关于四元数矩阵方程组AX=B,XC=D解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在四元数体上研究矩阵方程组AX=B,XC=D的(P,Q)-(斜)对称解、反射亚(半)正定解和反射次亚(半)正定解.
     全文共分为四章.
     第一章主要介绍四元数、四元数矩阵的一些基础知识;各种对称矩阵、亚(半)正定矩阵、次亚(半)正定矩阵的定义和基本性质以及本文所用到的研究矩阵方程的重要工具:广义逆,矩阵表达式的秩等式和双矩阵的同时分解定理.
     第二章主要研究以下问题;
     问题1:给定A∈H~(s×m),B∈H~(s×n),C∈H~(n×t)和D∈H~(m×t),求X∈H_r~(m×n)(P,Q)或X∈H_a~(m×n)(P,Q)满足矩阵方程组AX=B,XC=D.
     问题2:求矩阵方程组AX=B,XC=D的(P,Q)-对称和(P,Q)-斜对称解的最大秩和最小秩及其对应的解.
     问题3:当P,Q是厄米对合矩阵时,如果问题1的解集Ω非空,给定E∈H~(m×n),求X_0∈Ω使
     ‖X_0-E‖=(?)‖X-E‖.
     我们通过讨论(P,Q)-(斜)对称矩阵的结构性质,利用矩阵技巧和第一章所给的矩阵理论解决了上述问题,并给出了数值例子.
     第三章,通过讨论分块矩阵是亚(半)正定矩阵的充要条件以及反射亚(半)正定矩阵的结构性质,利用双矩阵同时分解定理得到矩阵方程组AX=B,XC=D有亚(半)正定解、反射亚(半)正定解的充要条件,以及矩阵方程组AX=B,XC=D有亚(半)正定解、反射亚(半)正定解时通解的表达式.
     第四章,通过讨论分块矩阵是次亚(半)正定矩阵的充要条件以及反射次亚(半)正定矩阵的性质,利用双矩阵同时分解定理得到矩阵方程组AX=B,XC=D有次亚(半)正定解、反射次亚(半)正定解的充要条件,以及矩阵方程组AX=B,XC=D有次亚(半)正定解、反射次亚(半)正定解时通解的表达式.
In this dissertation,we investigate the(P,Q)-(skew)symmetric solution,reflexive re-positive(semi)definite solution and reflexive re-positive per-(semi)definite solution to the system of quaternion matrix equations AX=B,CX=D.
     The dissertation is divided into 4 chapters.
     In Chapter 1,we introduce the research background and progresses as well as the work we have derived in this dissertation.Some preliminary knowledge used in this paper are also presented,e.g.,the basic matrix theory,symmetric matrix,the generalizcd inverses of matrices,some rank equalities of some matrix expressions, etc.
     In Chapter 2,we mainly investigate the following three problems:
     Problem 1 Give necessary and sufficient conditions for the existence of and the expressions for the(P,Q)-symmetric and(P,Q)-skewsymmetric solutions to the system of quaternion matrix equations AX=B,XC=D.
     Problem 2 Find out the formulas of maximal and minimal ranks of(P,Q)-symmetric and(P,Q)-skewsymmetric solutions to the system.Derive the expressions of the(P,Q)-symmetric and(P,Q)-skewsymmetric solutions with maximal and minimal ranks to the system mentioned above.
     Problem 3 IfΩ=φwhereΩis the set of all solutions of Problem 1,given E∈H~(m×n),find X_0∈Ωsuch that
     ‖X_0-E‖=(?)‖X-E‖where P and Q are all Hermitian involutions.
     By using the matrix techniques and matrix theory constructed in chapter 1, we first give a practical method to represent an involutory quaternion matrix and establish a representation for a(P,Q)-symmetric(or(P,Q)-skewsymmetric) matrix. Then,we discuss Problem 1,i.e.,establish necessary and sufficient conditions for the existence of and expressions for(P,Q)-symmetric and(P,Q)-skewsymmetric solutions to the system.Next,we give formulas of extremal ranks of(P,Q)-symmetric and(P,Q)-skewsymmetric solutions to the system and present the(P,Q)-(skew)symmetric solution with extremal ranks to the system.After that,we investigate Problem 3,and give the expression of its solution.We also present a numerical example to illustrate the results.
     In Chapter 3,we first give a criterion for a partitioned quaternion matrix to be re-positive(semi)definite,then present a criterion for a quaternion matrix to be reflexive re-positive(semi)definite.Next,we establish a necessary and sufficient condition for the existence of re-positive(semi)definite solution to the system of quaternion matrix equations AX=B,XC=D as well as an expression of the general solution.Based on these results,we establish a necessary and sufficient condition for the existence of and an expression for reflexive re-positive(semi)definite solution to the system mentioned above.
     In Chapter 4,we consider the reflexive re-positive per-(semi)definite solution to the system of quaternion matrix equations AX=B,CX=D.In this Chapter, we derive a necessary and sufficient condition for the existence of and an expression for the reflexive re-positive per-(semi)definite solution to the system of quaternion matrix equations AX=B,XC=D.In addition,we give a necessary and sufficient condition for the existencc of and an expression for the re-postive per-(semi)definite solution to the system.The criteria for a partitioned quaternion matrix to be re-positive per-(semi)definite and a quaternion matrix to be reflexive re-positive per-(semi) definite are also established.
引文
[1]S.L.Alder,Quaternionic quantum field theory,Phys.Rev.Lett.,55(1985) 783-786.
    [2]S.L.Alder,Quaternionic Quantum Mechanics and Quantum Fields,Oxford University Press,Oxford,1995.
    [3]S.L.Alder,Quaternionic quantum field theory,Commun.Math.Phsy.,104(1986)611-656.
    [4]S.De Leo,Scolarici,Right eigenvalue equation in quaternionic quantum mechanics,J.Phys.A,33(2000) 2971-2995.
    [5]W.L.Chan,H.Chai,R.Baraniuk,Quaternion wavelets for image analysis and processing,IEEE.Inter.Confer.on Image Processing,2004,3057-3060.
    [6]S.J.Sangwine,T.A.Ell,C.E.Moxey,Vector Phase Correlation,Electronics Letters,37(25)(2001) 1513-1515.
    [7]陈万春,肖业伦,赵丽红,邹晖,四元数的核心矩阵及其在航天器姿态控制中的应用[J],航空学报,21(5)(2000)389-392.
    [8]S.C.Pei,J.H.Chang,J.J.Ding,Quaternion matrix singular value decomposition and its applications for color image processing,Image Processing,1(2003) 805-808.
    [9]C.E.Moxey,S.J.Sangwine,T.A.Ell,Hypercomplex Correlation Techniques for Vector Images,IEEE Transactions on Signal Processing,51(7)(2003) 1941-1953.
    [10]N.LE Bihan,S.J.Sangwine,Quaternion Principal Componcnt Analysis of Color images,IEEE International Conference on Image Processing(ICIP),2003.
    [11]N.LE Bihan,S.J.Sangwine,Color Image Decomposition Using Quaternion Singular Value Decomposition,IEEE International conference on Visual Information Engineering (VIE),2003.
    [12] N. LE Bihan, J. Mars, Singular Value Decomposition of Matrices of Quaternions: A New Tool for Vector-Sensor Signal Processing, Signal Processing, 84(7) (2004) 1177-1199.
    
