龙眼LEAFY基因克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙眼(Dimocarpus longan Lour.)属于无患子科(Sapindaceae)龙眼属,是我国重要而有特色的一种亚热带木本果树,也是福建省主要种植的果树之一。LEAFY(简称LFY)同源基因是控制花分生组织形成的基因之一,是决定营养生长向生殖生长过渡的一个关键基因,且LFY基因被认为与启动花芽发育的遗传控制有关。本试验对龙眼LFY同源基因进行克隆,并对龙眼LFY同源基因在花芽分化及“冲梢”过程中的功能进行研究,以探索龙眼花芽分化及成花逆转的分子机理。主要研究结果如下:
     1.龙眼基因组DNA提取方法的优化。本试验参考了有关果树基因组DNA常用的提取方法,在此基础上结合龙眼本身的特点进行改进,采用改良STE法、改良SDS—KAc法、试剂盒法从龙眼叶片中提取基因组DNA。最终证明改良SDS—KAc法能够有效地去除龙眼叶片中的蛋白质、多糖等次生物质,获得纯净且产率较高的基因组DNA样品。
     2.龙眼LFY基因5′端序列的克隆。以龙眼基因组DNA为模板,采用染色体步移技术得到长为1516bp的龙眼LFY基因5′端序列。经分析发现该序列与其他物种LFY基因有很高的同源性,确定了龙眼LFY基因编码区的起始位置。
     3.龙眼LFY基因cDNA全长序列的克隆及基因组全长序列的获得。根据龙眼LFY基因5′端序列和3′端序列设计特异性引物,RT-PCR扩增获得龙眼LFY同源基因cDNA全长序列(LLFY)。经分析该序列与其他其他物种LFY基因核苷酸序列有很高的同源性。该cDNA序列全长1184bp,包含一个1167bp的开放阅读框,编码388个氨基酸。将得到的龙眼LFY基因5′端基因组序列与与之前得到的龙眼LFY基因组部分DNA序列进行拼接,得到龙眼LFY基因组全长序列,大小为3395bp。经分析龙眼LFY基因组序列中包含2个内含子,大小分别为536bp和1391bp。
     4.龙眼LFY基因的功能研究。采用半定量RT—PCR技术检测花序分化过程、“冲梢”过程中LLFY基因的表达以及比较LLFY基因在“红核子”和“四季蜜”嫁接后新梢中的表达量。结果表明龙眼LFY基因的表达量在花序分化过程有逐渐升高的趋势;在“冲梢”过程则随着变态叶的展开而下降;在“红核子”龙眼嫁接后新梢中没有表达,而在“四季蜜”龙眼接后新梢中有微弱表达。说明LLFY基因与龙眼花序分化及发育有关。
     5.龙眼LFY基因植物表达载体的构建。将龙眼LFY基因代替载体pC1301PMI—GUS上的GUS基因,构建成pC1301PMI—LLFY载体。
Longan(Dimocarpus longan Lour.)is a member of the family Sapindaceae,and one of the most important subtropical orchard fruit.LEAFY(LFY)homologous gene is one of genes which control the formation of flower meristem,it plays a major role in the process from vegetative growth to reproductive growth,and LFY gene is also considered to relate with the dominating of flower buds growth.In order to explore the molecular machanism of flower buds differentiation and floral reversion in longan,further studies including longan LFY homologous gene cloning,the funcion research of longan LFY homologous gene in the process of flower buds differentiation and floral reversion were performed,and the main results showed as follows:
     1.The optimizing of longan genomic DNA isolation.The study consulted the isolation methods of other fruit trees,and improved them with combining the specialty of longan.We adopted modified STE method,modified SDS-KAc method and the KIT method to extract genomic DNA from longan leaves.The result showed that modified SDS-KAc method can effectively remove secondary substances including protein,amylose etc.in longan leaves,and obtain genomic DNA with high qualiy and yield.
     2.Cloning the 5′terminal sequence and the genome sequence of longan LFY gene.Using longan genomic DNA as template,we adopted genome walking to obtain the 5′terminal sequence, it was 1516bp in length.The sequence had high homology with other plant LFY homologous gene, we confirmed the starting position of longan LFY coding region.
