儿童的分数和小数数量表征及其发展
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的数量发展理论大多基于整数研究,它们对分数或小数的数量能否表征在心理数字线上提出了不同的假设。为数不多的已有的实证研究在这一问题上也得到了相互对立的结果。并且这些研究只考察了分数的数量表征或小数的数量表征,而理解分数和小数数量表征的异同对认知科学和教育科学都非常重要。因此,本研究从发展的视角考察和比较了儿童的分数和小数数量表征以及其与分数小数互化能力的关系。本研究还通过一项干预研究考察了什么样的训练更能提高分数和小数的数量表征水平和互化能力。通过比较中国儿童和美国同龄儿童在数字线估计任务中的表现,本研究也初步考察了分数和小数数量表征的国际差异。
     本研究取得了以下主要发现:第一,像整数一样,分数和小数的数量都能表征在心理数字线上。第二,分数和小数的数量表征和互化能力随年龄的增长而发展。第三,分数数量表征和小数数量表征存在较大差异:小数在心理数字线上的表征比分数更准确;小数数量表征比分数数量表征发展地更早;相对于估计小数,儿童甚至成人更容易低估分数的数量。第四,除发展外,强调分数和小数数量意义的短期训练也能提高儿童的分数和小数数量表征水平。第五,分数和小数的数量表征水平与分数小数互化能力之间存在相关甚至因果关系。第六,中国小学四年级儿童的小数数量表征水平高于同龄的美国儿童而分数数量表征水平低于同龄的美国儿童。
     本研究的结果对完善数量发展理论、改进分数和小数的教学方式、以及重新审视分数和小数的教学顺序具有重要的价值。
Current numerical development theories, generally based on whole number studies, propose different hypotheses about magnitude representations of common fractions or decimal fractions. Previous studies addressing fraction representations yielded contradicting results. Moreover, these studies explored magnitude representations of these two types of fractions in isolation, while it is particularly important for both cognitive science and educational science to examine and compare magnitude representations of common fractions and decimal fractions. The present study examined and compared, from a developmental perspective, children's magnitude representations of and translation between common fractions and decimal fractions. The present study, using a pretest-training-posttest design, also examined which training is more effective in improving children's fraction representations and performance in fraction translation. The present study also examined international differences in magnitude representations of these two types of fractions.
     The present study yielded the following results. First, like whole numbers, both common fractions and decimal fractions could be represented on a mental number line. Second, knowledge of common fractions and decimal fractions and their translation developed with age. Third, substantial differences were observed between magnitude representations of common fractions and those of decimal fractions (e.g. accurate magnitude representations developed more often and earlier for decimal fractions than for common fractions; children were more likely to underestimate the magnitudes of common fractions than those of decimal fractions). Fourth, in addition to development, appropriate trainings could also improve children's magnitude representations of common fractions and decimal fractions. Fifth, correlational, even causal, relationships were observed between children's fraction representations and their performance in fraction translation. Last, Chinese fourth graders gained better magnitude representations for decimal fractions while American peers gained better magnitude representations for common fractions.
     These findings have profound implications for revising current numerical development theory, improving fraction instructions, and evaluating the traditional approach of teaching common fractions before teaching decimal fractions.
引文
Ansari, D., Garcia, N., Lucas, E., Hamon, K.,& Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. NeuroReport,16(16),1769-1773.
    Antell, S. E.,& Keating, D. P. (1983). Perception of numerical invariance in neonates. Child Development,54(3),695-701.
    Bailey, D. H., Hoard, M. K., Nugent, L.,& Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3),447-455.
    Baillargeon, R., Needham, A.,& Devos, J. (1992). The development of young infants'intuitions about support. Early Development and Parenting,1(2),69-78.
    Barth, H., Kanwisher, N.,& Spelke, E. (2003). The construction of large number representations in adults. Cognition,86(3),201-221.
    Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S.,& Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology,46(2),545-551.
    Biddlecomb, B. D. (2002). Numerical knowledge as enabling and constraining fraction knowledge:An example of the reorganization hypothesis. The Journal of Mathematical Behavior,21(2),167-190.
