若干四元数矩阵方程解的秩及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文我们主要运用矩阵广义逆和矩阵秩的方法,去研究四元数体上的若干具有重要意义的矩阵方程和方程组解中实矩阵的表达式及其极秩,并且利用极秩的性质给出了矩阵方程和方程组有特殊解的充分必要条件,以及一些相关的应用.
     全文共分为四章:
     第一章主要介绍了四元数、四元数矩阵的基本知识和基本性质以及四元数矩阵方程的研究背景、研究现状和本文所做的工作,另外还有一些重要的矩阵秩的公式.
     第二章我们在四元数体上研究了矩阵方程AXB+CYD=E,方程组A_1XB_1 + C_1YD_1 = E_1,A_2XB_2 + C_2YD_2 = E_2以及广义Sylvester方程组A_1X+YB_1 = C_1, A_2X+YB_2 = C_2.给出了方程(组)的解中实矩阵的具体表达式,并推导出了每个实矩阵的最秩,最后用秩等式给出了方程有特殊解的充要条件.
     第三章我们利用矩阵的技巧对四元数体上矩阵方程AXB+CYD=E和方程组A_1XB_1 = C_1, A_2XB_2= C_2的解做矩阵分块,再运用求矩阵秩的方法推导出解中各个分块的极秩,最后给出了方程(组)有各种特殊分块解的充要条件以及一些相关应用.
     第四章主要研究了四元数体上矩阵的Moore-Penrose逆、Drazin逆、群逆和{1,3),{1,4)-逆中各个实矩阵的秩等式和一些重要的秩的不等式,以及矩阵的各种广义逆为实矩阵或者是纯虚数矩阵的充要条件.
In this dissertation, by using the fundamental theory and methods of generalized inverse and rank of matrix, we investigate solutions of some classic linear equation and systems of linear matrix equations over quaternion division algebra. The expressions and the extreme ranks of real matrix in the solutions of matrix equations mentioned above are discussed. Moreover, the necessary and sufficient conditions for the existence of some special solutions over quaternion division algebra are presented. These results not only further enrich and develop the quaternion matrix algebra, but also very useful in appliced.
     The main contents are as the follows:
     In Chaper 1, we introduce the research background and progresses of quaternion, quaterion matrices and quaternion matrix equations as well as the work have been done in this thesis. Some preliminary knowledge of extreme rank formulas are also presented.
     Based on the preliminary knowledge of extreme rank formulas, in Chaper 2, we consider the linear equation AXB + CYD = E, the system of linear matrix equations A_1XB_1 + C_1YD_1 = E_1,A_2XB_2 + C_2YD_2 = E_2, and the system of Sylvester matrix equations A_1X+YB_1 = C_1, A_2X+YB_2 = C_2 over quaternion division algebra. The expressions of real matrices in solutions to the equations mentioned above are given. The extreme rank of real matrices in solutions to the equations mentioned above are derivated. As applications, we established the necessary and sufficient conditions for the existence of some special solutions of above systems over quaternion division algebra.
     In Chaper 3, the necessary and sufficient conditions for the existence of some special partitioned solutions to the quaternion matrix equation AXB + CYD = E and the system of quaternion matrix equations A_1XB_1 = C_1, A_2XB_2 = C_2 are discribed, which use the techniques of constructing partitioned matrices and extreme rank. Some corresponding results of special cases are also considered.
     In the last Chapter, the rank of Moore-Penrose inverse, Drazin inverse and Group inverse are investiged. We also present the maximal and minimal ranks of {1,3}, {1,4}-inverse and establish the ncessary and sufficient condition for the existence of special {1,3}, {1,4}- inverse.
引文
[1] L.G. Hua and Z.X. Wan, Classical groups, Shanghai Sicence and Technology Press, Shanghai, 1963.
    
    [2] L. A. Wolf, Similarity of matrices in which the elements are real quaternions,Bull. Amer. Math. Soc. 42 (1936), 737-743.
    
