. Rev. Lett.2002,88:170405.
    [46]M. Zukowski, C. Brukner, W. Laskowski, and M. Wiesniak. Bell's Theorem for General N-Qubit States. Phys. Rev. Lett. 2002,88:210402.
    [47]D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu. Bell Inequalities for Arbitrary Hign-Dimensional Systems. Phys. Rev. Lett.2002,88:040404.
    [48]A. Cabello. Bell's inequality for n spin-s particles. Phys. Rev. A 2002,65:062105.
    [49]L. B. Fu. General Correlation Functions of the Clauser-Horne-Shimony-Holt Inequality for Arbitrary High-Dimensional Systems. Phys. Rev. Lett.2004,92:130404.
    [50]W. Laskowski, T. Paterek, M. Zukowski, and C. Brukner. Tight Multipartite Bell's Inequalities Involving Many Measurement Settings. Phys. Rev. Lett.2004,93:200401.
    [51]A. Acin, J. L. Chen, N. Gisin, D. Kaszlikowski, L. C. Kwek, C. H. Oh, and M. Zukowski. Coincidence Bell Inequality for Three Three-Dimensional Systems. Phys. Rev. Lett.2004,92:250404.
    [52]V. Scarani, A. Acin, E. Schenck, and M. Aspelmeyer. Nonlocality of cluster states of qubits. Phys. Rev. A 2005,71:042325.
    [53]O. Guhne, G. Toth, P. Hyllus, and H. J. Briegel. Bell Inequalities for Graph States. Phys. Rev. Lett.2005,95:120405.
    [54]J. L. Chen, C. Wu, L. C. Kwek, C. H. Oh, and M. L. Ge. Violating Bell inequalities maximally for two d -dimensional systems. Phys. Rev. A.2006,74:032106.
    [55]W. Son, J. Lee, and M. S. Kim. Generic Bell Inequalities for Multipartite Arbitrary Dimensional Systems. Phys. Rev. Lett.2006,96:060406.
    [56]K. Chen, S. Albeverio, and S. M. Fei. Two-setting Bell inequalities for many qubits. Phys. Rev. A 2006,74:050101.
    [57]C. Wu, J. L. Chen, L. C. Kwek, and C. H. Oh. Quantum nonlocality of N-qubit W states. Phys. Rev. A 2006,73:012310.
    [58]S. W. Lee, Y. W. Cheong, and J. Lee. Generalized structure of Bell inequalities for bipartite arbitrary-dimensional systems. Phys. Rev. A 2007,76:032108.
    [59]S. W. Ji, J. Lee, J. Lim, K. Nagata, and H. W. Lee. Multisetting Bell inequality for qudits. Phys. Rev. A 2008,78:052103.
    [60]D. L. Deng, Z. S. Zhou, and J. L. Chen. Svetlichny's approach to detecting genuine multipartite entanglement in arbitrarily-high-dimensional systems by a Bell-type inequality. Phys. Rev. A 2009,80:022109.
    [61]J. L. Chen and D. L. Deng. Tight correlation-function Bell inequality for multipartite d-dimensional systems. Phys. Rev. A 2009,79:012111.
    [62]J. L. Chen, D. L. Deng, H. Y. Su, C. Wu, and C. H. Oh. Detecting full N-particle entanglement in arbitrarily-high-dimensional systems with Bell-type inequalities. Phys. Rev. A 2011,83:022316.
    [63]Q. Y. He, P. D. Drummond, and M. D. Reid. Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems. Phys. Rev. A 2011,83: 032120.
    [64]J. D. Bancal, N. Brunner, N. Gisin, and Y. C. Liang. Detecting Genuine Multipartite Quantum Nonlocality:A Simple Approach and Generalization to Arbitrary Dimensions. Phys. Rev. Lett.2011,106:020405.
    [65]B. Grandjean, Y. C. Liang, J. D. Bancal, N. Brunner, and N. Gisin. Bell inequalities for three systems and arbitrarily many measurement outcomes. Phys. Rev. A 2012,85: 052113.