    Bonato, M., Fabbri, S., Umilta, C,& Zorzi, M. (2007). The mental representation of numerical fractions:Real or integer? Journal of Experimental Psychology:Human Perception and Performance,33(6),1410-1419.
    Booth, J. L.,& Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology,42(1),189-201.
    Booth, J. L.,& Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development,79(4),1016-1031.
    Brannon, E. M.,& Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science,282(5389),746-749.
    Buckley, P. B.,& Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology,103,1131-1136.
    Bugden, S.,& Ansari, D. (2011). Individual differences in children's mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118(1),32-44.
    Bull, R., Espy, K. A.,& Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers:Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology,33(3),205-228.
    Carpenter, T. P., Kepner, H., Corbitt, M. K., Lindquist, M. M.,& Reys, R. E. (1980). Results and implications of the second NAEP mathematics assessments:Elementary school. The Arithmetic Teacher,27(8),10-47.
    Case, R., Okamoto, Y., Sharon, G., McKeough, A., Bleiker, C., Henderson, B.,... Keating, D. P. (1996). The role of central conceptual structures in the development of children's thought. Monographs of the Society for Research in Child Development,61(1/2), i-295.
    Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe:A functional MRI study. Proceedings of the National Academy of Sciences of the United States of America,103(12),4693-4698.
    Cohen, D. J. (2010). Evidence for direct retrieval of relative quantity information in a quantity judgment task:Decimals, integers, and the role of physical similarity. Journal of Experimental Psychology:Learning, Memory,& Cognition,36(6),1389-1398.
    Cruz, H. (2006). Towards a Darwinian approach to mathematics. Foundations of Science,11(1-2), 157-196.
    De Smedt, B., Verschaffel, L.,& Ghesquiere, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology,103(4),469-479.
    Dehaene, S. (2001). Precis of the number sense. Mind & Language,16(1),16-36.
    Dehaene, S., Bossini, S.,& Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology:General,122(3),371-396.
    Dehaene, S., Dupoux, E.,& Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human perception and performance,16(3),626-641.
    Dehaene, S., Piazza, M., Pinel, P.,& Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology,20(3-6),487-506.
    Duncan, E.,& McFarland, C. (1980). Isolating the effects of symbolic distance, and semantic congruity in comparative judgments:An additive-factors analysis. Memory & Cognition, 8(6),612-622.
    Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M, Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology,26(1),465-486.
    Fantz, R. L., & Fagan, J. F. (1975). Visual attention to size and number of pattern details by term and preterm infants during the first six months. Child Development,46(1),3-18.
    Fias, W. (1996). The importance of magnitude information in numerical processing:Evidence from the SNARC effect. Mathematical Cognition,2(1),95-110
    Fias, W.,& Fischer, M. (2005). Spatial representation of number. In J.I.D.Campbell (Ed.), Handbook of mathematical cognition (pp.43-54). New York:Taylor and Francis.
    Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P.,& Orban, G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience,15(1),47-56.
    Fias, W., Lauwereyns, J.,& Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research,12(3),415-423.
    Fuchs, L. S.,& Fuchs, D. (2005). Enhancing mathematical problem solving for students with disabilities. The Journal of Special Education,39(1),45-57.
    Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M.,. Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology,98(1),29.
    Gallistel, C. R. (1990). The organization of learning. Cambridge (Mass.):MIT Press.
    Gallistel, C. R.,& Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1-2),43-74.
    Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1),4-15.
    Geary, D. C., Bow-Thomas, C. C., Liu, F.,& Siegler, R. S. (1996). Development of arithmetical competencies in Chinese and American children:Influence of age, language, and schooling. Child Development,67(5),2022-2044.
    Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L.,& Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development,78(4),1343-1359.
    Geary, D. C., Hoard, M. K., Nugent, L.,& Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology,33(3),277-299.
    Girelli, L., Lucangeli, D.,& Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology,76(2),104-122.
    Gordon, P. (2004). Numerical cognition without words:Evidence from Amazonia. Science, 306(5695),496-499.
    Goswami, U. (1989). Relational complexity and the development of analogical reasoning. Cognitive Development,4(3),251-268.