    [3] I. Niven, Equations in quaternions, Amer. Math. Monthly, 1941, 48: 654-661.
    
    [4] S. Eilenberg, I. Niven, The fundamental theorem of algebra for quaternions,Bull. Amer. Math. Soc, 1944, 50: 246-248.
    
    [5] H.C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish. Acad. Sec. A, 1949, 52: 253-260.
    
    [6] I.L. Brenner, Matrices of quaternions, Pacific J.Math, 1951, 1: 329-335.
    
    [7] J.E. Jamison, Numerical Range and Numerical Radius in Quaternionic Hilbert Spaces, Doctoral Dissertation, Univ of Missouri, 1972.
    
    [8] P.M Cohn, Skew-field Constructions, in: London Mathematical Society Lecture Notes, vol. 27, Cambridge University Press, Cambridge, MA, 1977.
    
    [9] B.J. Xie, An expansion theorem for determinants of self-conjugate quaternion matrices and its application, Acta Math. Sinica, 1980, 23(5): 668-683.
    
    [10] L.X Chen, Definition of determinant and Cramer solutions over the quaternion field, Acta Math. Sicina, New Series, 1991, 7(2): 171-180.
    
    [11] A. Bunse-Gerstner, R. Byers and V.Mehrmann, A quaternion QR Algorithm,numerische Mathematik, 55 (1989) 83-95.
    