    [13] S.J. Sangwinc, N.L. Bihan, Quaternion singular value decomposition based on bidi- agonalization to a real or complex matrix using quaternion Householder transformations, Appl. Math. Comput. 182(1) (2006) 727-738.
    
    [14] L.G. Hua and Z.X. Wan, Classical groups, Shanghai Sicence and Technology Press, Shanghai, 1963.
    
    [15] S.Z. Li, Subgroup structure of classical groups, Shanghai Sicence and Technology Press, Shanghai, 1998.
    
    [16] P.M. Cohn, Skew field constructions, Cambridge Univerisy Press, 1977.
    
    [17] P.M. Cohn, Free rings and their rclations-2ned cd., Acadimic Press Inc., 1985.
    
    [18] P. M. Cohn, The similarity reduction of matrices over a skew field, Math. Z., 132 (1973) 151-163.
    
    [19] N. Jacobson, Lectures in abstract algebra, II, Linear Algebra, Spring-Verlag, New York Inc., 1953.
    
    [20] R.C. Thompson, The matrix valued triangle inequality: quaternion version, Linear and Multilinear Algebra, 25 (1989) 85-91.
    
    [21] R.C. Thompson, Invariant factors of integral quaternion matrices, Linear and Multilinear Algebra, 21 (1987) 395-417.
    
    [22] N.A. Wiegmann, Some theorems on matrices with real quaternion elements, Canada J. Math. 7 (1955) 191-201.
    
    [23] Z.X. Wan, Geometry of Hamiltonian matrices and its applications I, Algebra Colloquium, 2(2) (1995) 167-192.
    
    [24] Z.X. Wan, Geometry of Hamiltonian matrices and its applications II, Algebra Colloquium, 3(2) (1996) 107-116.
    