    Goswami, U. (1995). Transitive relational mappings in three-and four-year-olds:The analogy of goldilocks and the three bears. Child Development,66(3),877-892.
    Halberda, J.,& Feigenson, L. (2008). Developmental change in the acuity of the "number sense": The approximate number system in 3-,4-,5-, and 6-year-olds and adults. Developmental Psychology,44(5),1457-1465.
    Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q.,& Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28),11116-11120.
    Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature,455(1213),665-668.
    Hannula, M. S. (2003). Locating fraction on a number line. In N. A. Pateman, B. J. Dougherty & J. T. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education held jointly with the 25th Conference of PME-NA (Vol.3, pp.17-24). Honolulu, HI, USA:Center for Research and Development Group, University of Hawai'i.
    Hecht, S. A. (1998). Toward an information-processing account of individual differences in fraction skills. Journal of Educational Psychology,90(3),545-559.
    Hecht, S. A., Close, L.,& Santisi, M. (2003). Sources of individual differences in fraction skills. Journal of Experimental Child Psychology,86(4),277-302.
    Hecht, S. A.,& Vagi, K. J. (2010). Sources of group and individual differences in emerging fraction skills. Journal of Educational Psychology,102(4),843-859.
    Hiebert, J. (1992). Mathematical, cognitive, and instructional analyses of decimal fractions. In G. Leinhardt, R. Puutnam & R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp.283-322). Hillsdale, New Jersey:Lawrence Erlbaum Associates, Incorporated.
    Holloway, I. D.,& Ansari, D. (2008). Domain-specific and domain-general changes in children's development of number comparison. Developmental Science,11(5),644-649.
    Holloway, I. D.,& Ansari, D. (2009). Mapping numerical magnitudes onto symbols:The numerical distance effect and individual differences in children's mathematics achievement. Journal of Experimental Child Psychology,103(1),17-29.
    Holmes, J.,& Adams, J. W. (2006). Working memory and children's mathematical skills: Implications for mathematical development and mathematics curricula. Educational Psychology,26(3),339-366.
    Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience,6(6),435-448.
    Hunting, R. P., Davis, G.,& Pearn, C. A. (1996). Engaging whole-number knowledge for rational-number learning using a computer-based tool. Journal for Research in Mathematics Education,27(3),354-379.
    Ischebeck, A., Schocke, M.,& Delazer, M. (2009). The processing and representation of fractions within the brain:An fMRI investigation. Neurolmage,47(1),403-413.
    Isotani, S., McLaren, B.,& Altman, M. (2010). Towards intelligent tutoring with erroneous examples:A taxonomy of decimal misconceptions. In V. Aleven, J. Kay & J. Mostow (Eds.), Intelligent tutoring systems (Vol.6095, pp.346-348):Springer Berlin Heidelberg.
    Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences,106(25),10382-10385.
    Kalchman, M., Moss, J.,& Case, R. (2001). Psychological models for the development of mathematical understanding:Rational numbers and functions. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction:Twenty-five years of progress (pp.1-38). Mahwah, NJ:Erlbaum.
    Klahr, D. (1988). Information processing approaches to cognitive development:DTIC Document.
    Kurt, G.,& Cakiroglu, E. (2009). Middle grade students' performances in translating among representations of fractions:A Turkish perspective. Learning and Individual Differences, 19(4),404-410.
    Lammertyn, J., Fias, W.,& Lauwereyns, J. (2002). Semantic influences on feature-based attention due to overlap of neural circuits. Cortex,38(5),878-882.
    Laski, E. V.,& Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development,78(6),1723-1743.
    Le Corre, M.,& Carey, S. (2007). One, two, three, four, nothing more:An investigation of the conceptual sources of the verbal counting principles. Cognition,105(2),395-438.
    Le Corre, M., Van de Walle, G., Brannon, E. M.,& Carey, S. (2006). Re-visiting the competence/performance debate in the acquisition of the counting principles. Cognitive Psychology,52(2),130-169.
    Lee, K.-M.,& Kang, S.-Y. (2002). Arithmetic operation and working memory:Differential suppression in dual tasks. Cognition,83(3), B63-B68.