    [12] Y.H. Au-Yeung, On the convexity of numerical range in quaternionic Hilbert spaces, Linear and Multilinear Algebra, 1984, 16: 93-100.
    [13] W. So, R.C. Thompson and F.Z. Zhang, Numerical ranges of matrices with quaternion entries, Linear and Multilinear Algebra, 1994, 37: 175-195.
    [14] W. So, R. C. Thompson, Convexity of the upper complex plane part of the numerical range of a quaternionic matrix, Manuscript, 1995.
    [15] F.Z. Zhang, Quaternion and matrices of quaternions, Linear Algebra Appl, 1997, 251: 21-57.
    [16] D.R. Farenick, A.F. Pidkowich, The spectral theorem in quaternions, Linear Algebra Appl, 2003, 371: 75-102.
    [17] 李文亮.四元数矩阵,国防科技大学出版社,(2002).
    [18] S.L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford U.P. New York, 1994.
    [19] A. Baker, Right eigenvalues for quaternionic matrices: a topological approach, Linear Algebra Appl., 286 (1999), 303-309.
    [20] S. De Leo, G. Scolarici, Right eigenvalue equation in quaternionic quantum mechanics, J. Phys. A, 33 (2000), 2971-2995.
    [21] 陈万春,肖业伦,赵丽红,邹晖.四元数的核心矩阵及其在航天器姿态控制中的应用[J].航空学报,2000,21(5):389-392.
    [22] S.C. Pei, J.H. Chang, J.J. Ding, Quaternion matrix singular value decomposition and its applications for color image processing, Image Processing, 2003,1: 805-808.
    [23] C.E. Moxey, S.J. Sangwine, and T.A. Ell, Hypercomplex Correlation Techniques for Vector Images, IEEE Transactions on Signal Processing 51(7) (2003): 1941-1953.
    [24] N. LE Bihan, J. Mars, Singular Value Decomposition of Matrices of Quaternions: A New Tool for Vector-Sensor Signal Processing, Signal Processing 84(7) (2004): 1177-1199.
    [25] I.J. Good, The inverse of a centrosymmetric matrix, Technometrics, 1970, 12: 925-928.
    [26] S. Ligh, Centro-symmetric matrices, Delta J. Sci., 1973, 3: 33-37.
    [27] L. Datta and S.D. Morgera, On the reducibility of centrosymmetric matrices -applications in engineering problems, Circuits Systems Sig. Proc., 1989, 8(1): 71-96.
    [28] J.R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors, Amer. Math. Monthly, 1985, 92: 711-717.
    [29] A. Lee, Centrohermitian and skew-centrohermitian matrices, Linear Algebra Appl 1980, 29: 205-210.
    [30] R.D. Hell, Bates R.G. and S.R. Waters, On centrohermitian matrices, SIAM J. Matrix Anal. Appl, 1990, 11(1): 128-133.
    [31] R.D. Hell, R.G. Bates and S.R. Waters, On perhermitian matrices, SIAM J. Matrix Anal. Appl, 1990, 11(2): 173-179.
    [32] R. M. Reid, Some eigenvalues properties of persymmetric matrices, SIAM Rev, 1997, 39: 313-316.
    [33] A.L. Andrew, Centrosymmetric matrices, SIAM Rev, 1998, 40: 697-698.
    [34] I.S. Pressman, Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices, Linear Algebra Appl, 1998, 284: 239-258.
    [35] A. Melman, Symmetric centrosymmetric matrix - vector multiplication, Linear Algebra Appl, 2000, 320: 193-198.
    [36] D. Tao, M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices, SIAM J. Matrix Anal. Appl, 2002, 23(3): 885-895.
    [37] F.Z. Zhang, Matrix theory: basic results and techniques, Spring-Verlag, New York Inc, 1999.
    [38] J.L. Chen, X.H. Chen, Special Matrices, Qinghua University Press. Beijing. China. 2001(in Chinese)
    [39]王卿文,薛有才.体与环上的矩阵方程,知识出版社,(1996).
    [40] W.E. Roth, The equation AX - YB = C and AX - XB = C in matrices, Proc. Timer. Math. Soc, 1952, 3: 392-396.
    [41] H.K. Wimmer, Roth's theorems for matrix equations with symmetry constraints, Linear Algebra Appl, 1994, 199: 357-362.
    [42] Q.W. Wang, S.Z. Li, The linear matrix equations over a division ring, Math. Sci. Res. J, 2002, 6(5): 249-253.
    [43] H.K. Wimmer, Consistency of a pair of generalized Sylvester equations, IEEE Tran. Aut. Contr, 1994, 39: 1014-1016.
    [44] Q.W. Wang, S.Z. Li, The persymmetric and perskewsymmetric solutions to sets of matrix equations over a finite central algebra (in Chinese), Acta Math Sinica, 2004, 47(1): 27-34.
