川中地区须家河组与珍珠冲段地层沉积特征与划分对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用沉积学、层序地层学的原理,根据野外露头剖面、钻井、取芯、测井、录井、地震等资料,采用传统野外、室内和现代化测试手段相结合的研究方法,对川中地区须家河组与珍珠冲段的沉积特征进行了系统的研究,明确了珍珠冲段底界面上下地层的沉积变化特征,为川中地区须家河组与珍珠冲段的地层界线的确定提供了古生物化石、测井等重要依据。
     川中地区须家河组和珍珠冲段古植物都是以裸子植物的苏铁类和蕨类植物为主,但属种发育有所不同。须六段上部黑色页岩富含植物化石,且保存完好,特征明显;而珍珠冲段一般不含完整的植物化石,只见少量炭化植物碎屑。珍珠冲段底部的石英质砾岩、石英砂岩是这一界线较好的岩性标志。
     通过大量的野外露头和岩芯观察,发现须家河组地层中发育大量的近海潮汐沉积构造与层理,如双粘土层、水流突变、脉状层理、透镜状层理等。综合研究认为须家河晚期川中地区主要属于浅海河口湾相,包括河口坝、潮汐影响的三角洲、河口湾泥、潮间与潮上带等环境。珍珠冲段地层中见植物根系、菱铁矿小颗粒、强烈的生物扰动、平行层理等特征,揭示了珍珠冲期川中地区为滨湖湖泊三角洲沉积环境,只在局部地区可能受海洋潮汐影响。地震反射终端特征分析表明珍珠冲段底面截削了须六段,而珍珠冲段底部则上超于该界面上,揭示了珍珠冲段底面为一不整合面,沉积在一轻微削蚀了的风化面之上。
     研究区内须六段下部的测井响应特征主要为箱型,上部主要为漏斗状、花瓶状、叠置漏斗状等形态;而珍珠冲段的测井响应特征主要为钟形、叠置小漏斗、花瓶状等形态。通过地层拉平连井剖面对比分析,须家河至珍珠冲时期地形起伏被沉积补偿迅速填平,揭示了川中地区须家河期与珍珠冲期构造运动和缓平稳,为东岳庙期区域性大湖泊的出现创造了条件。通过川中东北部地区14口井的岩屑记录的研究,总结了界线上下附近的须家河组与珍珠冲段岩屑差异,划分出8种岩屑组合类型。
     综合野外、岩芯、录井、测井等资料,从颜色、古生物、沉积构造、成岩后生矿物、测井曲线形态等方面总结了川中地区须家河组与珍珠冲段的地层划分标志,采用可靠的对比方法对研究区内须家河组与珍珠冲段地层进行划分对比。
By applying of the principles and methods of Sedimentology and Sequence Stratigraphy, based on field outcrops, drilling, coring, logging, logging, and seismic data for the study, adopted the ways of combination traditional outdoor, indoor, and modern testing methods, this paper made a deeper study on the sedimentary of Xujiahe formation and Zhenzhuchong member in the middle of Sichuan region. Made analysis and comparison on the interface changes of Xujiahe formation and Zhenzhuchong member in this area, this provides an important basis for identify the boundary line between Xujiahe formation and Zhenzhuchong member.
     The fossil plants in the study horizon are gymnosperms almost, dominated by cycads and ferns, but the general and species developed differently. The black shale rich in plant fossils in the upper of the sixth member of Xuejiahe formation, and preserved well foe identification; the Zhenzhuchong member doesn’t contain complete plant fossils generally, but saw a small amount of carbonized plant debris. The quartz sandstone and quartzose sandstone in the bottom of the Zhenzhuchong member is the lithologic mark of this boundary.
     Through a large number of outcrop and core observations, found that there are lots of offshore tidal sedimentary structures and bedding, such as bi-clay layer, flow mutation, vein bedding, lenticular bedding, etc. This show that in the later period of Xujiahe in the study area are mainly shallow estuarine facies, including the mouth bar, tidal effects of delta, estuary mud, with the tide on the intertidal zone and other environment. And the Zhenzhuchong member contains plant roots, small siderite particles, strong bioturbation, parallel bedding and other features, reveals that in the period of Zhenzhuchong the middle of Sichuan region is lake delta, and in the northeast area, there are delta front , shunt between the Gulf and the former delta sediments. Ocean tides perhaps make some influences in some areas. The seismic reflection show that the bottom of the J1z cut-off the T3x6, while the bottom of the J1z extrudoclusion this interface, revealed the bottom of the J1z is an unconformity surface, deposited on a land surface which was slightly denudation.