    [25] B.J. Xie, Existence theorems of the canonical diagonal form and the weak canonical form of characteristic matrices over a skew field, Acta Math. Sinica, 23(3) (1980)398-410.
    [26]B.J.Xie,Applications of characteristic roots and standard forms of matrices over a skew field,Acta Math.Sinica,23(4)(1980) 523-533.
    [27]T.Y.Lam,S.Leroy,Vandermonde and Wronskian matrices over division rings,J.Algebra,119(1988) 308-336.
    [28]S.L.Adler,Quaternionic Quantum Mechanics and Quantum Fields,Oxford University Press,Oxford,1995.
    [29]F.Zhang,Quaternions and matrices of quaternions,Linear Algebra Appl.,251(1997)21-57.
    [30]F.Z.Zhang,Matrix theory:basic results and techniques,Spring-Verlag,New York Inc.,1999.
    [31]D.I.Merino,V.Sergeichuk,Littlewood's algorithm and quaternion matrices,Linear Algcbra Appl.,298(1999) 193-208.
    [32]S.De Leo,G.Scolarici,Right eigenvalue equation in quaternionie quantum mechanies,J.Phys.A,33(2000) 2971-2995.
    [33]Y.Tian,Equalities and inequalities for traces of quaternionic matrices,Algebras Groups Geom.,19(2)(2002) 181-193.
    [34]李文亮.四元数矩阵,国防科技大学出版社,2002.
    [35]D.R.Farenick,B.A.F.Pidkowich,The spectral theorem in quatcrnions,Linear Algebra Appl.,371(2003) 75-102.
    [36]S.K.Mitra,A pair of simultaneous linear matrix equations A_1XB_1= C_1 and A_2XB_2=C_2,Proc.Cambridge Philos.Soc.,74(1973) 213-216.
    [37]J.W.van der woude,Feedback decoupling and stabilization for linear system with multiple exogenous variables,Ph.D.Thesis,Technical University of Eindhoven,1987.
    [38]J.W.van der Woude,Almost noninteracting control by measurement feedback,System Control Lett.,9(1987) 7-16.
    [39]A.B.(O|¨)zg(u|¨)ler,N.Akar,A common solution to a pair of linear matrix equations over a principle domain,Linear Algebra Appl.,144(1991) 85-99.
    [40]A.Navarra,P.L.Odell,D.M.Young,A representation of the general common solution to the matrix equations A_1XB_1=C_1 and A_2XB_2=C_2 with applications,Comput.Math.Appl.,41(2001) 929-935.
    [41]P.Bhimasankaram,Common solutions to the linear matrix equations AX=B,CX=D,and EXF=G,Sankhya Ser.A,38(1976) 404-409.
    [42]王卿文,薛有才,体与环上的矩阵方程,知识出版社,1996.
    [43]Q.W.Wang,F.Qin,C.Y.Lin,The common solution to matrix equations over a regular ring with applications,India J.Pure Appl.Math.,36(2005) 655-672.
    [44]Q.W.Wang,Y.G.Tian,S.Z.Li,Roth's theorems for centroselfconjugate solutions to systems of matrix equations over a finite dimensional central algebra,Southeast Asian Bulletin of Mathematics,27(2004)929-938.
    [45]Q.W.Wang,A system of matrix equations and a linear matrix cquation over arbitrary regular rings with identity,Linear Algebra Appl.,384(2004) 43-54.
    [46]Q.W.Wang,The general solution to a system of real quaternion matrix equations,Comput.Math.Appl.,49(2005) 665-675.
    [47]Q.W.Wang,Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations,Comput.Math.Appl.,49(2005) 641-650.
    [48]Q.W.Wang,A system of four matrix equations over von Neumann regular rings and its applications,Acta Math.Sinica,English Series,21(2)(2005) 323-334.
    [49]Q.W.Wang,J.H.Sun,S.Z.Li,Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra,Linear Algebra Appl.,353(2002) 169-182.