     3.cDNA cloning of longan LFY gene.On the basis of the 5′terminal sequence and 3′sequence,we designed specific primers and cloned the cDNA full sequence of longan LFY gene(LLFY)by RT-PCR.The sequence had high homology with other plant LFY homologous gene, the full sequence was 1184bp in length,containing a 1167-nucleotide of open reading frame (ORF),encoding a putative protein of 388 amino acid residues.We got the genome sequence by spliced the 5′terminal sequence and the sequence obtained by WANG Qing-lian etc.The genome sequence was 3395bp in length,it contained two introns,one was 536bp in length,another was 1391bp.
     4.The function research of longan LFY gene.Expression patterns of longan LFY gene in the process of inflorescence differentiation and floral reversion revealed by semi-quantitative RT-PCR analysis,and compared expression patterns of the grafting shoot of "honghezi" and "sijimi".The result showed that the expression of longan LFY gene increased gradually in process of inflorescence differentiation,whereas it decreased in process of floral reversion.In addtion,there was no expression of longan LFY gene in the "honghezi" grafting shoot,while in the "sijimi" grafting shoot it showed a feeble expression,it showed LLFY related to inflorescence differentiation and growth.
     5.Construction of longan LFY gene plant expression vector.Longan LFY gene was cloned into expression vector pC1301PMI-GUS which GUS gene was digested,then we gained plant expression vector of pC1301PMI-LLFY.
引文
[1]聂亭,白书农,马诚.花发育调控基因的研究进展[J].生物工程进展.1996,16(1):31-35.
    [2]Colasanti J,Sundaresan V.Control of the transition to flowering[J].Curr Opin Biotech.1996(7):145-149
    [3]Ray A,Lang JD,Golden SHORT INTEGUMENT(SINI),a gene required for ovule development in Arabidopsis,also controls flowering time[J].Development.1996(122):2631-2638.
    [4]许智宏.植物发育与生殖的研究进展和展望[J].植物学报.1999,41(9):909-920.
    [5]Koomneef M,Alonso,Blanco C,Peeters A J M,Soppe W.Genetic control of flowering time in Arabidopsis[J].Annu Rev Plant Physiol Plant Mol Biol.1998,49:345-370.
    [6]Chou ML,Yang CH.FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development[J].Plant.1998,15:231-242.
    [7]Pineiro M,Coupland G.The control of flowering time and floral identity in Arabidopsis[J].Plant Physiol.1998,117:1-8.
    [8]Parcy F,Nilsson O,Busch MA,Weigel D.A genetic framework for floral patterning[J].Nature.1998,395:561-566.
    [9]Chou ML,Yang CH.Late-flowering genes interact with early-flowering genes to regulate flowering time in A rabidopsis thaliana[J].Plant Cell Physiol.1999,40:702-708.
    [10]邵寒露,李继红,郑学勤,等.拟南芥LFY cDNA的克隆及转化菊花的研究[J].植物学报.1999,41(3):268-271.
    [11]Philip A.Wigge,et al.Integration of spatial and temporal inforation during floral induction in Arabidopsis[J].Science.2005,309(12):1056-1059.
    [12]Annika Sundas Larsson.The terminal flower 2(TFL2)gene controls the reproductive transition and meristem identity in Arabidopsis thaliana[J].Genetics.1998,149:597-605.
    [13]Detlef Weigel,Meyerowtz EM.The ABCs of flower hometic genes[J].Cell.1994,78:203-209.
    [14]Weigel D,Nilsson O.A developmental switch sufficient for flower initiation in diverse plants[J].Nature.1995,377:495-500.
    [15]Huijser P,Klein J,Lonning W,et al.Bracteomania,an inflorescence anomaly,is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus[J].Embjo.1992,11:1239-1249.
    [16]Bowman JL.Genetic interactions among floral homeotic genes of Arabidopsis[J].Development.1992,112:1-20.
    [17]Desmond Bradley.Inflorescence commitment and architecture in Arabidopsis[J].Science.1997,275:80-84.
    [18]Jack T,Brockmann LL.Euerpwttz EM.The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens[J].Cell.1992,68:683-697.
    [19]Weigel D,Alvarez J,Smyth DR,et al.LEAFY controls Floral meristem identity in Arabidopsis[J].Cell.1992,69:843-859.
    [20]Manden MA,Yanofsky MY.A gene triggering flower formation in Arabidopsis[J].Nature.1995,377:522-524.
    [21]Ma H,Yanofsky MY,Meyerowitz EM.AGL1-AGL6,an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes[J].Genes Dew.1991,5:484-495.
    [22]Mouradow A,Glassick TV,HamdorfBA,et al.Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine[J].Plant Physiol.1998,117:55-61.