    Lipton, J. S.,& Spelke, E. S. (2003). Origins of number sense:Large-number discrimination in human infants. Psychological Science,14(5),396-401.
    Lipton, J. S.,& Spelke, E. S. (2004). Discrimination of large and small numerosities by human infants. Infancy,5(3),271-290.
    Mazzocco, M. M. M..& Devlin, K. T. (2008). Parts and'holes':Gaps in rational number sense among children with vs. without mathematical learning disabilities. Developmental Science,11(5),681-691.
    Mazzocco, M. M. M., Feigenson, L.,& Halberda, J. (2011a). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development,82(4),1224-1237.
    Mazzocco, M. M. M., Feigenson, L.,& Halberda, J. (2011b). Preschoolers' precision of the approximate number system predicts later school mathematics performance. PLoS ONE, 6(9), e23749.
    McCrink, K.,& Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science,18(8),740-745.
    Meck, W. H.,& Church, R. M. (1983). A mode control model of counting and timing processes. Journal of experimental psychology. Animal behavior processes,9(3),320-334.
    Miller, K. F., Kelly, M.,& Zhou, X. (2005). Learning mathematics in China and the United States, In J.I.D.Campbell (Ed.), Handbook of mathematical cognition (pp.163-178). New York:Taylor and Francis.
    Miller, K. F., Smith, C. M., Zhu, J.,& Zhang, H. (1995). Preschool origins of cross-national differences in mathematical competence:The role of number-naming systems. Psychological Science,6(1),56-60.
    Mix, K. S., Huttenlocher, J.,& Levine, S. C. (2002). Quantitative development in infancy and early childhood. New York:Oxford University Press, USA.
    Mix, K. S., Levine, S. C.,& Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology,35(1),164-174.
    Moss, J.,& Case, R. (1999). Developing children's understanding of the rational numbers:Anew model and an experimental curriculum. Journal for Research in Mathematics Education, 30(2),122-147.
    Ni, Y. (2001). Semantic domains of rational numbers and the acquisition of fraction equivalence. Contemporary Educational Psychology,26(3),400-417.
    Ni, Y.,& Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers:The origins and implications of whole number bias. Educational Psychologist,40(1),27-52.
    Nieder, A.,& Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience,32(1),185-208.
    Nieder, A.,& Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences of the United States of America,101(19),7457-7462.
    Nuerk, H.-C., Bauer, F., Krurnmenacher, J., Heller, D.,& Willmes, K. (2005). The power of the mental number line:How the magnitude of unattended numbers affects performance in an Eriksen task. Psychology Science,47(1),34-50.
    Opfer, J. E.,& Siegler, R. S. (2007). Representational change and children's numerical estimation. Cognitive Psychology,55(3),169-195.
    Opfer, J. E.,& Thompson, C. A. (2008). The trouble with transfer:Insights from microgenetic changes in the representation of numerical magnitude. Child Development,79(3),788-804.
    Opfer, J. E., Thompson, C. A.,& Furlong, E. E. (2010). Early development of spatial-numeric associations:Evidence from spatial and quantitative performance of preschoolers. Developmental Science,13(5),761-771.
    Piaget, J. (1964). Development and learning. In R. E. Ripple & V. N. Rockcastle (Eds.), Piaget rediscovered:A report of the conference on cognitive studies and curriculum development (pp.7-20). Ithaca, NY:School of Education, Cornell University.
    Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D.,... Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition,116(1),33-41.
    Pica, P., Lemer, C., Izard, V.,& Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science,306(5695),499-503.
    Ramani, G. B.,& Siegler, R. S. (2008). Promoting broad and stable improvements in low-Income children's numerical knowledge through playing number board games. Child Development,79(2),375-394.
    Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S.,& Peled, I. (1989). Conceptual bases of arithmetic errors:The case of decimal fractions. Journal for Research in Mathematics Education,20(1),8-27.
    Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics:Does one lead to the other? Journal of Educational Psychology,91(1),175-189.
    Rittle-Johnson, B.,& Siegler, R. S. (1998). The relation between conceptual and procedural knowledge in learning mathematics:A review. In C. Donlan (Ed.), The development of mathematical skills (pp.75-110). Hove, England:Psychology Press.
