结构与系统的动态可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文以结构与系统的动态可靠性为研究对象,分别建立了随机参数结构动态可靠性模型,区间参数结构动态可靠性模型,模糊参数结构动态可靠性模型,可修复k/n表决系统动态可靠性模型,多状态可修复k/n表决系统动态可靠性模型。对结构与系统的动态可靠性进行了计算、预测、分析。其主要内容如下:
     1.随机参数结构动态可靠性
     将随机载荷的加载形式分为动载荷累加,等幅且服从参数为t的泊松分布,和载荷随时间变化且不服从任何分布的三种情况,利用应力-强度干涉理论和随机过程理论分别建立了结构强度退化下的结构动态可靠性预测的三种模型。由该模型可获得结构的可靠度随时间变化的规律。由一次随机载荷的概率密度函数,求得多次随机载荷的概率密度函数。在考虑结构承受多次随机载荷作用下结构强度退化和不退化的情况下,根据应力-强度干涉理论和概率密度演化方法,建立了结构的动态可靠度预测模型。应用向前差分方法求解该模型中的概率密度演化微分方程,获得任意时刻结构强度裕度的概率密度函数,进而再利用积分方法获得结构动态可靠度的预测结果。对于目前对结构的可靠性研究仅考虑结构所受的一种载荷的情况,从结构所受的4种随机载荷共同作用于结构的实际情况出发,运用Turkstra方法对应力进行了三种不同的组合,分别求得三种组合的应力作为结构所承受的应力。然后根据应力-强度干涉理论,对结构分为强度不退化,强度退化,分别建立了结构在共同载荷作用下的动态可靠性模型,将在三种组合应力下求得结构动态可靠性指标最低者确定为结构的最终动态可靠性指标。每个模型均用算例进行了验证,通过算例表明,这些方法是实用易行的。
     2.区间参数结构动态可靠性
     研究了当载荷区间变量随时间变化且结构强度区间变量随时间退化情况下的结构动态非概率可靠性问题,给出了结构强度退化的变化区间及其均值、离差的计算表达式,根据应力-强度干涉理论和区间理论建立了在结构强度随时间退化时,而结构所承受的载荷分别为:阶梯型、等幅交变型和任意时变型三种情况下的结构动态非概率可靠性预测模型。针对多次区间载荷结构随机强度退化和不退化的混合模型的情况,首先将多次区间载荷用等效区间载荷进行了代替,然后把该等效载荷看做均匀分布的随机变量,对均匀分布的随机变量和结构的随机强度进行了当量正态化,根据应力-强度干涉理论,用一次二阶矩法求出了结构在多次区间载荷下的结构的随机强度退化时的结构动态可靠度。算例表明了这些方法的合理性,实用性,精确性。
     3.模糊参数结构动态可靠性
     针对实际工程问题中结构承受的多次模糊载荷与结构模糊强度的情况,利用应力-强度干涉理论对结构承受的多次模糊载荷与模糊强度随时间变化的情况进行了分析,分别建立了作用于结构的多次模糊载荷随时间变化且结构模糊强度随时间不退化和退化时的结构的动态模糊可靠性预测模型。对于实际工程问题中结构承受的多次随机载荷与结构模糊强度的情况,利用应力-强度干涉理论对结构承受的随机载荷与模糊强度随时间变化的情况进行了分析,分别建立了作用于结构的多次随机载荷下结构模糊强度随时间不退化和退化时的结构的动态随机-模糊可靠性预测模型。最后算例对模型分别进行了验证,说明了模型的可行性与合理性。
     4.可修复的k/n表决系统动态可靠性
     根据强度-应力干涉理论,给出了k/n表决系统的单元在多次随机作用下、且单元抗力退化情况下的动态可靠性指标计算模型,由可靠性指标求得单元的动态失效概率。基于单元的动态失效概率,给出了在多次随机外部作用下,单元失效数目变化的概率,再由可修复k/n系统所具有的Markov性质,给出了在多次随机外部作用下的可修复k/n系统的转移概率,由转移概率获得概率密度矩阵,通过求解微分方程组计算出系统的动态可靠度。针对目前k/n表决系统中k的设置根据人为经验给出的情况,文中首先利用应力-强度干涉理论及系统元件承受的作用概率分布,给出了单个元件的失效概率,再由可修复k/n表决系统工作时元件的可靠与失效状态的转移情况,应用概率微分方程,建立了可修复k/n表决系统的动态可靠性预测模型,并给出了该模型的解。对可修复k/n表决系统中最少工作单元数目k的设置给出了理论依据。最后通过对算例的分析,表明了所建模型的准确性与可行性。
     5.多状态可修复k/n表决系统的动态可靠性
     针对多状态可修复k/n表决系统的复杂性,首先对系统的元件的多样性利用离散时间的马尔科夫链和半马尔科夫链进行了分析,给出了状态变化,在状态逗留时间的概率分布计算公式;然后给出了元件在状态变化,状态寿命变化的一步概率转移矩阵,最后根据对元件的分析,导出了系统的可靠度与可用度的预测模型。针对多状态发动机系统,对发动机系统进行了离散量化处理,使发动机的输出功率成为一个状态离散时间连续的马尔科夫随机过程;根据发动机输出功率的变化规律,建立了多状态马尔科夫模型,根据观察得到的数据,对多状态的马尔科夫模型的转移强度的计算给出了算法;利用本文方法计算了发动机单元随时间变化的故障率、输出功率的亏欠期望。从而为动态的预测和监控发动机正常工作可靠性提供了一个新方法。
The reliability from time response of the structure and system were studied in thedegree paper. The model of the structural random reliability from time response, themodel of the structural interval reliability from time response, the model of thestructural fuzzy reliability from time response, the model of the reparable k-out-of-nsystem reliability from time response, the model of the multi-state reparable k-out-of-nsystem reliability from time response are established, respectively. The dynamicreliability of the structure and system are computed, predicted, analyzed. The maincontents are as follows.
     1. The structural random reliability from time response.