    [50]Q.W.Wang,H.X.Chang,C.Y.Lin,P-(skew)symmetric common solutions to a pair of quaternion matrix equations,Appl.Math.Comput.Comput.,195(2008) 721-732.
    [51]Q.W.Wang,Pairwise matrix decompositions and matrix equations over an arbitrary skew field,Acta Math.Sinica(Chin.Ser.),39(3)(1996) 396-403.
    [52]Q.W.Wang,F.Zhang,The reflexive re-nonnegative definite sollution to a quaternion matrix equation,Electronic Journal of Linear Algebra,17(2008) 88-101.
    [53]Q.W.Wang,Systems of linear matrix equations over regular rings and polynomial rings over finite central algebras,unpublished PhD thesis of Dcpartment of Mathematics,University of Science and Technology of China,2003.
    [54]A.Ben-Israel and T.N.E.Greville,Generalized inverses:theory and applications,John Wiley and Sons Inc.,1974.
    [55]T.W.Hungerford,Algebra,Spring-Verlag New York Inc.,1980.
    [56]S.K.Mitra,Fixed rank solutions of linear matrix equations,Sankhya Ser.A,35(1972)387-392.
    [57]S.K.Mitra,The matrix equations AX=C,XB=D,Linear Algebra Appl.,59(1984) 171-181.
    [58]F.Uhlig,On the matrix equation AX=B with applications to the generators of a controllability matrix,Linear Algebra Appl.,85(1987) 203-209.
    [59]Y.Tian,Ranks of Solutions of the matrix equation AXB=C,Linear and Multilinear Algebra,51(2)(2003) 111-125.
    [60]Y.Tian,S.Cheng,The maximal and minimal ranks of A - BXC with applications,New York J.Math.,9(2003) 345-362.
    [61]C.Y.Lin,Q.W.Wang,The minimal and maximal ranks of the general solution to a system of matrix equations over an arbitrary division ring,Math.Sci.Res.J.,10(3)(2006) 57-65.
    [62]Q.W.Wang,Z.C.Wu,C.Y.Lin,Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications,Appl.Math.Comput.,182(2)(2006) 1755-1764.
    [63]A.C.Aitken,Determinants and Matrices,Oliver and Boyd,Edinburgh,1939.
    [64]陈景良,陈向晖,特殊矩阵,清华大学出版社,2001.
    [65]I.J.Good,The inverse of a centrosymmetric matrix,Technometrics,12(1970) 925-928.
    [66]A.L.Andrew,Centrosymmetric matrices,SIAM Rev.,40(1998) 697-698.
    [67]W.C.Pye,T.L.Boullion,T.A.Atchison,The pseudoinverse of a centrosymmetric matrix,Linear Algebra Appl.,6(1973) 201-204.
    [68] A.L. Andrew, Solution of equations involving ccntrosymmctric matrices, Technomet-rics, 15 (1973) 151-162.
    [69] A. Cantoni, P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl., 13 (1976) 275-288.
    [70] A. Lee, Centrohcrmitian and skew-centrohcrmitian matrices, Linear Algebra Appl., 29 (1980) 205-210.
    [71] J.R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors, Amer. Math. Monthly, 92 (1985) 711-717.
    [72] L. Datta, S.D. Morgera, On the reducibility of centrosymmetric matrices - applications in engineering problems, Circuits Systems Sig. Proc, 8(1) (1989) 71-96.
    [73] R.D. Hell, R.G. Bates and S.R. Waters, On centrohcrmitian matrices, SIAM J. Matrix Anal. Appl., 11(1) (1990) 128-133.
    [74] R.D. Hell, R.G. Bates and S.R. Waters, On perhermitian matrices, SIAM J. Matrix Anal. Appl., 11(2) (1990) 173-179.
    [75] Russell M. Reid, Some eigenvalues properties of persymmetric matrices, SIAM Rev., 39 (1997) 313-316.
    