    Rittle-Johnson, B., Siegler, R. S.,& Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics:An iterative process. Journal of Educational Psychology,93(2),346-362.
    Roggeman, C., Santens, S., Fias, W.,& Verguts, T. (2011). Stages of nonsymbolic number processing in occipitoparietal cortex disentangled by fMRI adaptation. The Journal of Neuroscience,31(19),7168-7173.
    Rousselle, L.,& Noel, M.-P. (2008). The development of automatic numerosity processing in preschoolers:Evidence for numerosity-perceptual interference. Developmental Psychology,44(2),544-560.
    Rubinsten, O., Henik, A., Berger, A.,& Shahar-Shalev, S. (2002). The development of internal representations of magnitude and their association with Arabic numerals. Journal of Experimental Child Psychology,81(1),74-92.
    Ruusuvirta, T., Huotilainen, M., Fellman, V.,& Naatanen, R. (2009). Numerical discrimination in newborn infants as revealed by event-related potentials to tone sequences. European Journal of Neuroscience,30(8),1620-1624.
    Sarnecka, B. W.,& Carey, S. (2008). How counting represents number:What children must learn and when they learn it. Cognition,108(3),662-674.
    Schneider, M.,& Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology:Human Perception& Performance,35(5),1227-1238.
    Sekuler, R.,& Mierkiewicz, D. (1977). Children's judgments of numerical inequality. Child Development,48(2),630-633.
    Siegler, R. S.,& Booth, J. L. (2004). Development of numerical estimation in young children. Child Development,75(2),428-444.
    Siegler, R. S.,& Booth, J. L. (2005). Development of numerical estimation:A review. In J.I.D.Campbell (Ed.), Handbook of mathematical cognition (pp.197-212). New York: Taylor and Francis.
    Siegler, R. S., Carpenter, T., Fennell, F. S., Geary, D., Lewis, J., Okamoto, Y,... Wray, J. (2010). Developing effective fractions instruction for kindergarten through 8th grade:A practice guide (NCEE #2010-4039). Washington, DC:National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.
    Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological Science,23(1),691-697.
    Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions:The new frontier for theories of numerical development. Trends in Cognitive Sciences,17(1),13-19.
    Siegler, R. S.,& Pyke, A. A. (2012). Developmental and individual differences in understanding of fractions. Developmental Psychology.
    Siegler, R. S.,& Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children's numerical development. Developmental Science,11(5),655-661.
    Siegler, R. S.,& Ramani, G. B. (2009). Playing linear number board games—but not circular ones—improves low-income preschoolers'numerical understanding. Journal of Educational Psychology,101(3),545-560.
    Siegler, R. S.,& Robinson, M. (1982). The development of numerical understandings. In W. R. Hayne & P. L. Lewis (Eds.), Advances in child development and behavior (Vol.16, pp. 241-312). New York:Academic Press.
    Siegler, R. S., Thompson, C. A.,& Opfer, J. E. (2009). The logarithmic-to-linear shift:One learning sequence, many tasks, many time scales. Mind, Brain, and Education,3(3),143-150.
    Siegler, R. S., Thompson, C. A.,& Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology,62(4),273-296.
    Sprute, L.,& Temple, E. (2011). Representations of fractions:Evidence for accessing the whole magnitude in adults. Mind, Brain, and Education,5(1),42-47.
    Stafylidou, S.,& Vosniadou, S. (2004). The development of students'understanding of the numerical value of fractions. Learning and Instruction,14(5),503-518.
    Steffe, L. P. (2001). A new hypothesis concerning children's fractional knowledge. The Journal of Mathematical Behavior,20(3),267-307.
    Steffe, L. P.,& Olive, J. (2010). Children's Fractional Knowledge. New York:Springer.
    Stevenson, H. W., Chen, C.,& Lee, S. Y. (1993). Mathematics achievement of Chinese, Japanese, and American children:Ten years later. Science,259(5091),53-58.
