四元数矩阵方程实解与复解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在四元数除环上研究了若干矩阵方程组一般解的最大与最小秩,并由此导出了某些四元数矩阵方程组有实解和复解的充要条件以及实解和复解的表达式。这些结果进一步丰富和发展了四元数矩阵代数。
     全文共分为五章,第一章介绍了四元数、四元数矩阵、四元数矩阵方程、矩阵的秩以及矩阵的广义逆的一些研究背景、研究进展以及本文所做的工作。另外还给出了本文要用到的一些预备知识。第二章研究四元数矩阵表达式C_4-A_4XB_4在四元数矩阵方程组A_1X=C_1,XB_2=C_2,A_3XB_3=C_3有解的条件下的最大秩最小秩,并利用秩的等式给出了四元数矩阵方程组A_1X=C_1,XB_2=C_2,A_3XB_3=C_3,A_4XB_4=C_4有一般解的充要条件。第三章给出了四元数矩阵方程AXB=C一般解的最大最小秩,并由此导出了它有实解和复解的充要条件及解的表达式。作为应用,还给出了四元数矩阵方程组A_1XB_1=C_1,A_2XB_2=C_2有实解和复解的充要条件。第四章给出了四元数矩阵方程组A_1XB_1=C_1,A_2XB_2=C_2一般解的最大最小秩,并由此导出了它有实解和复解的充要条件及解的表达式。作为应用,还给出了四元数矩阵方程组A_1XB_1=C_1,A_2XB_2=C_2,A_3XB_3=C_3有实解和复解的充要条件。第五章给出了四元数矩阵方程组A_1X=C_1,XB_2=C_2,A_3XB_3=C_3一般解的最大最小秩,并由此导出了它有实解和复解的充要条件及解的表达式。作为应用,还给出了四元数矩阵方程组A_1X=C_1,XB_2=C_2,A_3XB_3=C_3,A_4XB_4=C_4有实解和复解的充要条件。
In this dissertation,by studying the maximal and minimal ranks of the general solutions to certain systems of quaternion matrix equations,necessary and sufficient conditions for the existences and expressions of real and complex solutions to some systems of quaternion matrix equations are given.These results further enrich and develop the quaternion matrix algebra.
     The dissertation is divided into 5 chapters.In Chapter 1,we introduce the research background and progresses of quaternion,quaternion matrices,quaternion matrix equations,extremal ranks of matrix expressions,generalized inverse of matrix as well as the work we have done in this dissertation.Some preliminary knowledge used in this paper are also presented.In Chapter 2,we give the maximal and minimal ranks of the quaternion matrix expression C_4 -- A_4XB_4 subject to quaternion matrix equations A_1X = C_1,XB_2 = C_2,A_3XB_3 = C_3, ncccssary and sufficient conditions for the solvability of the quaternion matrix equations A_1X = C_1,XB_2 = C_2,A_3XB_3 = C_3,A_4XB_4 = C_4 are derived by rank equalities.In Chapter 3,we give the maximal and minimal ranks of the general solution to quaternion matrix equation AXB = C,and derive necessary and sufficient conditions for the existences and the expressions of real and complex solutions to the matrix equation.As an application,necessary and sufficient conditions for quaternion matrix equations A_1XB_1 = C_1,A_2XB_2 = C_2 to have real and complex solutions are presented.In Chapter 4,we investigate the maximal and minimal ranks of the general solution to quaternion matrix equations A_1XB_1 = C_1,A_2XB_2 = C_2,and derive necessary and sufficient conditions for the existences and the expressions of real and complex solutions to the matrix equations.As an application,necessary and sufficient conditions for quaternion matrix equations A_1XB_1 = C_1,A_2XB_2 = C_2,A_3XB_3 = C_3 to have real and complex solutions are given.In the last Chapter,we investi- gate the extremal ranks of the general solution to quaternion matrix equations A_1X = C_1,XB_2 = C_2,A_3XB_3 = C_3,and derive necessary and sufficient conditions for the existences and the expressions of real and complex solutions to the matrix equations.As an application,necessary and sufficient conditions for quaternion matrix equations A_1X = C_1,XB_2 = C_2,A_3XB_3 = C_3,A_4XB_4 = C_4 to have real and complex solutions are established.
引文
[1]L.G.Hua and Z.X.Wan,Classical groups,Shanghai Sicence and Technology Press,Shanghai,1963.