     The typical logging response characteristics of xujiahe formation is Box-shaped and the upper of T3x6 are funnel-shaped,vase-shaped,overlay funnel-shaped,and so on.But Zhenzhuchong member response characteristics of the main section of the log for the bell-shaped, stacked small funnel, vase-shaped and other forms.in the profile of the connected wells' profile,Compensation for terrain quickly filled by deposition at the age of T3x~J1z. Reveal Sichuan gentle tectonic movement smooth, no specific long-term uplift or subsidence areas, large lakes for the temple has the appearance of regional and create the conditions. Research on 14 Cutting loggings in the northeast of central sichuan,compared the defference of the upper and lower boundary near the Xujiahe formation and zhenzhuchong member. Research on the cutting loggings of the upper and lower of the boundaries of Xujiahe formation and zhenzhuchong member ,the result and combinations are many and varied.According to field section,core,logging,et at al, summarizes the differences in the color, paleontology, sedimentary structures, diagenetic epigenetic minerals, logging curve shaped morphology, etc between the upper and lower boundary near the Xujiahe formation and zhenzhuchong member.
引文
[1]赵霞飞,吕宗刚,张闻林,等.四川盆地安岳地区须家河组——近海潮汐沉积[J].天然气工业,2008,4:14-18.
    [2] Off T.Rhythmic linear sand bodies caused by tidal currents[J].Bull.AAPG,1963, 47(2):324-341.
    [3] Caston V N D.Stride A H.Tidal sand movement between some linear sand banks in the North Sea off northeast Norfolk[J].Marine Geology,1970,9:38~42.
    [4] Caston G F.Potential gain and loss of sand by some sand banks in the southern North Sea off northeast Norfolk[J].Marine Geology,1981,41:239~250.
    [5] Swift D J P,Field M E.Evolution of a classic sand ridges field:Maryland sector,North American inner shelf[J].Sedimentology,1981,28:461~482.
    [6] Parker G,Lanfredi N W,Swift D J P.Seafloor response to flow in southern Hemisphere sand ridge field:Argen-tine Inner shelf[J].Sedimentary Geology,1982,33:195-216.
    [7] Amos G L,King E L.Bedforms of the Canadian Eastern seaboard:a comparison with global occurrences [J].Marine Geology,1984,57:167-208.
    [8]吴自银,曹振轶,王小波,等.海底沙脊地貌的研究现状及进展[J].海洋学研究,2006,3:53-63.
    [9] Yang Chang-shu & Sun Jia-song,1988,Tidal Sand ridges on the East China Sea shelf. In P.L.de Boer et al.(eds.),Tide-Influenced Sedimentary Environments and Facies,23-38, D. Reidel publishing Company.
    [10] Robert W.Dalrymole,Brian A.Zaitlin and Ron Body. Estuarine Facies Models:Conceptual Basis And Stratigraphic Implications. Journal Of Sedimentary Petrology,Vol 62,No 6,November,19 92,p.1130-1146
    [11]梁恩宇.四川盆地上三叠统的划分对比及有关几个地壳运动界面的讨论[M].石油与天然气地质,1980,1(1):56-68
    [12]邓康龄,何鲤.四川盆地西部晚三叠世早期地层及其沉积环境[M].石油与天然气地质,1982,3(3):204-210.
    [13]邓康龄.四川盆地形成与演化与油气勘探领域[M].天然气工业,1992,12(5):7-12
    [14]李书兵,何鲤,等.四川盆地晚三叠世以来陆相盆地演化史[M].天然气工业,1999,增刊:18-23.
    [15]李华启.四川盆地西部上三叠统须家河组层序地层学及沉积体系研究[D].广州:中国科学院广州地球化学研究所,2003:8-13,71-124.
    [16]谢武仁,杨威,李熙喆,等.四川盆地上三叠统砂岩储层特征研究[J].天然气地球科学,2008,19(5):623-629.
    [17]张健,李国辉,谢继荣,等.四川盆地上三叠统划分对比研究[J].天然气工业,2006,26(1):12~16.
    [18]杨克明,叶军,吕正祥.川西坳陷上三叠统须家河组天然气分布及成藏特征[J].石油与天然气地质,2004,25(5):5112516.
    [19]王安发,游章隆.川东北香溪群影响砂岩孔隙发育的成岩作用因素[J].成都理工学院学报,1995,22(2):79283
    [20]地质部四川省地质局第二区域地质测量队区域测量报告(广元幅)[R].1966.
    [21]侯方浩,蒋裕强,等.四川盆地上三叠统香溪组二段和四段砂岩沉积模式[J].石油学报,2005,26(2):30-37.