    [45] H.K. Wimmer, The matrix equation X - AXB = C and an analogue of Roth's theorem, Linear Algebra Appl, 1988, 109: 145-147.
    [46] L. Huang and Q. Zeng, The solvablity of matrix equation AXB + CYD = E over a simple Artinian ring, Linear and Multilinear Algebra, 1995, 38: 225-232.
    [47] Q.W. Wang, S.Z. Li, A practical method for finding the general solution of a system of linear matrix equations over an arbitrary division ring, Math. Sci. Res. J, 2002, 6(11): 542-547.
    [48] Q.W. Wang, C.Y. Lin, The re-nonnegative definite solutions to the system of matrix equations [A~*XA,B~*XB] = [C,D], J. Natur. Sci. Math, 1997, 39(2): 113-121.
    [49] Z.Y. Peng, An iterative method for the least squares symmetric solution of the linear matrix equation AXB=C, Appl. Math. Comput. 170(1) (2005): 711-723.
    [50] D.S. Cvetkovic-iliic, The reflexive solutions of the matrix equation AXB=C. Comput. Math. Appl. 51 (2006): 897-902.
    [51] F. J. Henk Don, On the symmetric solutions of a linear matrix equation, Linear Algebra Appl, 1987, 93: 1-7.
    [52] W.J. Vetter, Vector structures and solutions of linear matrix equations, Linear Algebra Appl, 1975, 10: 181-188.
    [53] C.G. Khatri and S.K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math, 1976, 31: 579-585.
    [54] L. Wu and B. Cai, The re-positive definite solutions to the matrix inverse problem AX = B, Linear Algebra Appl, 1992, 174: 145-151.
    [55] Q.W. Wang, S.Z. Li, On the center(skew-)selfconjugate solutions to the systems of matrix equations over a finite dimensional central algebra, Math. Sci. Res. Hot-Line, 2001, 5(12): 11-17.
    [56] Q.W. Wang, J.H. Sun and S.Z. Li, Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, Linear Algebra Appl, 2002, 353: 169-182.
    [57] Y.P. Zhen, X.Y. Hu, The reflexive and anti-reflexive solutions of the matrix equation AX = B, Linear Algebra Appl, 2003, 375: 147-155.
    [58] Q.W. Wang, C.L. Yang, The re-nonegative definite solutions to the matrix equation AXB = C. Comment. Math. Univ. Carolinae, 1998, 39: 7-13.
    [59] C.Y. Lin, Q.W. Wang, The minimal and maximal ranks of the general solution to a system of matrix equations over an arbitrary division ring, Math. Sci. Res. J. 10(3) (2006): 57-65.
    [60] Q.W. Wang, A System of Four Matrix Equations over von Neumann Regular Rings and Its Applications, Acta MathSinica, 2005, 21(2): 323-334.
    [61] Q.W. Wang, The general solution to a system of real quaternion matrix equations, Comput. Math. Appl, 2005, 49: 665-675.
    [62] Q.W. Wang, Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput.Math.Appl, 2005, 49: 641-650.
    [63] Q.W. Wang, Skewpositive (semi)definite solutions to the quaternion matrix equations AXA~((*)) = B, Far East J. Math. Sci, 1997, 5(1): 49-58.
    [64] P. Bhimasankaram, Common solutions to the linear matrix equations AX = B, CX = D, and EXF = G, Sankhya Ser. A, 1976, 38: 404-409.
    [65] S.L. Blyumin, S.P. Milovidov, Investigation and solution of a pair of linear matrix equations. Mathematical Notes, 1995, 57(1-2): 211-213.
    [66] G. Wang, Z. Xu, Solving a kind of restricted matrix equations and Cramer rule, Appl. Math. Compt, 2005, 162: 329-338.
    [67] F. Uhlig, On the matrix equation AX = B with applications to the generators of controllability matrix, Linear Algebra Appl, 1987, 85: 203-209.
    [68] Y. Tian, The sovability of two linear matrix equations, Linear and Multilinear Algebra, 2000, 48: 123-147.
    [69] Y. Tian, Ranks of Solutions of the matrix equation AXB = C, Linear and Multilinear Algebra, 2003, 51(2): 111-125.
    [70] H.Liu, Rank of solutions of the Linear Matrix Equation AX+YB=C, Comput.Math.Appl.52(2006): 861-872.
    [71] J.K. Baksalary and P. Kala, The matrix equation AXB + CYD = E, Linear Algebra Appl. 30:141-147 (1980).
    [72] A.B. (?)zg(?)le, The matrix equation AXB + CYD = E over a principal ideal domain, SIAM J. Matrix Anal. Appl. 12:581-591 (1991).