    [76] A.L. Andrew, Centrosymmetric matrices, SIAM Rev., 40 (1998) 697-698.
    [77] I.S. Pressman, Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices, Linear Algebra Appl., 284(1998) 239-258.
    [78] A. Mclman, Symmetric centrosymmetric matrix - vector multiplication, Linear Algebra Appl., 320 (2000) 193-198.
    [79] H.C. Chen, A. Sameh, Numerical linear algebra algorithms on the cedar system, in Paralled Computations and Their Impact on Mechanics, The American Society of Mechanical Engineers, AMD, 86 (1987) 101-125.
    [80] H.C. Chen, The SAS Domain Decomposition Method for Structural Analysis, CSRD Tech. report 754, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1988.
    [81] H.C. Chen, Generalized reflexive matrices: special properties and application, SIAM J. Matrix Anal. Appl., 19 (1998) 140-153.
    [82]X.Y.Peng,X.Y.Hu,Lei Zhang,The reflexive and anti-reflexive solutions of the matrix equation A~HXB=C,J.Comp.Appl.Math.,200(2)(2007) 749-760.
    [83]D.S.Cvetkovic-iliic,The reflexive solutions of the matrix equation AXB=C,Comput.Math.Appl.,51(2006) 897-902.
    [84]D.Hua,On the symmetric solutions of linear matrix equations,Linear Algebra Appl.,131(1990) 1-7.
    [85]Z.Y.Peng,X.Y.Hu,The reflexive and anti-reflexive solutions of matrix equation AX=B,Linear Algebra Appl.,375(2003) 147-155.
    [86]C.J.Meng,X.Y.Hu,The skew-symmetric orthogonal solutions of the matrix equation AX=B,Linear Algebra Appl.,402(2005) 303-318.
    [87]R.A.Horn,V.V.Sergeichuk,N.Shaked-Monderer,Solution of linear matrix equations in a ~*congruence class,Electron.J.Linear Algebra,13(2005) 153-156.
    [88]G.K.Hua,X.Hu,L.Zhang,A new iterative method for the matrix equation AX=B,Appl.Math.Comput.,15(2007) 1434-1441.
    [89]A.D.Porter,Solvability of the matrix equation AX=B,Linear Algebra Appl.,13(1976) 177-184.
    [90]F.Ahmad,A system of equations with a tridiagonal coefficient matrix,Appl.Math.Comput.,159(2004) 435-438.
    [91]Y.S.Hanna,On the solutions of tridiagonal linear systems,Appl.Math.Comput.,189(2007) 2011-2016.
    [92]庄瓦金,四元数体上的矩阵方程,数学学报,30(5)(1998)688-694.
    [93]W.F.Trench,Minimization problems for(R,S)-symmetric and(R,S)-skew symmetric matrices,Linear Algebra Appl.,389(2004) 23-31.
    [94]D.X.Xie,X.Y.Hu,Y.P.Sheng,The solvability conditions for the inverse eigenproblems of symmetric and generalized centro-symmetric matrices and their approximations,Linear Algebra Appl.,418(2006) 142-152.
    [95]Z.Y.Peng,Y.B.Deng,J.W.Liu,Least square solution of invcrse problem for hermitian anti-reflexive matrices and its approximation,Acta Math.Sinica,22(2006)477-484.
    [96]Z.Z.Zhang,X.Y.Hu,L.Zhang,On the Hermitian-generalized Hamiltonian solutions of linear matrix equations,SIAM J.Matrix Anal.Appl.,27(2005) 294-303.
    [97]F.Z.Zhou,X.Y.Hu,L.Zhang,The solvability conditions for the inverse problems of symmetric ortho-symmetric matrices,Appl.Math.Comput.,154(2004) 153-166.
    [98]W.F.Trench,Invcrse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry,Linear Algebra Appl.,380(2004)199-211.