     Stochastic loads are classified three types: dynamic load accumulation, amplitudeand obey the Poisson distribution whose parameter is t, load changing with time andnot subject to any distribution. As these conditions, their reliability from time responsemodels are established under structural strength constant and structural strengthdegenerating by using stress-strength interference theory and stochastic process theory;it shows that the structural reliability is gradually reduced with time, but not unchanged.The models are simple and easy computing, the change regular of the structuralreliability from time response can be obtained. The probability density evolutionmethod of the structural reliability from the time response prediction models underseveral times random loads are researched. Firstly, the probability density of severaltimes stochastic loads can be obtained according to the probability density of a timestochastic load. The prediction models of the structural reliability from the timeresponse under several times stochastic loads with the strength degeneration andwithout degeneration over time are established by using the stress-strength interferencetheory and probability density evolution method. The differential equation in the modelscan be solved by using the forward differential method. The probability densityfunctions of the structural strength redundancy in any time can be obtained. Thestructural prediction reliability from time response can be obtained by using integralmethod. For the structural reliability is only considered a load for structural influence incurrently research, the4types common loads that act on the structure have beencombined3different combinations by Turkstra method, the loads of the threecombinations were believed as the structural stress. The models of the structuralreliability from time response without structural strength degeneration and with degeneration over time have been established by using the stress-strength interferencetheory. The minimum reliability index from time response of the three reliabilityindexes from time response which was obtained in the models is determined thestructural reliability index from time response. It is shown that models are practicable,feasible by using example.
     2. The structural interval reliability from time response.
     The structural non-probabilistic reliability from time response under the intervalvariable of loads changing over time and the interval variable of structural strengthdegrading over time is researched. The formulas for the change interval of structuralstrength degradation and its mean value and deviation are shown. According to thestress-strength interference theory and the interval theory, the structural reliability fromtime response prediction models are established under the structural strengthdegradation over time while the loads of the structure bearing are classified three casesloads: ladder type, constant amplitude alternating type and random changing over timetype. For the hybrid model of several times interval loads and structural stochasticstrength with degradation and without degradation over time are established. Firstly,several times interval loads are substituted by the equivalent interval load. Secondly, theequivalent interval load is thought as the random variable who obeys the uniformdistributed. The random variables of the uniform distribution and structural randomstrength are done with the equivalent normal method. Then the structuralinterval-random hybrid reliability from time response under several times interval loadsand structural random strength degeneration and without degeneration over time iscomputed by using the first secondly order moment method according to thestress-strength interference theory. It is shown that the models are reasonable andpracticable by using examples.