    [73] L. Huang and Q. Zeng, The solvability of matrix equation AXB + CYD = E over a simple Artinian ring, Linear and Multilinear Algebra, 38:225-232(1995).
    [74] Y. Tian, The solvability of two linear matrix equations, Linear and Multilinear Algebra 48:123-147 (2000).
    [75] Q.W. Wang, The decomposition of pairwise matrices and matrix equations over an arbitrary skew field, Acta Math. Sinica, Ser. A 39 (3):396-403 (1996); also see MR 97i:15018.
    [76] G. Xu, M. Wei and D. Zheng, On solution of matrix equation AXB+CYD = F., Linear Algebra Appl. 279:93-109 (1998).
    [77] Q.W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl. 384:43-54 (2004).
    [78] Y. Tian, Ranks and independence of solutions of the matrix equations of the matrix equation AXB + CYD = M, Acta Math. Univ. Comenianae 1:1-10 (2006).
    [79] A.P. Liao, Z.Z Bai, Y. Lei, Best approximate solution of matrix equation AXB + CYD = E, SIAM J. Matrix Anal. Appl. 27 (3):675-688 (2006).
    [80] S.K. Mitra, A pair of simultaneous linear matrix equations A_1XB_1 = C_1 and A_2XB_2 = C_2, Proc. Cambridge Philos. Soc. 74 (1973): 213-216.
    [81] A. Navarra, P.L. Odell and D.M. Young, A representation of the general common solution to the matrix equations A_1XB_1 = C_1 and A_2XB_2 = C_2 with applications, Comput. Math. Appl. 41 (2001): 929-935.
    [82] S.K. Mitra, A pair of simultaneous linear matrix equations and a matrix programming problem, Linear Algebra and Appl. 131(1990): 97-123.
    [83] N. Shinozaki and M. Sibuya, Consistency of a pair of matrix equations with an application, Keio Engrg. Rep. 27 (1974): 141-146.
    [84] J. Van der Woude, Feedback decoupling and stabilization for linear system with multiple exogenous variables, Ph.D. Thesis, Technical Univ. of Eindhoven, Netherlands, 1987.
    [85] J. Van der Woude, Almost noninteracting control by measurement feedback, Systems Control Lett. 9 (1987): 7-16.
    [86] A.B. (?)zg(?)ler, N. Akar, A common solution to a pair of linear matrix equations over a principle domain, Linear Algebra Appl. 144 (1991): 85-99.
    [87] Q.W. Wang, The decomposition of a pair of matrices and matrix equations over an arbitrary skew field, Acta Math. Sinica 39 (3) (1996): 396-403; also see MR 97i:15018.
    [88] Q.W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl. 384 (2004): 43-54.
    [89] Y.X. Peng, X.Y. Hu and L. Zhang, An iterative method for symmetric solutions and optimal approximation solution of the system of matrix equations A_1XB_1= C_1,A_2XB_2 = C_2, Appl. Math. Comput. 183(2) (2006): 1127-1137.
    [90] Z.H. Peng, X.Y. Hu and L. Zhang, An efficient algorithm for the least-squares reflexive solution of the matrix equation A_1XB_1 = C_1, A_2XB_2 = C_2, Appl. Math. Comput. 181(2) (2006): 988-999.
    [91] S. K. Mitra, Fixed rank solutions of linear matrix equations, Sankhya Ser,1972, A35: 387-392.
    [92] S. K. Mitra, The matrix equations AX = C, XB = D, Linear Algebra Appl, 1984, 59: 171-181.
    [93] T.W.Hungerford(著),冯克勤译,聂灵沼校,代数学,湖南教育出版社,1985.
    [94] 谢邦杰,环与体上的矩阵与两类广Jordan形式,吉林大学自然科学学报,1(1978),21-46.
    [95] Moore E H. General Analysis. Philadelphia: American Philosophical Society, 1935.
    [96] Penrose R. A generalized inverse for matrices, Proc. Cambridge hilos. Soc. 1955, 51:406-413.
    [97] Rao C R. Analysis of dispersion for multiply classified data with unequal numbers in cells. Sankhya, 1955, 15:253-280.
    [98] Rao C R. Generalized inverse for matrices and its applications in mathematical statistics, Research Papers in Statistics, Festschrift for J. Neyman. New York: John Wiley, 1966.
    [99] Rao C R. Calculus, Mitra S.K Generalized Inverse of Matrices and its applications. Wiley, New York:John Wiley, 1971.
    [100] Ben-Israel A. On error bounds for generalized inverse. SIAM J. Numer. Anal., 1966b, 3: 585-592.
    [101] Stewart G P, Sun J G. Matrix Perturbation Theory. Boston, Academic Press, 1990.