    [23]Goto K,Meyerowitz EM.Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA[J].Genes Dev.1994,8:1548-1560.
    [24]Koormneef M,Peeters AJM.Floral transition mutants in Arabidopsis[J].Plant Cell Environ.1997,20:779-784.
    [25]Coen ES,Romero JM,Doyle S,Elliot R,Murphy G,Carpenter R.F loricauIa:a homeotic gene required for flower development in Antirrhinum majus[J].Cell.1990,63:1311-1322.
    [26]Blazquez MA,Soowal LN,Lee L,Weigel D.LFY expression and flower initiation in Arabidopsis[J].Development.1997,124:3835-3844.
    [27]Weigel D,Coupland G.LFY blooms in a spen[J].Nature.1995,377:482-483.
    [28]Ahearn KP,Johnson HA,Weigel D,Wagner DR.NFL1,a Nicotiana tabacum LFY-like gene,controls meristem initiation and floral struvture[J].Plant and Cell Physiology.2001,42:1130-1139.
    [29]He Z,Zhu Q,Dabi T,Li D,Weigel D,Lamb CJ.Transformation of rice with the Arabidopsis floral regulator LFY causes early heading[J].Transgenic Research.2001,9:223-227.
    [30]Pena L,Martin-Trillo M,Juarez J,Pina JA,Navarro L,Martinez-Zapater JM.Constitutive expression of Arabidopsis LFY or APETALA1 genes in citrus reduces their generation time[J].Nature Biotechnology.2001,19:263-267.
    [31]Shu G,Amaral W,Hileman LC,Amaral W,Hileman LC,Baum DA.LFY and the evolution of rosette flowering in violet cress(Jonopsidiurn acaule,Brassicaceae)[J].American Journal of Botany.2000,87:634-641.
    [32]张建业,陈力耕,胡西琴.银杏.EEAFY同源基因的分离与克隆[J].林业科学.2002,38(4):167-170.
    [33]Masato Wada,Qiu-fen Cao,Nobuhiro Kotoda.Apple has two orthologues of FLORICAULA/LEAFY involved in flowering[J].Plant Molecular Biology.2002,49:567-577.*~
    [34]Qingyi YU et al.Cloning and characterization ofa FLORICAULA/LEAFY ortholog,PFL,in polygamous papaya[J].Cell Research.2005,15(8):576-584.
    [35]Kelly A J,Bonnlander MB,Meeks-Wagner DR.NFL,the tobacco homolog of FLORICAULA and LEAFY,is transcriptionally expressed in both vegetative and floral meristems[J].The Plant Cell.1995,7:225-234.
    [36]Frolich MW,Meyerowitz EM.The search for flower homeotic gene homologues in basal angiosperms and getales:a potential new source of data on the evolutionary origin of flowers.Plant Science.1997,158:131-142.
    [37]Frolich MW,Parker DS.The mostly male theory of flower evolutionary origins from genes to fossils[J].Systematic Botany.2000,25:155-170.
    [38]郭长禄,陈力耕,等.银杏LEAFY同源基因的时空表达[J].遗传.2005,27(2):241-244.
    [39]Hempel FD et al.Floral determination and expression of floral regulatory genes in Arabidopsis[J].Development.1997,124:3845-3853.
    [40]Pneuli L et al.The SELFPRUNING gene of tomoto regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFLI[J].Development.1998,25:1979-1989.
    [41]曹秋芬,和田雅人,等.苹果LEAFY同源基因的cDNA克隆与表达分析[J].园艺学报.2003,30(3):267-271.
    [42]陈大明,金勇丰,张上隆.柑橘LEAFY同源基因片段分离及特性研究[J].园艺学报.2001,28(4):295-300.
    [43]Kirsten B,John FD.Pleiotropic Effects of the Duplicate Maize FLORICAULA/LEAFY Genes zf1l and zfl2 on Traits Under Selection During Maize Domestication[J].Genetics.2006,172:519-531.
    [44]Leandro Pena,Mar Martin-Trillo.Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time[J].Nature Biotechnology.2001,19:263-267.
    [45]Mouradov A,Cremer F,Coupland G.Control of flowering time:interacting pathway as a basis for diversity[J].The Plant Cell.2002,14:S111-S130.
    [46]田淑兰,陈敏,白书农.LFY/FLO基因与高等植物成花诱导分子机理的研究进展[J].生物学通报.1999,34(9):5-8.