    [2]L.A.Wolf,Similarity of matrices in which the elements are real quaternions,Bull.Amer,Math.Soc.42(1936),737-743.
    [3]I.Niven,Equations in quaternions,Amer.Math.Monthly,1941,48:654-661.
    [4]S.Eilenberg,I.Niven,The fundamental theorem of algebra for quaternions,Bull.Amer.Math.Soc,1944,50:246-248.
    [5]H.C.Lee,Eigenvalues and canonical forms of matrices with quatcrnion coeffieients,Proc.Roy.Irish.Acad.Sec.A,1949,52:253-260.
    [6]I.L.Brenner,Matrices of quaternions,Pacific J.Math,1951,1:329-335.
    [7]P.M Cohn,Skew-field Constructions,in:London Mathematical Society Lecture Notes,vol.27,Cambridge University Press,Cambridge,MA,1977.
    [8]J.E.Jamison,Numerical Range and Numerical Radius in Quaternionic Hilbert Spaces,Doctoral Dissertation,Univ of Missouri,1972.
    [9]B.J.Xie,An expansion theorem for determinants of self-conjugate quaternion matrices and its application,Acta Math.Sinica:1980,23(5):668-683.
    [10]L.X Chen,Definition of determinant and Cramcr solutions over the quaternion field,Acta Math.Sicina,New Series,1991,7(2):171-180.
    [11]A.Bunse-Gerstner,R.Byers and V.Mehrmann,A quaternion QR Algorithm,numerische Mathematik,55(1989) 83-95.
    [12]Y.H.Au-Yeung,On the convexity of numerical range in quaternionic Hilbert spaces,Linear and Multilinear Algebra,1984,16:93-100.
    [13]W.So,R.C.Thompson and F.Z.Zhang,Numerical ranges of matrices with quaternion entries,Linear and Multilinear Algebra,1994,37:175-195.
    [14]W.So,R.C.Thompson,Convexity of the upper complex plane part of the numerical range of a quaternionic matrix,Manuscript,1995.
    [15]F.Z.Zhang,Quaternion and matrices of quaternions,Linear Algebra Appl,1997,251:21-57.
    [16]D.R.Farenick,A.F.Pidkowich,The spectral theorem in quaternions,Linear Algebra Appl,2003,371:75-102.
    [17]李文亮.四元数矩阵,国防科技大学出版社,(2002).
    [18]S.L.Adler,Quaternionic Quantum Mechanics and Quantum Fields,Oxford U.P.New York,1994.
    [19]A.Baker,Right eigenvalues for quaternionic matrices:a topological approach,Linear Algebra Appl.,286(1999),303-309.
    [20]D.I.Merino,V.Sergeichuk,Littlewood's algorithm and quaternion matrices,Linear Algebra Appl.,298(1999),193-208.
    [21]S.De Leo,G.Scolarici,Right eigenvalue equation in quaternionic quantum mechanics,J.Phys.A,33(2000),2971-2995.
    [22]陈万春,肖业伦,赵丽红,邹晖.四元数的核心矩阵及其在航天器姿态控制中的应用[J].航空学报,2000,21(5):389-392.
    [23]S.C.Pei,J.H.Chang,J.J.Ding,Quaternion matrix singular value decomposition and its applications for color image processing,Image Processing,2003,1:805-808.
    [24]C.E.Moxey,S.J.Sangwine,and T.A.Ell,Hypercomplex Correlation Techniques for Vector Images,IEEE Transactions on Signal Processing 51(7)(2003):1941-1953.
    [25]N.LE Bihan,J.Mars,Singular Value Decomposition of Matrices of Quaternions:A New Tool for Vector-Sensor Signal Processing,Signal Processing 84(7)(2004):1177-1199.
    [26]N.LE Bihan,S.J.Sangwine,Quaternion Principal Component Analysis of Color images,IEEE International Conference on Image Processing(ICIP),Barcelona,Spain,September 2003.
    [27]N.LE Bihan,S.J.Sangwine,Color Image Decomposition Using Quaternion Singular Value Decomposition,IEEE International conference on Visual Information Engineering(VIE),Guildford,UK,July 2003.
    [28]S.J.Sangwine,N.LE Bihan,Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations,Appl.Math.Comput.182(1)(2006):727-738.
    [29]I.J.Good,The inverse of a centrosymmetric matrix,Technometrics,1970,12:925-928.