     3. The structural fuzzy reliability from time response.
     For the several times fuzzy loads and fuzzy structural strength in the practiceengineer, the fuzzy loads and the fuzzy strength are analyzed. The predictionfuzzy-fuzzy models of the structural fuzzy reliability from time response are establishedby using the stress-strength interference theory when the several times fuzzy loadschanges over time and the structural strength changes without degeneration and withdegeneration. For the several times random loads and fuzzy structural strength in thepractice engineer, the loads and the fuzzy strength are analyzed. The predictionrandom-fuzzy hybrid models of the structural fuzzy reliability from time response areestablished by using the stress-strength interference theory when the several times random loads changes over time and the structural strength changes withoutdegeneration and with degeneration. Finally, it is shown that the models are feasible andreasonable by examples. Further it is pointed out that the reliability of probability is aspecial case of fuzzy reliability.
     4. The reparable k-out-of-n system reliability from time response.
     The model of unit reliability from time response of repairable k/n (G) system withunit strength degradation under repeated random shocks has been developed accordingto the stress-strength interference theory. The unit failure number is obtained based onthe unit failure probability which can be computed from the unit reliability from timeresponse. Then, the transfer probability function of the repairable k/n (G) system isgiven by its Markov property. Once the transfer probability function has been obtained,the probability density matrix and the steady-state probabilities of the system can beretrieved. Finally, the reliability from time response of the repairable k/n (G) system isobtained by solving the differential equations. Anovel reliability-based model of k/n (G)system has been developed. Unit failure probability is first calculated based on theapplied load and strength distributions according to the stress-strength interferencetheory. Then, a reliability prediction model from time response for the whole repairablek/n (G) system is established using the probabilistic differential equations. Finally, theresulting differential equations are solved and the value of k can be determined precisely.It is illustrated that the proposed methods are practicable, feasible and gives reasonableprediction which conforms to the engineering practice.
     5. The reparable multi-state k-out-of-n system reliability from time response.
     For the complexity of multi-state repairable k-out-of-n system, firstly, the diversityof the components of the system are analyzed by using discrete time Markov chains andsemi-Markov chain, the probability distribution computing formula of the change ofstate and the sojourn time in the state are obtained. Secondly, the first order transitionprobability matrix of the change of state and lifetime in the state areobtained. Finally,the reliability and availability prediction model of the system are obtained according tothe analysis of the components. For the multi-state engine system, Firstly, the enginesystem is discrete and quantization processed, the output power of the engine is becomea state discrete time continue Markov random process; Secondly, the multi-state Markovmodel is established, according to the observed data, the algorithm of transitionintensities is obtained; Finally, the proposed method is used to calculate the forcedoutage rate and the expected engine capacity deficiency of the engine changing overtime. For forecasting and monitoring the reliability from time response of the engine to work properly is supplied a new method. It is shown that the methods are practical,effective by using the engineering numerical examples.
引文
[1]陈建军.机械与结构系统可靠性[M].西安:西安电子科技大学出版社,1994.
    [2]谢里阳,王正,周金宇,武莹.机械可靠性基本理论与方法[M].北京:科学出版社,2008.
    [3] Freudenthal AM. Safety of structures[J]. Transaction, ASCE.1947.1(12):125-180.
    [4] Stulen F B. Preventing fatigue failures[J]. Machine Design,1961,3(3):159-165.
    [5] Kececioglu D. Designing specifield reliability directly into a component[C], proceeding of3r dAnnual Aerospace Reliability and Maintainability Conference, Washington DC,1964:546-565.
    [6] Freedenthal A M, Garrelts M, Shinozuka M. The analysis of structural safety[J]. JournalStructrual Division, ASCE,1996,9(2):267-325.
    [7] Haugen E B. Probability Approaches to Design[M]. New York: John Weily and Sons,1968.