    [66]J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature(London) 2000,403:515.
    [67]Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, M. Zukowski, and J. W. Pan. Experimental Violation of Local Realism by Four-Photon Greenberger-Horne-Zeilinger Entanglement. Phys. Rev. Lett.2003,91:180401.
    [68]G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and V. Berardi. Realization and Characterization of a Two-Photon Four-Qubit Linear Cluster State. Phys. Rev. Lett. 2007,98:180502.
    [69]W. B. Gao, X. C. Yao, P. Xu, H. Lu, O. Giihne, A. Cabello, C. Y. Lu, T. Yang, Z. B. Chen, and J. W. Pan. Bell inequality tests of four-photon six-qubit graph states. Phys. Rev. A 2010,82:042334.
    [70]R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello. Experimental Entanglement and Nonlocality of a Two-Photon Six-Qubit Cluster State. Phys. Rev. Lett. 2009,103:160401.
    [71]J. C. Howell, A. Lamas-Linares, and D. Bouwmeester. Experimental Violation of a Spin-1 Bell Inequality Using Maximally Entangled Four-Photon States. Phys. Rev. Lett. 2002,88:030401.
    [72]P. Walther, M. Aspelmeyer, K. J. Resch, and A. Zeilinger. Experimental Violation of a Cluster State Bell Inequality. Phys. Rev. Lett.2005,95:020403.
    [73]J. Lavoie, R. Kaltenbaek, and K. J. Resch. Experimental violation of Svetlichny's inequality. New J. Phys.2009,11:073051.
    [74]H. X. Lu, J. Q. Zhao, L. Z. Cao, and X. Q. Wang. Experimental investigation of the robustness against noise for different Bell-type inequalities in three-qubit Greenberger-Horne-Zeilinger states. Phys. Rev. A 2011,84:044101.
    [75]H. X. Lu, J. Q. Zhao, X. Q. Wang, and L. Z. Cao. Experimental demonstration of tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states. Phys. Rev. A 2011,84:012111.
    [76]L. S Bishop, L. Tornberg, D. Price, E. Ginossar, A. Nunnenkamp, A. A. Houck, J. M. Gambetta, J. Koch, G. Johansson, S. M. Girvin, and R. J. Schoelkopf. Proposal for generating and detecting multi-qubit GHZ states in circuit QED. New J. Phys.2009,11: 073040.
    [77]M. Neeley, Radoslaw C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O'Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis. Generation of three-qubit entangled states using superconducting phase qubits. Nature (London) 2010,467:570.
    [78]L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature (London) 2010,467:574.
    [79]D. M. Greenberger, M. Home, and A. Zeilinger. "Going beyond Bell's theorem," in Bell's Theorem, Quantum Theory, and Conceptions of the Universe. Edited by M. Kafatos Kluwer, Dordrecht,1989.
    [80]L. Hardy. Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett.1993,71:1665.
    [81]S. Goldstein. Nonlocality without inequalities for almost all entangled states for two particles. Phys. Rev. Lett.1994,72:1951.
    [82]D. Boschi, S. Branca, F. De Martini, and L. Hardy. Ladder Proof of Nonlocality without Inequalities:Theoretical and Experimental Results. Phys. Rev. Lett.1997,79:2755.
    [83]G. Kar. Testing Hardy's nonlocality with n spin-1/2 particles. Phys. Rev. A 1997,56: 1023.
    [84]A. Cabello. Ladder proof of nonlocality without inequalities and without probabilities. Phys. Rev. A 1998,58:1687.
    [85]S. Ghosh and G. Kar. Hardy's nonlocality for two spin-s particles. Phys. Lett. A 1998, 240:191.
    [86]A. Cabello. All versus Nothing" Inseparability for Two Observers. Phys. Rev. Lett.2001, 87:010403.
    [87]A. Cabello. Bell's Theorem without Inequalities and without Probabilities for Two Observers. Phys. Rev. Lett.2001,86:1911.
    [88]S. B. Zheng. Quantum nonlocality for a three-particle nonmaximally entangled state without inequalities. Phys. Rev. A 2002,66:014103.