    [30]S.Ligh,Centro-symmetric matrices,Delta J.Sci.,1973,3:33-37.
    [31]L.Datta and S.D.Morgera,On the reducibility of centrosymmetric matrices - applications in engineering problems,Circuits Systems Sig.Proc.,1989,8(1):71-96.
    [32]A.Cantoni,and P.Butler,Eigenvalues and eigenvectors of symmetric centrosymmetric matrices,Linear Algebra Appl,1976,13:275-288.
    [33]J.R.Weaver,Centrosymmetric(cross-symmetric) matrices,their basic properties,eigenvalues,eigenvectors,Amer.Math.Monthly,1985,92:711-717.
    [34]A.Lee,Centrohermitian and skew-centrohermitian matrices,Linear Algebra Appl,1980,29:205-210.
    [35]R.D.Hell,Bates R.G.and S.R.Waters,On centrohermitian matrices,SIAM J.Matrix Anal.Appl,1990,11(1):128-133.
    [36]R.D.Hell,R.G.Bates and S.R.Waters,On perhermitian matrices,SIAM J.Matrix Anal.Appl,1990,11(2):173-179.
    [37]R.M.Reid,Some eigenvalues properties of persymmetric matrices,SIAM Rev,1997,39:313-316.
    [38]A.L.Andrew,Centrosymmetric matrices,SIAM Rev,1998,40:697-698.
    [39]I.S.Pressman,Matrices with multiple symmetry properties:applications of centrohermitian and perhermitian matrices,Linear Algebra Appl,1998,284:239-258.
    [40]A.Melman,Symmetric centrosymmetric matrix - vector multiplication,Linear Algebra Appl,2000,320:193-198.
    [41]D.Tao,M.Yasuda,A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices,SIAM J.Matrix Anal.Appl,2002,23(3):885-895.
    [42]W.F.Trench,Hermitian,hermitian R-symmetric,and hermitian R-skew symmetric Procruste problems.Linear Algebra Appl,2004,387:83-98.
    [43]W.F.Trench,Characterization and properties of matrices with generalized symmetry or skew symmetry.Linear Algebra Appl,2004,377:207-218.
    [44]F.Z.Zhang,Matrix theory:basic results and techniques,Spring-Verlag,New York Inc,1999.
    [45]J.L.Chen,X.H.Chen,Special Matrices,Qinghua University Press.Beijing.China.2001(in Chinese)
    [46]王卿文,薛有才.体与环上的矩阵方程,知识出版社,(1996).
    [47]W.E.Roth,The equation AX - YB = C and AX - XB = C in matrices,Proc.Amer.Math.Soc,1952,3:392-396.
    [48]H.K.Wimmer,Roth's theorems for matrix equations with symmetry constraints,Linear Algebra Appl,1994,199:357-362.
    [49]Q.W.Wang,S.Z.Li,The linear matrix equations over a division ring,Math.Sci.Res.J,2002,6(5):249-253.
    [50]H.K.Wimmer,Consistency of a pair of generalized Sylvester equations,IEEE Tran.Aut.Contr,1994,39:1014-1016.
    [51]Q.W.Wang,A.Y.Wang and S.Z.Li,Bi(skew)symmetric and bipositive semidefinite solutions to a system of linear matrix equations over division rings,Math.Sci.Res.J,2002,6(7):333-339.
    [52]Q.W.Wang,Y.G.Tian and S.Z.Li,Roth's theorems for centroselfconjugate solutions to systems of matrix equations over a finite dimensionai central algebra,Southeast Asian Bulletin of Mathematics,2004,27:929-938.
    [53]Q.W.Wang,S.Z.Li,The persymmetric and perskewsymmetric solutions to sets of matrix equations over a finite central algebra(in Chinese),Acta Math Sinica,2004,47(1):27-34.
    [54]H.K.Wimmer,The matrix equation X - AXB = C and an analogue of Roth's theorem,Linear Algebra Appl,1988,109:145-147.
    [55]N.Shinozaki and M.Sibuya,Consistency of a pair of matrix equations with an application,Keio Engrg.Rep,1974,27:141-146.
    [56]L.Huang and Q.Zeng,The solvablity of matrix equation AXB + CYD = E over a simple Artinian ring,Linear and Multilinear Algebra,1995,38:225-232.