    [8] Kececiogul D. Reliability analysis of mechanical components and systems[J]. NuclearEngineering and Design,1972,19(2):259-290.
    [9] Kececiogul D. Probability design methods for reliability and their data and researchrequirements[J]. Failure Prevention and Reliability, ASME,1977,30(2):285-309.
    [10] Weibull W. Fatigue testing and analysis of results[M]. New York: Macmillan Company,1961.
    [11] Rackwitz R. Reliability analysis-A review and some perspectives[J]. Structural Safety,2001,23(3):365-395.
    [12] O’Connor P D T. Reliability analysis-past, present, and future[J]. IEEE Transactions onreliability,2000,49(4):335-341.
    [13] Mori Y. Ellingwood B R. Reliability-Based Service-Life assessment of aging concretestructures[J]. Journal of Structural Engineering, ASCE,2003,119(5):1600-1621.
    [14]王正,谢里阳,李兵.考虑载荷用次数的零部件可靠性模型[J].机械强度,2008,33(1):68-71.
    [15]唐继武.结构系统静强度可靠性分析优化方法研究[D].西安:西北工业大学学位论,1994.
    [16]乔红威,吕震宙.随即激励下随即结构动力可靠性灵敏度分析[J].振动工程学报.2008,21(4):41-47.
    [17]王新刚,张义民,王宝艳.机械零部件的动态可靠性分析[J].兵工学报,2009,30(11):1510-1516.
    [18] Murty A S R, Gupta U C, Krishna A R.. A new approach to fatigue strength distribution forfatigue reliability evaluation[J]. International Journal of Fatigue.1995,21(17):91-100.
    [19] Kam J P C, Birkinshaw M. Reliability-based fatigue and fracture mechanics assessmentmethodology for offshore structural components[J]. International Journal of Fatigue.1994,20(16):183-199.
    [20] Place C S, Strutt J E, Allsopp K, et al. Reliability prediction of helicopter transmission systemsusing stress-strength interference with underlying damage accumulation[J]. Qualituy andRreliability Engineering International,1999,15(1):69-78.
    [21]傅惠民.三参数幂函数回归分析[J].航空动力学报,1994,9(2):186-190.
    [22] Tanaka T. Reliability analysis of structural components under fatigue environment includingrandom overloads[J]. Engineering Fracture Mechanics,1995,52(3):423-431.
    [23]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [24] Kopnov V A. Residual life, linear fatigue damage accumulation and optional stopping[J].Reliability Engineering and System Safety,1993,40(3):319-325.
    [25] Bahring H, Dunkel J. The impact of load changing on lifetime distributions[J]. ReliabilityEngineering and System Safety,1991,31(1):99-110.
    [26]谢立阳.疲劳过程中材料强度退化现象与规律[J].东北大学学报.1994,24(1):92-95.
    [27]吕海波,姚卫星.元件疲劳可靠性估算的剩余强度模型[J].航空学报,2000,21(1):74-77.
    [28]安伟光,赵维涛,吴香国.综合考虑随机结构系统静强度和疲劳的失效机理与可靠性分析[J].航空学报,2005,26(6):710-714.
    [29]武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版社,2005.
    [30]郭书祥,吕震宙.结构可靠性分析的概率和非概率混合模型[J].机械强度,2002,24(4):524-526.
    [31]易当祥,吕国志,周瑜.结构元件疲劳断裂可靠性分析的新方法[J].飞机设计,2004,12(4):17-22.
    [32]李超,赵永翔,王金诺.评价寿命统计分布的信息量模拟[J].核动力工程,2004,25(6):509-513.
    [33]黄洪钟,孙占全,郭东明,等.随机应力模糊强度下的模糊可靠性计算理论[J].机械强度,2001,23(3):305-307.
    [34]董玉革.模糊可靠性[M].北京:机械工业出版社,2000.
    [35]吕震宙,刘成立,徐友良.模糊随机可靠性综合方法在涡轮盘可靠性分析中的应用[J].航空发动机,2005,31(4):20-24.
    [36]赵永翔,彭佳纯,杨冰,等.考虑疲劳本构随机性的结构应用疲劳可靠性分析方法[J].机械工程学报,2006,42(12):36-41.