    [22]四川盆地陆相中生代地层古生物编写组.四川盆地陆相中生代地层古生物[M].四川人民出版社,1982:57-150 [23黄其圣.四川盆地北缘达县、开县一带早侏罗世珍珠冲植物群及其古环境[J].地球科学2001,26(3):221-230
    [24]盛贤才,梁西文,何文斌,等.四川盆地东缘上三叠统中侏罗统层序地层特征[J].石油天然气学报,2006,28(3):9-13
    [25]邓康龄,王信.四川盆地西部侏罗纪沉积相及油气分布[J].沉积与特提斯地质地,2004.9,24(3):90-95
    [26]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1996:72293. [27翟光明主编.中国石油地质志(卷十)四川油气区[M].北京,石油工业出版社.1986:1-516
    [28]童崇光.四川盆地构造演化与油气聚集[M].北京:地质出版社,1994.27.
    [29]郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化[M].地质出版社,1996:113-138
    [30]斯行健.鄂西香溪煤系植物化石[J].地质评论,1944,(z2)
    [31]库丽曼,刘树根,张长俊,等.川中地区上三叠统须家河组二段和四段沉积相[J].油气地质与采收率,2007.3,14(2):35-37
    [32]罗启后.水进河床砂体充填在古代沉积中的发现-四川盆地中西部上三叠统某些砂体的成因探讨并试论水进型三角洲[J].沉积学报,1983.7,1(3):59-68
    [33]郑荣才,戴朝成,朱如凯,等.四川类前陆盆地须家河组层序—岩相古地理特征[J].地质评论,2009.7,55(4):484~495
    [34]赵霞飞,张闻林,康仁东,等.安岳地区须家河组地震相及有利区带预测研究(内部报告)[M],2008.12
    [35]黄其胜,鲁胜梅.川东地区晚三叠世须家河组植物群古生态初探[J],地球科学—中国地质大学学报,1992,17(3):329-335
    [36]黄其胜.川北晚三叠世须家河期古气候及其成煤特征[J].地质评论,1955,41(1):92-99
    [37]黄其胜.四川盆地北缘达县、开县一带早侏罗世珍珠冲植物群及其古环境[J].地球科学,2001.5,26(3):221-230
    [38]刘笛笛,杨子荣,杨彦东,等.四川盆地珍珠冲组植物群特点及侏罗系与三叠界线的厘定[J].地球科学与环境学报2009.9,31(3):254-259
    [39]徐仁,段淑英,陈晔,等.中国晚三叠世宝鼎植物群[M].科学出版社,1979.1:1-30
    [40]段淑英,陈晔.四川盆地东部中生代含煤地层及植物化石[J].古生物论文集,1982
    [41]地质部四川省地质局第二区域地质测量队区域测量报告(仪陇幅-通江幅-南充幅-广安幅-重庆幅)[R].1980
    [42] M.J Visser.Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits:A preliminary note.Gelogy,V.8,p.543-546
    [43]黄丽萍.论龙永煤田童子岩组菱铁矿及其岩相意义[J].中国煤田地质,2004.5,16(z):35-37
    [44]蒋裕强,林建平,杨宗恒,等.川中地区侏罗系珍珠冲段含油气性评价研究(内部报告)[M],2008.12
    [45]何鲤.地震地层学在四川盆地上三叠统沉积环境解释及找油探气中的应用[J].矿物岩石, 1988,(01)
    [46] John F. Aitken and John A. Howell. High resolution sequence stratigraphy; innovations, applications and future prospects (in High resolution sequence stratigraphy; innovations and applications).Geological Society Special Publications (1996), 104 1-9
    [47] Shanley R W and McCabe P J.1994.Perspectives on the sequence strigraphy of continental strata.AAPG Bull.V.78,NO.4
    [48] J. C. Van Wagoner et al. An overview of the fundamentals of sequence stratigraphy and key definitions (in Sea-level changes; an integrated approach).Special Publication - Society of Economic Paleontologists and Mineralogists (September 1988), 42 39-45
    [49] John C. Van Wagoner.Sequence boundaries in siliciclastic strata on the shelf; physical expression and recognition criteria (in Distinguished lecture tours, 1990-1991; abstracts, Anonymous,).AAPG Bulletin (November 1990), 74(11):1774-1775
    [50] P. R. Vail and Walter W. Wornardt .Well log-seismic sequence stratigraphy analysis; an integrated approach to exploration and development (in AAPG international conference; abstracts, Anonymous,).AAPG Bulletin (August 1991), 75(8):1423
    [51] S. A. Schumm .River response to baselevel change; implications for sequence stratigraphy (in Centennial special issue, Anonymous,).Journal of Geology (March 1993), 101(2):279-294
    [52] T.olsen et al.,Sequential Architecture in A Flurial Succession:Sequence Strigrophy in the upper Cretaceous Mesaverde Group,Price Canyon ,Vtah.Journal of Sedimentary Research.Vol.,B65,NO.2,May,1995,P.265-280
    [53] J. C. Van Wagoner .New models for fluvial architecture and nonmarine sequence stratigraphy (in American Association of Petroleum Geologists 1996 annual convention, Anonymous,).Annual Meeting Expanded Abstracts - American Association of Petroleum Geologists (1996), 5144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700