    [57]Q.W.Wang,S.Z.Li,A practical method for finding the general solution of a system of linear matrix equations over an arbitrary division ring,Math.Sci.Res.J,2002,6(11):542-547.
    [58]Q.W.Wang,C.Y.Lin,The re-nonnegative definite solutions to the system of matrix equations [A~*XA,B~*XB]=[C,D],J.Natur.Sci.Math,1997,39(2):113-121.
    [59]K.E.Chu,Symmetric solutions of linear matrix equations by matrix decomposition,Linear Algebra Appl,1989,119:35-50.
    [60]H.Dai,On the symmetric solution of linear matrix equations,Linear Algebra Appl,1990,131:1-7.
    [61]Z.Y.Peng,An iterative method for the least squares symmetric solution of the linear matrix equation AXB = C,Appl.Math.Comput.170(1)(2005):711-723.
    [62]Y.X.Peng,X.Y.Hu and L.Zhang,An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB = C,Appl.Math.Comput.160(3)(2005):763-777.
    [63]D.S.Cvetkovic-iliic,The reflexive solutions of the matrix equation AXB = C,Comput.Math.Appl.51(2006):897-902.
    [64]F.J.Henk Don,On the symmetric solutions of a linear matrix equation,Linear Algebra Appl,1987,93:1-7.
    [65]W.J.Vetter,Vector structures and solutions of linear matrix equations,Linear Algebra Appl,1975,10:181-188.
    [66]C.G.Khatri and S.K.Mitra,Hermitian and nonnegative definite solutions of linear matrix equations.SIAM J.Appl.Math,1976,31:579-585.
    [67]L.Wu and B.Cai,The re-positive definite solutions to the matrix inverse problem AX = B,Linear Algebra Appl,1992,174:145-151.
    [68]Q.W.Wang,S.Z.Li,On the center(skew-)selfconjugate solutions to the systems of matrix equations over a finite dimensional central algebra,Math.Sci.Res.Hot-Line,2001,5(12):11-17.
    [69]Q.W.Wang,J.H.Sun and S.Z.Li,Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra,Linear Algebra Appl,2002,353:169-182.
    [70]Y.P.Zhen,X.Y.tIu,The reflexive and anti-rcflexive solutions of the matrix equation AX = B,Linear Algebra Appl,2003,375:147-155.
    [71]Q.W.Wang,C.L.Yang,The re-nonegative definite solutions to the matrix equation AXB =C.Comment.Math.Univ.Carolinae,1998,39:7-13.
    [72]C.Y.Lin,Q.W.Wang,New solvability conditions and a new expression of the general solution to a system of linear matrix equations over an arbitrary division ring,Southeast Asian Bulletin of Mathematics 29(5)(2005):755-762.
    [73]C.Y.Liu,Q.W.Wang,The minimal and maximal ranks of the general solution to a system of matrix equations over an arbitrary division ring,Math.Sci.Res.J.10(3)(2006):57-65.
    [74]Q.W.Wang,A System of Four Matrix Equations over yon Neumann Regular Rings and Its Applications,Acta MathSinica,2005,21(2):323-334.
    [75]Q.W.Wang,The general solution to a system of real quaternion matrix equations,Comput.Math.Appl,2005,49:665-675.
    [76]Q.W.Wang,Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations,Comput.Math.Appl,2005,49:641-650.
    [77]Q.W.Wang,Skewpositive(semi)definite solutions to the quaternion matrix equations AXA~((*)) = B,Far East J.Math.Sci,1997,5(1):49-58.
    [78]P.Bhimasankaram,Common solutions to the linear matrix equations AX = B,CX = D,and EXF = G,Sankhya Set.A,1976,38:404-409.
    [79]S.L.Blyumin,S.P.Milovidov,Investigation and solution of a pair of linear matrix equations.Mathematical Notes,1995,57(1-2):211-213.
    [80]G.Wang,Z.Xu,Solving a kind of restricted matrix equations and Cramer rule,Appl.Math.Compt,2005,162:329-338.
    [81]F.Uhlig,On the matrix equation AX = B with applications to the generators of controllability matrix,Linear Algebra Appl,1987,85:203-209.
    [82]Y.Tian,The sovability of two linear matrix equations,Linear and Multilinear Algebra,2000,48:123-147.
    [83]Y.Tian,Ranks of Solutions of the matrix equation AXB = C,Linear and Multilinear Algebra,2003,51(2):111-125.