    [37]王光远.工程结构及系统的模糊可靠性分析[M].南京:东南大学出版社,2001.
    [38]张鹏,王光远.考虑中介状态的机械系统的可靠性分析[J].机械设计,2001,18(18):159-163.
    [39] Moan T, Ayala-Uraga E. Reliability-based assessment of deteriorating ship structures operatinginmultiple sea loading climates[J]. Reliability Engineering and System Safety,2006,93(12):433-446.
    [40] Chen J B, Li J. The extreme value distribution and dynamic reliability analysis of nonlinearstructures with uncertain parameters[J]. Structural Safety,2007,29(2):77-93.
    [41] Wang H Y, Kim N H. Safety envelope for load tolerance and its application to fatigue reliabilitydesign[J]. Journal of Mechanical Design,2006,128(4):919-927.
    [42] Duthie J C, Robertson M I, Clayton A M, et al. Risk-based approaches to ageing andmaintenance management[J]. Nuclear Engineering and Design,1998,184(1):27-38.
    [43]江龙平,徐可君,隋育松,等.考虑非临界损伤时机械系统可靠性评估方法[J].机械强度,2001,23(2):293-295.
    [44]谢里阳.可靠性问题中的非完全失效和非整数阶失效研究研究[C].2001年中国机械工程学会年会论文集.北京:机械工业出版社,2001:436-440.
    [45] Charlesworth W W, Rao S S. Reliability analysis of continuous mechanical systems using multifaultstate trees[J]. Reliability Engineering and System Safety,1992,37(2):195-206.
    [46]茆诗松,王静龙,濮小龙.高等数理统计[M].北京:高等教育出版社,1998.
    [47] Dilip R, Tanmoy D. A discretizing approach for evaluating reliability of complex systems understress strength model[J]. IEEE Transaction on Reliability.2001,50(2):145-150.
    [48] Elmer E. Lewis. A load-capacity interference model for commom-mode failures in1-out-of-2:G systems[J]. IEEE Transaction on Reliability.2001,50(1):47-51.
    [49] Boudali H., Dugan J B.. A discrete-time Bayesian network reliability modeling and analysisframework[J].Reliability Engineering and System Safety,2005,87(2):337-349.
    [50] Elmer E. Lewis. Aload-capacity interference model for commom-mode failures in1-out-of-2:Gsystems[J]. IEEE Transaction on Reliability.2001,50(1):47-51.
    [51] Knut O. Ronold. Reliability-based design of wind turbine rotor blades against failure in ultimateloading[J]. Engineering Structures,2000,22(2):565-574.
    [52] Mori Y. Ellingwood B R. Reliability-Based Service-Life assessment of aging concretestructures[J]. Journal of Structural Engineering, ASCE,2003,119(5):1600-1621.
    [53]王正,谢里阳,李兵.考虑载荷作用次数的零部件可靠性模型[J].机械强度,2008,33(1):68-71.
    [54]王剑,左永志,刘西拉.结构时变可靠性问题的信息更新和Bayes方法[J].建筑科学,2004,2(1):8-18.
    [55]胡太彬,陈建军.平稳随机激励下随机桁架结构动力可靠性分析[J].力学学报,2004,36(2):241-246.
    [56]王新刚,张义民,王宝艳.机械零部件的动态可靠性分析[J].兵工学报,2009,30(11):1510-1516.
    [57]王正,康锐,谢里阳.以载荷作用次数为寿命指标的失效相关系统可靠性建模[J].机械工程学报,2010,46(6):188-197.
    [58] Helton J C, John J D, Sallaberry C J, et al. Survey of sampling-based models for uncertainty andsensitivity analysis[J]. Reliability Engineering and System Safety,2008,91(10-11):1175-1209.
    [59] Schaff J R, Davidson B D. Life prediction methodology for composite structures[J]. Journal ofComposite Materials,1997,31(2):127-157.
    [60] Ditlevsen O. Stochastic model for joint wave and wind loads on offshore structures[J].Structural Safety,2002,24:139-163.
    [61]李良巧.机械可靠性设计[M].北京:国防工业出版社,1998.