    [99]W.F.Trench,Hermitian,hermitian R-symmetric,and hermitian R-skew symmetric Procrustes problem,Linear Algebra Appl.,387(2004) 83-98.
    [100]F.Diele,I.Sgura,Centrosymmetric isospectral flows and some inverse eigenvalue problems,Linear Algebra Appl.,366(2003) 199-214.
    [101]Z.J.Bai,R.H.Chan,Inverse eigenproblem for centrosymmetric and centroskew matrices and their approximation,Theoretical Computer Science,315(2004) 309-318.
    [102]F.Z.Zhou,Least-square solutions for inverse problem of centrosymmetric matrices,Comput.Math.Appl.,45(2003) 1581-1589.
    [103]F.Z.Zhou,X.Y.Hu,L.Zhang,The solvability conditions for the inverse problems of symmetric ortho-symmetric matrices,Appl.Math.Comput.,154(2004) 153-166.
    [104]F.Z.Zhou,X.Y.Hu,L.Zhang,The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices,Linear Algebra Appl.,364(2003) 147-160.
    [105]J.Groβ,Explicit solutions to the matrix inverse problem AX=B,Linear Algebra Appl.,289(1999) 131-134.
    [106]L.Wu,B.Cain,The Re-nonnegative definite solution to the matrix inverse problem AX=B,Linear Algebra Appl.,236(1996) 137-146.
    [107]L.Wu,The Re-positive definite solutions to the matrix inverse problem AX=B,Linear Algebra Appl.,174(1992) 145-151.
    [108]F.L.Li,X.Y.Hu,L.Zhang,Left and right inverse eigenpalrs problem of skew-centrosymmetric matrices,Appl.Math.Comput.,177(2006) 105-110.
    [109]F.Cecioni,Sopra operazioni algebriche,Ann.Scuola Norm.Sup.Pisa Sci.Fis.Mat.,11(1910) 17-20.
    [110]W.E.Chu,Singular value and generalized singular value decomposition and the solution of linear matrix equations,Linear Algebra Appl.,88/89(1987) 83-98.
    [111]C.G.Khatri,S.K.Mitra,Hermitian and nonnegative definite solutions of linear matrix equations,SIAM J.Appl,Math.,31(1976) 579-585.
    [112]S.K.Mitra,A pair of simultaneous linear matrix equations A_1XB_1=C_1,A_2XB_2=C_2 and a matrix programming problem,Linear Algebra Appl.,131(1990) 107-123.
    [113]彭亚新,求解约束矩阵方程及其最佳逼近的迭代法研究,湖南大学博士毕业论文,2004.
    [114]李范良,几类特殊矩阵的左、右逆特征对问题及其矩阵方程组的问题,湖南大学博士毕业论文,2005.
    [115]Y.T.Li,W.J.Wu,Symmetric and skew-antisymmetric solutions to systems of real quaternion matrix equations,Comput.Math.Appl.,55(6)(2008) 1142-1147.
    [116]H.X.Chang,Q.W.Wang,Reflexive solution to a system of matrix equations,Journal of Shanghai University(English Edition),11(4)(2007) 355-358
    [117]F.L.Li,X.Y.Hu,L.Zhang,The generalized reflexive solution for a calss of matrix equations(AX=C,XB=D),Acta Math.Scientia,28B(1)(2008) 185-193.
    [118]Alegra Dajic,J.J.Koliha,Positive solutions to the equations AX=C,XB=D for Hilbert space operators,J.Math.Anal.Appl.,333(2007) 567-576.
    [119]Y.Y.Qiu,Z.Y.Zhang,J.F.Lu,The matrix equations AX=B,XC=D with PX=sXP constraint,Appl.Math.Comput.,189(2007) 1428-1434.
    [120]Q.X.Xu,Common Hermitian and positive solutions to the adjointable operator equations AX=C,XB=D,Linear Algebra.Appl.,429(2008) 1-11.
    [121]W.F.Trench,Characterization and properties of matrices with generalized symmetry or skew symmetry,Linear Algebra Appl.377(2004) 207-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700