    [89]A. Cabello. Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states. Phys. Rev. A 2002,65:032108.
    [90]A. Cabello. Bell's Theorem without Inequalities and without Alignments. Phys. Rev. Lett.2003,91:230403.
    [91]A. Cabello. Stronger Two-Observer All-Versus-Nothing Violation of Local Realism. Phys. Rev. Lett.2005,95:210401.
    [92]S. Kunkri and S. K. Choudhary. Nonlocality without inequality for spin-s systems. Phys. Rev. A 2005,72:022348.
    [93]G. Ghirardi and L. Marinatto. Nonlocality without inequalities for almost all entangled states of any quantum system. Phys. Rev. A 2005,72:014105.
    [94]G. Ghirardi and L. Marinatto. Hardy's criterion of nonlocality for mixed states. Phys. Rev. A 2006,73:032102.
    [95]G. Ghirardi and L. Marinatto. Hardy's proof of nonlocality in the presence of noise. Phys. Rev. A 2006,74:062107.
    [96]D. M. Greenberger, M. Home, and A. Zeilinger. Bell theorem without inequalities for two particles. Ⅰ. Efficient detectors. Phys. Rev. A 2008,78:022110.
    [97]D. M. Greenberger, M. Home, A. Zeilinger, and M. Zukowski. Bell theorem without inequalities for two particles. Ⅱ. Inefficient detectors. Phys. Rev. A 2008,78:022111.
    [98]A. Ahanj. Hardy's argument and successive spin-s measurements. Phys. Rev. A 2010,82: 012101.
    [99]G. Vallone, I. Gianani, E. B. Inostroza, C. Saavedra, G. Lima, A. Cabello, and P. Mataloni. Testing Hardy's nonlocality proof with genuine energy-time entanglement. Phys. Rev. A 2011,83:042105.
    [100]G. Di Giuseppe, F. De Martini, and D. Boschi. Experimental test of the violation of local realism in quantum mechanics without Bell inequalities. Phys. Rev. A 1997,56: 176.
    [101]C. Cinelli, M. Barbieri, R. Perris, P. Mataloni, and F. De Martini. All-Versus-Nothing Nonlocality Test of Quantum Mechanics by Two-Photon Hyperentanglement. Phys. Rev. Lett.2005,95:240405.
    [102]Z. B. Chen, J. W. Pan, Y. D. Zhang, C. Brukner, and A. Zeilinger. All-Versus-Nothing Violation of Local Realism for Two Entangled Photons. Phys. Rev. Lett.2003,90: 160408.
    [103]J. R Torgerson, D. Branning, C. H Monken, and L. Mandel. Experimental demonstration of the violation of local realism without Bell inequalities. Phys. Lett. A 1995,204:323.
    [104]W. T. Irvine, J. F. Hodelin, C. Simon, and D. Bouwmeester. Realization of Hardy's Thought Experiment with Photons. Phys. Rev. Lett.2005,95:030401.
    [105]J. S. Lunden and A. M. Steinberg. Experimental Joint Weak Measurement on a Photon Pair as a Probe of Hardy's Paradox. Phys. Rev. Lett.2009,102:020404.
    [106]K, Yokota, T. Yamamoto, M. Koashi, and N. Imoto. Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair. New J. Phys.2009, 11:033011.
    [107]A. G. White, D. F. James, P. H. Eberhard, and P. G. Kwiat. Nonmaximally Entangled States:Production, Characterization, and Utilization. Phys. Rev. Lett.1999,83:3103.
    [108]A. Fedrizzi, M. P. Almeida, M. A. Broome, A. G. White, and M. Barbieri. Hardy's Paradox and Violation of a State-Independent Bell Inequality in Time. Phys. Rev. Lett. 2011,106:200402.
    [109]L. Chen and J. Romero. Hardy's nonlocality proof using twisted photons. Optics Express 2012,20:21687.
    [110]E. Schrodinger. Die gegenwartige Situation in der Quantenmechanik. Naturwissenschaften 1935,23:807.