    [62] Parry G W. The characterization of uncertainty in probability risk assessments of complexsystem[J]. Reliability Engineering and System Safety,1996,54(2-3):119-126.
    [63] Knut O R, Gunner C L. Reliability-based design of wind-turbine rotor blades against failure inultimate loading[J]. Engineering Structures,2000,22(1):565-574.
    [64] Mon Y., EIlmgwood B. R., Reliabilily-based service-life assessment of aging concrete[J],Journal of structural Eningeering,1993,119(5):600-162.
    [65] Melchem R E.. Assessment of existing structures-approach and reliability needs[J]. Journal ofstructural Eningeering,2001,127(4):406-411.
    [66] Pandey M D, Sherbourne A N. Methods of shape optimization in plate buckling[J]. Journal ofEngineering and Mechanics,1992,118(6):1249-1266
    [67] Hasofer A M, Lind N C. An exact and invariant first order reliability format[J]. Journal ofEngingeering Mechanics, ASCE,1974,100(1):111-121.
    [68] Hohenbichler M, Gollwitzer S, Kruse W, et al. New light first-order and second-order reliabilitymethod[J]. Structural Safety,1987,4(4):267-284.
    [69]金勇进,蒋研,李序颖.抽样技术[M].北京:中国人民大学出版社,2002.
    [70] Liu J S. Monte Carlo strategies in scientific computing[M]. NewYork: Springer-Verlag,2001.
    [71]陈建军,车建文,马洪波等.桁架结构动力特性可靠性优化设计[J].固体力学学报,2001,22(1):54-62.
    [72] Gao Wei, Chen Jianjun, Ma Hongbo. Dynamic response analysis of closed loop control systemfor intelligent truss structures based on probability[J]. Mechanical Systems and SignalProcessing,2003,15(2):239-248.
    [73]陈建军,张建国,段宝岩等.周边桁架式大型星载天线的展开可能性分析[J].宇航学报,2005,26(S):130-134
    [74]陈建军,陈勇,高伟,赵竹青.平面四杆机构运动精度可靠性分析与数字仿真[J].西安电子科技大学学报,2001,28(6):759-763.
    [75]崔利杰,吕震宙,张峰等.飞机内襟翼机构动态响应可靠性分析[J].高技术通讯,2009,19(12):33-37.
    [76]陈建兵,李杰.随机载荷作用下随机结构线性反应的概率密度演化分析[J].固体力学学报,2004,25(1):119-124.
    [77]李杰,陈建兵.随机结构动力可靠度分析的概率密度演化方法[J].振动工程学报,2004,17(2):121-128.
    [78] Jie Li, Jianbing Chen. The principle of preservation of probability and the generalized densityevolution equation[J]. Structural Safty,2008,30(9):65-77.
    [79] Chen Jianbing, Li Jie. Dynamic response and reliability analysis of nonlinear stochasticstructures[J]. Probability Engineering Mechanics,2005,20(1):33–44.
    [80]吕震宙,宋述芳,李洪双,袁修开.结构机构可靠性及可靠性灵敏度分析[M].北京:科学出版社.2010.
    [81]何水清,王善.结构可靠性分析与设计[M].北京:国防工业出版社,1993.
    [82] Schueller G I. On the treatment of uncertainties in structural mechanics and analysis[J].Computers&Structures,2007,85(5-6):235-243
    [83] Lebrun R, Dutfoy A. A generalization of the Nataf transformation to distributions with ellipticalcopula[J]. Probabilistic Engineering Mechanics,2009,24(2):172-178
    [84] Song S F, Lu Z Z, Qiao H W. Subset simulation for structure reliability sensitivity analysis[J].Reliability Engineering and System Safety,2009,94(2):658-665
    [85] Genock Portela and Luis A. Godoy. Wind pressure and buckling of grouped steel tanks[J]. Windand Structures,2007,10(1):23-44
    [86]. A. Pozos-Estrada, H.P. Hong, J.K. Galsworthy. Reliability of structures with tuned massdampers under wind-induced motion: a serviceability consideration[J]. Wind and Structures,2011,14(2):113-131
    [87]王爱俊,乔新,厉蕾.飞机层合风挡鸟撞击有限元数值模拟[J].航空学报,1998,19(4):80-86.