    [47]王利琳,等.拟南芥LEAFY基因在花发育中的网络调控及其生物学功能[J].遗传.2004,26(1):137-142
    [48]Blazquez MA et al.Integration of floral inductive signals in Arabidopsis[J].Nature.2000,404:889-892.
    [49]Sarah J,Cindy Gustafson-Brown.Interactions among APETALA1,LEAFY and TERMINAL FLOWER1 Specify Meristem Fate[J].The Plant Cell.1999,11:1007-1018.
    [50]King RW,Moritz T,Evans LT,Junttila O,Herlt AJ.Long day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex[J]. Plant Physiol.2001,127:624-632.
    [51]Okamura JK,Szeto W,Lotys-Prass C,Jofuku KD.Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetalal[J].Plant Cell.1997,9:37-47.
    [52]Chandler J,Dean C.Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana(L.)Heynh[J].J Exp Bot.1994,45:1279-1288.
    [53]Blazquez MA,Green R,Nilsson O,Sussman MR,Weigel D.Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter[J].Plant Cell.1998,10:791-800.
    [54]Wolbarg C M,Ross J J.Auxin promotes gibberrllin biosynthesis in decapitated tobacco plants[J].Planta,2001,214:153-157.
    [55]Roldan M,Gomez-Mena C,Ruiz-Garcia L,Martin-Trillo M,Salinas J,Martinez-Zapater J M,Effect of darkness and sugar availability to the apex on morphogenesis and flowering time of Arabidopsis[J].Flowering Newslett.1997,24:18-24.
    [56]Ohta M,Onai K,Furukawa Y,Aoki T,Nakamura K.Effects of sugar on vegetative development and floral transition in Arabidopsis[J].Plant Physiol.2001,127:252-261.
    [57]Battey NH,Lyndon RF,Reversion of flowering[J].Bot Rev.1990,56:162-189.
    [58]韩天富,等.大豆开花逆转现象的发现[J].作物学报.1998,24:168-171.
    [59]白素兰,等.植物的成花逆转[J].植物生理学通讯.2000,36(3):252-257.
    [60]梁天干,陈玲玲.红核子龙眼花芽分化的初步研究[J].园艺学报.1965,4(1):13-17.
    [61]王长春,等.龙眼花芽分化的研究[J].福建省农科院学报.1992,7(1):55-58.
    [62]邱金淡,等.石硖龙眼花芽分化的研究[J].华南农业大学学报.2001,22(1):27-30.
    [63]吕柳新,林顺权.果树生殖学导论[M].北京:中国农业出版社.1995.22.
    [64]柯冠武,黄进华,王长春.龙眼花穗“冲梢”形态解剖学的观察[J].中国果树.1988,(1):22-24.
    [65]陈开明,等.龙眼叶片营养与开花结果关系的研究[J].福建果树.1985,(3):1-5.
    [66]王纪忠,等.龙眼花芽形态分化期基枝叶片碳水化合物含量与成花逆转的关系[J].福建农林大学学报.33(3):322-325.
    [67]黄羌维.龙眼内源激素变化及花芽分化及大小年结果的关系[J].热带亚热带植物学报.1996,4(2):58-62.
    [68]苏明华,等.水涨龙眼结果母枝内源激素含量变化对花芽分化的影响[J].热带作物学报.1997,18(2):66-71.
    [69]温福光.相对低温对龙眼产量的影响[J].福建果树.1988,(2):55-59.
    [70]Pouteau S,Nicholls D.Transcription pattern of a FIM homologue in Impatiens during floral development and reversion[J].Plant J.1998,14:235-246.
    [71]Tooke F,Battey NH.A leaf-derived signal is a quantitative determinant of floral form in Impatiens[J].Plant Cell.2000,12(10):1837-1848.
    [72]Nissen O,Weigel D.Modulating the timing of flowering[J].Curr Opinion Biotechnol.1997,8:195-199.
    [73]Ma H.To be or not to be,a flower control or floral meristem identity[J].Treads in Genet.1998,14:26-32.
    [74]吴存祥,韩天富.植物开花研究进展[J].植物学通报.2002,19(5):523-529.
    [75]王庆莲.福建柑桔种质的RAPD分析及龙眼LEAFY基因克隆和表达的研究[D].福州:福建农林大学,2006.
    [76]郑丽霞,林晓东,朱芳德,等.龙眼FLO/LFY同源基因cDNA片段的克隆[J].中山大学学报(自然科学版).2004,43(6):60-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700