    [111]M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, U.K.2000.
    [112]R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entanglement. Rev. Mod. Phys.2009,81:865.
    [113]L. Henderson and V. Vedral. Classical, quantum and total correlations. J. Phys. A 2001, 34:6899.
    [114]H. Ollivier and W. H. Zurek. Quantum Discord:A Measure of the Quantumness of Correlations. Phys. Rev. Lett.2001,88:017901.
    [115]A. Datta, A. Shaji, and C. M. Caves. Quantum Discord and the Power of One Qubit. Phys. Rev. Lett.2008,100:050502.
    [116]K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral. The classical-quantum boundary for correlations:Discord and related measures. Rev. Mod. Phys.2012,84: 1655.
    [117]B. Dakic, V. Vedral, and C. Brukner. Necessary and Sufficient Condition for Nonzero Quantum Discord. Phys. Rev. Lett.2010,105:190502.
    [118]S. Luo and S. Fu. Geometric measure of quantum discord. Phys. Rev. A 2010,82: 034302.
    [119]S. Luo. Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 2008,77:022301.
    [120]W. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.2003,75:715.
    [121]T. Yu and J. H. Eberly. Sudden Death of Entanglement. Science 2009,323:598.
    [122]T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas-Boas. Robustness of quantum discord to sudden death. Phys. Rev. A 2009,80:024103.
    [123]A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin. Almost all quantum states have nonclassical correlations. Phys. Rev. A 2010,81:052318.
    [124]J. H. Cole. Understanding entanglement sudden death through multipartite entanglement and quantum correlations. J. Phys. A 2010,43:135301.
    [125]F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira. Non-Markovian dynamics of quantum discord. Phys. Rev. A 2010,81:052107.
    [126]G. X. Li, Z. Yi, and Z. Ficek. Nullity of quantum discord of two-qubit X-state systems. arXiv:1101.4983.
    [127]J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen. Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime. Eur. Phys. J. D 2012,66: 2.
    [128]F. F. Fanchini, L.K. Castelano, and A. O. Caldeira. Entanglement versus quantum discord in two coupled double quantum dots. New J. Phys.2010,12:073009.
    [129]Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo. Quantum discord dynamics in the presence of initial system-cavity correlations. J. Phys. B 2011,44:035503.
    [130]M. L. Hu and H. Fan. Robustness of quantum correlations against decoherence. Annals of Physics 2012,327:851.
    [131]J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra. System reservoir dynamics of quantum and classical correlations. Phys. Rev. A 2010,81: 022116.
    [132]B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng. Non-Markovian effect on the quantum discord. Phys. Rev. A 2010,81:014101.
    [133]R. L. Franco, B. Bellomo, E. Andersson, and G. Compagno. Revival of quantum correlations without system-environment back-action. Phys. Rev. A 2012,85:032318.
    [134]J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral. Classical and quantum correlations under decoherence. Phys. Rev. A 2009,80:044102.
    [135]L. Mazzola, J. Piilo, and S. Maniscalco. Sudden Transition between Classical and Quantum Decoherence. Phys. Rev. Lett.2010,104:200401.
    [136]M. D. Lang and C. M. Caves. Quantum Discord and the Geometry of Bell-Diagonal States. Phys. Rev. Lett.2010,105:150501.
    [137]L. Mazzola, J. Piilo, and S. Maniscalco. Frozen discord in non-Markovian dephasing channels. Int. J. Quant. Infor.2011,9:981.
    [138]J. B. Yuan, J. Q. Liao, and L. M. Kuang. Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B 2010,43:165503.
    [139]B. You and L. X. Cen. Necessary and sufficient conditions for the freezing phenomena of quantum discord under phase damping. Phys. Rev. A 2012,86:012102.
    [140]I. Chakrabarty, S. Banerjee, and N. Siddharth. A study of quantum correlations in open quantum systems. Quant. Inf. Comput.2011,11:0541.
    [141]Z. Xu, W. Yang, X. Xiao, and M. Feng. Comparison of different measures for quantum discord under non-Markovian noise. J. Phys. A 2011,44:395304.