    [84]S.K.Mitra,A pair of simultaneous linear matrix equations A_1XB_1 = C_1 and A_2XB_2 = C_2,Proc.Cambridge Philos.Soc.74(1973):213-216.
    [85]A.Navarra,P.L.Odell and D.M.Young,A representation of the general common solution to the matrix equations A_1XB_1 = C_1 and A_2XB_2 = C_2 with applications,Comput.Math.Appl.41(2001):929-935.
    [86]S.K.Mitra,A pair of simultaneous linear matrix equations and a matrix programnfing problem,Linear Algebra and Appl.131(1990):97-123.
    [87]N.Shinozaki and M.Sibuya,Consistency of a pair of matrix equations with an application,Keio Engrg.Rep.27(1974):141-146.
    [88]J.Van der Woude,Feedback de.coupling and stabilization for linear system with multiple exogenous variables,Ph.D.Thesis,Technical Univ.of Eindhoven,Netherlands,1987.
    [89]J.Van der Woude,Almost noninteracting control by measurement feedback,Systems Control Lett.9(1987):7-16.
    [90]A.B.(O|¨)zg(u|¨)ler,N.Akar,A common solution to a pair of linear matrix equations over a principle domain,Linear Algebra Appl.144(1991):85-99.
    [91]Q.W.Wang,The decomposition of a pair of matrices and matrix equations over an arbitrary skew field,Acta Math.Sinica 39(3)(1996):396-403;also see MR 97i:15018.
    [92]Q.W.Wang,A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity,Linear Algebra Appl.384(2004):43-54.
    [93]Y.X.Peng,X.Y.Hu and L.Zhang,An iterative method for symmetric solutions and optimal approximation solution of the system of matrix equations A_1XB_1 = C_1,A_2XB_2 = C_2,Appl.Math.Comput.183(2)(2006):1127-1137.
    [94]Z.H.Peng,X.Y.Hu and L.Zhang,An efficient algorithm for the least-squares reflexive solution of the matrix equation A_1XB_1 = C_1,A_2XB_2 = C_2,Appl.Math.Comput.181(2)(2006):988-999.
    [95]S.K.Mitra,Fixed rank solutions of linear matrix equations,Sankhya Set,1972,A35:387-392.
    [96]S.K.Mitra,The matrix equations AX = C,XB = D,Linear Algebra Appl,1984,59:171-181.
    [97]Moore E H.General Analysis.Philadelphia:American Philosophical Society,1935.
    [98]Penrose R.A generalized inverse for matrices,Proc.Cambridge hilos.Soc.1955,51:406-413.
    [99]Rao C R.Analysis of dispersion for multiply classified data with unequal numbers in cells.Sankhya,1955,15:253-280.
    [100]Rao C R.Generalized inverse for matrices and its applications in mathematical statistics,Research Papers in Statistics,Festschrift for J.Neyman.New York:John Wiley,1966.
    [101]Rao C R.Calculus,Mitra S.K Generalized Inverse of Matrices and its applications.Wiley,New York:John Wiley,1971.
    [102]Ben-Israel A.A modified Newton-Raphson method for the solution of systems of equations.J.Math.Anal.Appl.,1966a,15:243-252.
    [103]Ben-Israel A.On error bounds for generalized inverse.SIAM J.Numer.Anal.,1966b,3:585-592.
    [104]Stewart G P.On the continuity of the generalized inverse.SIAM J.Appl.Math.,1969,17:33-45.
    [105]Stewart G P,Sun J G.Matrix Perturbation Theory.Boston,Academic Press,1990.
    [106]A.A.Bostian and H.J.Woerdeman,Unicity of minimal rank completions for tri-diagonal partial block matrices,Linear Algebra Appl.,325(2001),23-55.
    [107]N.Cohen,C.R.Johnson,L.Rodman and H.J.Woerdeman,Ranks of completions of partial matrices,Operator Theory:Advances and Applications,40(1989),165-185.
    [108]C.Davis,Completing a matrix so as to minimize its rank,Operator Theory:Advances and Appl.,29(1988),87-95.
    [109]C.R.Johnson,Matrix completion problems:A survey,In Matrix Theory and Applications,Proc.Sympos.Appl.Math.AMS,40(1990),171-197.
    [110]C.R.Johnson,G.T.Whitney,Minimal rank completions,Linear and Multilinear Algebra,28(1991),271-273.