    [102] A. A. Bostian and H. J. Woerdeman, Unicity of minimal rank completions for tri-diagonal partial block matrices, Linear Algebra Appl., 325 (2001), 23-55.
    [103] N. Cohen, C. R. Johnson, L. Rodman and H. J. Woerdeman, Ranks of completions of partial matrices, Operator Theory: Advances and Applications,40 (1989), 165-185.
    [104] C. R. Johnson, G. T. Whitney, Minimal rank completions, Linear and Multilinear Algebra, 28 (1991), 271-273.
    [105] H. J. Woerdeman, The lower order of triangular operators and minimal rank extensions, Intergal Equations Operator Theory, 10 (1987), 859-879.
    [106] H. J. Woerdeman, Minimal rank completions for block matrices. Linear Algebra Appl., 121 (1989), 105-122.
    [107] H. J. Woerdeman, Minimal rank completions of partial banded matrices, Linear and Multilinear, 36 (1993), 59-69.
    [108] Y. Tian, Completing block matrices with maximal and minimal ranks, Linear Algebra Appl., 321 (2000), 327-345.
    [109] Y. Tian, The minimal rank completion of a 3×3 partial block matrix, Linear and Multilinear algebra, 50(2) (2002), 125-131.
    [110] Y. Tian, Upper and lower bounds for ranks of matrix expressions using generalized inverses, Linear Algebra Appl., 355 (2002), 187-214.
    [111] Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755.
    [112] Y. Tian, The minimal rank of the matrix expression A - BX - YC, Missouri J. Math. Sci. 14(1) (2002), 40-48.
    [113] Y. Tian, S. Cheng, The maximal and minimal ranks of A - BXC with applications, New York J. Math., 9 (2003), 345-362.
    [114] T. Ando, Generalized Schur complements, Linear Algebra Appl. 27 (1979):173-186.
    [115] M. Fiedler, Remarks on the Schur complement, Linear Algebra Appl. 39 (1981): 189-195.
    [116] D. Carlson, E. Haynsworth, T. Markham, A generalization of the Schur complements by means of the Moore-Penrose inverse, SIAM J. Appl. Math. 26 (1974): 169-179.
    [117] D. Carlson, What are Schur complements, anyway? Linear Algebra Appl. 74 (1986): 257-275.
    [118] S. L. Campbell and C. D. Meyer, Jr.,Generalized inverses of linear transformations, Corrected reprint of the 1979 original. Dover Publications, Inc. New York.1991.
    [119] Y. Tian, More on maximal and minimal ranks of Schur complements with applications, Appl. Math. Comput., 152(3) (2004), 675-692.
    [120] Y. Tian, Ranks and independence of solutions of the matrix equation AXB + CYD = M, Acta Math. Univ. Comenianae 1 (2006) 75-84.
    [121] Y.H. Liu, Ranks of least squares solutions of the matrix equation AXB = C, Computers and Mathematics with Applications (2007), doi: 10.1016/j.camwa.2007.06.023.
    [122] Y. Tian, Equalities and inequalities for traces of quaternionic matrices. Algebras Groups Geom. 19(2) (2002) 181-193.
    [123] Y. Tian, Rank equalities for block matrices and their Moore-Penrose inverses. Houston Journal of Mathematics, 30 (2004) No.2, 483-510.
    [124] Y. Tian, Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix products, Appl. Comput. 147 (2004), 581-600.
    [125] Q.W. Wang, F. Qin and C.Y. Lin, The common solution to matrix equations over a regular ring with applications, Indian J. Pure Appl. Math. 36 (12) (2005), 655-672.
    [126] Q.W. Wang, Z.C. Wu and C.Y. Lin, Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications, Appl. Math. Comput. 182 (2006): 1755-1764.
    [127] Q.W. Wang, G.J. Song, C.Y. Lin, Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application, Appl.Math. Comput. 189(2) (2007): 1517-1532.
    [128] Q.W. Wang, S.W.Yu, C.Y. Lin, Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications, Appl. Math. Comput. (2007), 195 (2008): 733-744.
    [129] Q.W.Wang, H.S.Zhang and S.W.Yu, On solutions to the quaternion matrix equation AXB + CYD = E, Electronic Journal of Linear Algebra, 17(2008): 343-358.
    [130] G. Marsaglia and G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra, 1974, 2: 269-292.
    [131] T.W. Hungerford, Algebra, Spring-Verlag, New York Inc., 1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700