    [142]B. Bellomo, R. L. Franco, and G. Compagno. Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 2012,86:012312.
    [143]J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo. Experimental investigation of classical and quantum correlations under decoherence. Nature Communications 2010,1:7.
    [144]J. S. Xu, C. F. Li, C. J. Zhang, X. Y. Xu, Y. S. Zhang, and G. C. Guo. Experimental investigation of the non-Markovian dynamics of classical and quantum correlations. Phys. Rev. A 2010,82:042328.
    [145]R. Auccaise, L. C. Celeri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra. Environment-Induced Sudden Transition in Quantum Discord Dynamics. Phys. Rev. Lett.2011,107:140403.
    [146]L. C. Celeri, J. Maziero, and R. M. Serra. Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quant. Infor.2011,9:1837.
    [147]H. Katiyar, S. S. Roy, T. S. Mahesh, and A. Patel. Evolution of quantum discord and its stability in two-qubit NMR systems. Phys. Rev. A 2012,86:012309.
    [148]B. Li, Z. X. Wang, and S. M. Fei. Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 2011,83:022321.
    [149]W. Song, L. B. Yu, P. Dong, D. C. Li, M. Yang, and Z. L. Cao. Geometric measure of quantum discord and the geometry of a class of two-qubit states. arXiv:1112.4318.
    [150]Y. Yao, H. W. Li, Z. Q. Tin, and Z. F. Han. Geometric interpretation of the geometric discord. Phys. Lett. A 2012,376:358.
    [151]H. Yuan and L. F. Wei. Geometric measure of quantum discord under decoherence and the relevant factorization law. Int. J. Theor. Phys.2013,52:987.
    [152]G. Karpat and Z. Gedik. Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 2011,375:4166.
    [153]H. R. Wei, B. C. Ren, and F. G. Deng. Geometric measure of quantum discord for a two-parameter class of states in a qubit-qutrit system under various dissipative channels. Quantum Information Processing 2013,12:1109.
    [154]H. Yuan and L. F. Wei. Correlation dynamics of two-parameter qubit-qutrit states under decoherence. Chinese Physics B (in press).
    [155]J. Wang and J. Jing. Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 2010,81:052120.
    [156]A. Datta. Quantum discord between relatively accelerated observers. Phys. Rev. A 2009,80:052304.
    [157]L. C. Celeri, A. G. S. Landulfo, R. M. Serra, and G. E. A. Matsas. Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A 2010,81: 062130.
    [158]M. Ramzan. Decoherence dynamics of geometric measure of quantum discord and measurement-induced nonlocality for noninertial observers at finite temperature. arXiv:1204.1900.
    [159]Z. Tian and J. Jing. How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 2012,707:264.
    [160]M. Ramzan. Dynamics of multipartite quantum correlations under decoherence. arXiv:1205.3133.
    [161]H. Yuan and L. F. Wei. Dynamics of measurement-induced disturbance for a qubit-qutrit system in noninertial frames. Commun. Theor. Phys.2013,59:17.
    [162]P. R. Berman. editor, Cavity quantum electrodynamics. Academic Press,1994.
    [163]E. T. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE.1963,51:89.
    [164]C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble. The Atom-Cavity Microscope:Single Atoms Bound in Orbit by Single Photons. Science 2000,287:1447.
    [165]J. Raimond, M. Brune, and S. Haroche. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys.2001,73:565.
    [166]M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche. Quantum Rabi Oscillation:A Direct Test of Field Quantization in a Cavity. Phys. Rev. Lett.1996,76:1800.
    [167]G. Rempe, H. Walther, N. Klein. Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett.1987,58:353.
    [168]R. J. Thompson, G. Rempe, H. J. Kimble. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett.1992,68:1132.
    [169]K. J. Vahala. Optical microcavities. Nature (London) 2003,424:839.
    [170]A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits:An architecture for quantum computation. Phys. Rev. A 2004,69:062320.
    [171]A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 2004,431:162.