    [111]H.J.Woerdeman,The lower order of triangular operators and minimal rank extensions,Intergal Equations Operator Theory,10(1987),859-879.
    [112]H.J.Woerdeman,Minimal rank completions for block matrices.Linear Algebra Appl.,121(1989),105-122.
    [113]H.J.Woerdeman,Minimal rank completions of partial banded matrices,Linear and Multilinear,36(1993),59-69.
    [114]Y.Tian,Completing block matrices with maximal and minimal ranks,Linear Algebra Appl.,321(2000),327-345.
    [115]Y.Tian,The minimal rank completion of a 3 × 3 partial block matrix,Linear and Multilinear algebra,50(2)(2002),125-131.
    [116]Y.Tian,Upper and lower bounds for ranks of matrix expressions using generalized inverses,Linear Algebra Appl.,355(2002),187-214.
    [117]Y.Tian,The maximal and minimal ranks of some expressions of generalized inverses of matrices,Southeast Asian Bull.Math.,25(2002),745-755.
    [118]Y.Tian,The minimal rank of the matrix expression A - BX - YC,Missouri J.Math.Sci.14(1)(2002),4O-48.
    [119]Y.Tian,S.Cheng,The maximal and minimal ranks of A - BXC with applications,New York J.Math.,9(2003),345-362.
    [120]T.Ando,Generalized Schur complements,Linear Algebra Appl.27(1979):173-186.
    [121]M.Fiedler,Remarks on the Schur complement,Linear Algebra Appl.39(1981):189-195.
    [122]D.Carlson,E.Haynsworth,T.Markham,A generalization of the Schur complements by means of the Moore-Penrose inverse,SIAM J.Appl.Math.26(1974):169-179.
    [123]D.Carlson,What are Schur complements,anyway? Linear Algebra Appl.74(1986):257-275.
    [124]Y.Tian,More on maximal and minimal ranks of Schur complements with applications,Appl.Math.Comput.,152(3)(2004),675-692.
    [125]Y.Tian,Ranks and independence of solutions of the matrix equation AXB + CYD = M,Acta Math.Univ.Comenianae 1(2006) 75-84.
    [126]Y.H.Liu,Ranks of least squares solutions of the matrix equation AXB = C,Computers and Mathematics with Applications(2007),doi:10.1016/j.camwa.2007.06.023.
    [127]Y.Tian,Equalities and inequalities for traces of quaternionic matrices.Algebras Groups Geom.19(2)(2002) 181-193.
    [128]Y.Tian,Rank equalities for block matrices and their Moore-Penrose inverses,Houston Journal of Mathematics,30(2004) No.2.
    [129]Y.Tian,Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix products,Appl.Comput.147(2004),581-600.
    [130]Q.W.Wang,F.Qin and C.Y.Lin,The common solution to matrix equations over a regular ring with applications,Indian J.Pure Appl.Math.36(12)(2005),655-672.
    [131]Q.W.Wang,Z.C.Wu and C.Y.Lin,Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications,Appl.Math.Comput.182(2006):1755-1764.
    [132]Q.W.Wang,G.J.Song,Maximal and minimal ranks of the common solution of some linear matrix equations over an arbitrary division ring,Algebra Colloquium,in press.
    [133]Q.W.Wang,H.X.Chang,On the Centro-symmetric Solution of a System of Matrix Equations over a Regular Ring with Identity,Algebra Colloquium,14(4)(2007):555-570.
    [134]Q.W.Wang,H.X.Chang,Q.Ning,The common solution to six quaternion matrix equations with applications,Appl.Math.Comput.(2007),doi:10.1016/j.amc.2007.08.091.
    [135]C.Y.Lin,Q.W.Wang,and F.Qin,A system of matrix equations over regular rings,Indian J.Pure Appl.Math.(2007),in press.
    [136]Q.W.Wang,G.J.Song,C.Y.Lin,Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application,Appl.Math.Comput.189(2)(2007):1517-1532.
    [137]Q.W.Wang,S.W.Yu,C.Y.Lin,Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications,Appl.Math.Comput.(2007),195(2008):733-744.
    [138]G.Marsaglia and G.P.H.Styan,Equalities and inequalities for ranks of matrices,Linear and Multilinear Algebra,1974,2:269-292.
    [139]T.W.Hungerford,Algebra,Spring-Verlag,New York Inc.,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700