    Stevenson, H. W., Lee, S.-y., Chen, C., Lummis, M., Stigler, J., Fan, L.,& Ge, F. (1990). Mathematics achievement of children in China and the United States. Child Development, 61(4),1053-1066.
    Stevenson, H. W., Lee, S.-Y., Chen, C., Stigler, J. W., Hsu, C.-C, Kitamura, S.,& Hatano, G. (1990). Contexts of achievement:A study of American, Chinese, and Japanese children. Monographs of the Society for Research in Child Development,55(1-2),1-123.
    Stevenson, H. W., Lee, S. Y.,& Stigler, J. W. (1986). Mathematics achievement of Chinese, Japanese, and American children. Science (New York, N.Y.),231(4139),693-699.
    Stigler, J. W., Givvin, K. B.,& Thompson, B. J. (2010). What community college developmental mathematics students understand about mathematics. MathAmatyc Educator,1(3),4-16.
    Szucs, D., Soltesz, F., Jarmi, E., & Csepe, V. (2007). The speed of magnitude processing and executive functions in controlled and automatic number comparison in children:An electro-encephalography study. Behavioral and Brain Functions,3(1),23.
    Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries:Effect of progressive alignment on representational changes in numerical cognition. Child Development,81(6),1768-1786.
    Thompson, C. A.,& Siegler, R. S. (2010). Linear numerical-magnitude representations aid children's memory for numbers. Psychological Science,21(9),1274-1281.
    Tzelgov, J.,& Ganor-Stern, D. (2005). Automaticity in processing ordinal Iinformation. In J.I.D.Campbell (Ed.), Handbook of mathematical cognition (pp.55-66). New York: Taylor and Francis.
    Vamvakoussi, X.,& Vosniadou, S. (2007). How many numbers are there in an interval? Presuppositions, synthetic models and the effect of the number line. In S. Vosniadou, A. Baltas & X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction (pp.267-283). Oxford, UK:Elsevier.
    Vamvakoussi, X.,& Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students'understanding of rational numbers and their notation. Cognition and Instruction,28(2),181-209.
    Vygotsky, L. S. (1978). Interaction between learning and development. In M. Cole, V. John-Steiner, S. Scribner & E. Souberman (Eds.), Readings on the development of children (pp. 79-91). Cambridge, MA:Harvard University Press.
    Wang, Y., Geng, F., Hu, Y., Du, F.,& Chen, F. (2013). Numerical processing efficiency improved in experienced mental abacus children. Cognition,127(2),149-158.
    Whyte, J. C.,& Bull, R. (2008). Number games, magnitude representation, and basic number skills in preschoolers. Developmental Psychology,44(2),588-596.
    Wynn, K. (2002). Do infants have numerical expectations or just perceptual preferences? Developmental Science,5(2),207-209.
    Xu, F. (2003). Numerosity discrimination in infants:Evidence for two systems of representations. Cognition,89(1), B15-25.
    Xu, F.,& Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1),B1-B11.
    Xu, F., Spelke, E. S.,& Goddard, S. (2005). Number sense in human infants. Developmental Science,8(1),88-101.
    Yoshida, H.,& Sawano, K. (2002). Overcoming cognitive obstacles in learning fractions:Equal-partitioning and equal-whole. Japanese Psychological Research,44(4),183-195.
    Zhou, X., Chen, C., Chen, L.,& Dong, Q. (2008). Holistic or compositional representation of two-digit numbers? Evidence from the distance, magnitude, and SNARC effects in a number-matching task. Cognition,106(3),1525-1536.
    Zhou, X., Chen, Y., Chen, C., Jiang, T., Zhang, H.,& Dong, Q. (2007). Chinese kindergartners' automatic processing of numerical magnitude in Stroop-like tasks. Memory & Cognition, 35(3),464-470.
    刘春晖,& 辛自强.(2010).五—八年级学生分数概念的发展.数学教育报,19(5),59-63.
    司继伟,周超,张传花,& 仲蕾蕾.(2013).不同加工深度非符号数量信息的SNARC效应:眼 动证据.心理学报,(1),11-22.
    沈模卫,田瑛,&丁海杰.(2006).一位阿拉伯数字的空间表征.心理科学,29(2),258-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700