    [172]J. Q. You and F. Nori. Superconducting circuits and quantum information. Physics Today 2005,58:42.
    [173]J. Clarke and F. K. Wilhelm. Superconducting quantum bits. Nature (London) 2008, 453:1031.
    [174]A. Shnirman, G. Schon, and Z. Hermon. Quantum manipulation of small Josephson junctions. Phys. Rev. Lett.1997,79:2371.
    [175]J. M. Martinis, S.Nam, J. Aumentado, and C. Urbina. Rabi oscillations in a large Josephson-junetion qubit. Phys. Rev. Lett.2002,89:117901.
    [176]J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. vander Wal, and S. Lloyd. Josephson persistent-current qubit. Science 1999,285:1036.
    [177]Y. Makhlin, G. Schon, and A. Shnirman. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys.2001,73:357.
    [178]D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. M. Girvin, and R. J. Schoelkopf. Ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett.2005,94:123602.
    [179]A. Wallraff,D. I. Schuster, A. Blais, L. Frunzio, J. Majer, S. M. Girvin, and R. J. Schoelkopf. Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout. Phys. Rev. Lett.2005,95:060501.
    [180]J. Gambetta, W. A. Braff, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf. Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement. Phys. Rev. A 2007,76:012325.
    [181]S. Filipp, P. Maurer, P. J. Leek, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L, Steffen, J. M. Gambetta, A. Blais, and A. Wallraff. Two-Qubit State Tomography using a Joint Dispersive Readout. Phys. Rev. Lett 2009,102:200402.
    [182]R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, M. Goppl, P. J. Leek, L. Steffen, A. Blais, and A. Wallraff. Dynamics of dispersive single qubit read-out in circuit quantum electrodynamics. Phys. Rev. A 2009,80:043840.
    [183]J. M. Chow, L. DiCarlo, J. M. Gambetta, A. Nunnenkamp, Lev S. Bishop, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Detecting highly entangled states with a joint qubit readout. Phys. Rev. A 2010,81:062325.
    [184]L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J.M. Chow, J. M. Gambetta, L Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature (London) 2010,467:574.
    [185]M. Tavis and F. W. Cummings. Exact Solution for an N-Molecule-Radiation Field Hamiltonian. Phys. Rev.1968,170:379.
    [186]D. F. walls and G. J. Milburn. Quantum Optics. Springer-Verlag, Berlin,2008.
    [187]A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 2007,75:032329.
    [188]H. Kim, M. R. Hwang, E. Jung, and D. K. Park. Difficulties in analytic computation for relative entropy of entanglement. Phys. Rev. A 2010,81:052325.
    [189]T. Konrad, F. de Melo, M. Tiersch, C. Kasztelan, A. Aragao, A. Buchleitner. Evolution equation for quantum entanglement. Nature Physics 2008,4:99.
    [190]D. P. Chi and S. Lee. Entanglement for a two-parameter class of states in 2×n quantum system. J. Phys. A 2003',36:11503.
    [191]M. Ali. Quantum discord for a two-parameter class of states in 2×d quantum systems. J. Phys. A 2010,43:495303.
    [192]S. Vinjanampathy and A. R. P. Rau. Calculation of quantum discord for qubit-qudit or N qubits. J. Phys. A 2012,45:095303.
    [193]D. Vidal and R. F. Werner. Computable measure of entanglement. Phys. Rev. A 2002, 65:032314.
    [194]W. G. Unruh. Notes on black-hole evaporation. Phys. Rev. D 1976,14:870.
    [195]J. Leon and E. Martin-Martinez. Spin and occupation number entanglement of Dirac fields for noninertial observers. Phys. Rev. A 2009,80:012314.
    [196]H. R. Wei, B. C. Ren, T. Li, M. Hua, and F. G. Deng. Dynamics of entanglement for a two-parameter class of states in a qubit-qutrit system. Commun. Theor. Phys.2012,57: 983.
    [197]M. Ramzan. Entanglement dynamics of a qubit-qutrit system in non-inertial frames. arXiv:1111.0945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700