    [88]顾永维,安伟光,安海.静载和疲劳载荷共同作用下的结构可靠性分析[J].兵工学报,2007:28(12):1473-1477
    [89]赵维涛,安伟光,严心池.同时考虑结构系统强度和疲劳的可靠性分析[J].哈尔滨工程大学学报,2004,25(5):614-617.
    [90]高宗战,刘志群,姜志峰,岳珠峰.飞机翼梁结构强度可靠性灵敏度分析[J].机械工程学报,2010,46(7):194-198.
    [91] Thoft-Christensen P, Baker M J. Structural reliability theory and its applications[M].Springer-Verlag,1982
    [92] Cornell, C. A. Bounds on the Reliability of Structural System. Struct[J]. Div. ASCE1967,93(ST1):171-200.
    [93] Knut O R, Gunner C L. Reliability–based design of wind-turbine rotor blades against failure inultimate loading[J]. Engineering Structure,2000,22(2):565-574.
    [94] Ellishkoff I, Essay on uncertainties in elastic and viscoelastic structures: form A MFreudenthal’s criticisms to modern convex modeling[J]. Computers&Structures,1995,56(6):871-895.
    [95] Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety,1994,14(4):227-245.
    [96] Elishakoff I. Discussion on a non-probabilistic concept of reliability[J]. Structural Safety,1995,17(3):195-199.
    [97]乔心州,仇原鹰.结构安全系数和非概率可靠性度量研究[J].西安电子科技大学学报,2009,36(5):916-920.
    [98] Zhang Hao, Robert L. Mullen, Rafi L. Muhanna. Interval Monte Carlo methods for structuralreliability[J]. Structural Safety,2010,32(3):183-190.
    [99] Zhiping Qiu, Jun Wang. The interval estimation of reliability for probabilistic andnon-probabilistic hybrid structural system[J]. Engineering Failure Analysis,2010,17(5):1142-1154.
    [100]朱增青,陈建军,梁震涛,林立广.随机-区间型天线结构有限元及可靠性分析[J].高技术通讯,2008,16(6):624-631.
    [101] Xiaoping Du, Agus Sudjianto, Beiqing Huang. Reliability-based design with themixture ofrandom and interval variables[J]. Transactions of theASME,2005,127(12):1068-1077
    [102] C. Jiang, G. Y. Lu, X. Han, L. X. Liu. A new reliability analysis method for uncertainstructures with random and interval variables[J]. International Journal of Machine MaterialDesign,2012,8(2):169-182
    [103] Gao W. Interval finite element analysis using interval factor method [J]. ComputationalMechanics,2007,39(4):709-717
    [104] Gao W. Natural frequency and mode shape analysis of structures with uncertainty[J].Mechanical Systems and Signal Processing,2007,21(1):24-39
    [105] Rao S S, Berke L. Analysis of uncertain structural system using interval analysis[J]. AIAAJournal,1997,35(4):727-735.
    [106] Qiu Z P, Chen S H, Elishakoff. Natural frequencies of structures with ncertain–but–non-random parameters[J]. Journal of Optimization Theory and Applications,1995,86(3):669-683.
    [107] Qiu Z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with an intervaldescription of uncertain-but-non-random parameters[J]. Chaos, Soliton, and Fractral,1996,7(3):425-434.
    [108] Ayyub B M, Lai K L. Structural reliability assessment with ambiguity and vagueness infailure[J]. Naval Engineering Journal,1992,104(3):21-35.
    [109]董玉革,朱文予,陈心昭.机械模糊可靠性计算方法的研究[J].系统工程学报,2000,15(1):7-12.
    [110] Jiang Qimi, Chen Chun Hsien. A numerical algorithm of fuzzy reliability[J]. ReliabilityEngineering&System Safety,2003,80(2):299-307.
    [111]董玉革.模糊强度应力为常量时模糊可靠性设计方法的研究[J].机械科学与技术,1999,18(3):8-13.
    [112]黄洪钟,孙占全,郭东明,等.随机应力模糊强度时模糊可靠性计算理论[J].机械强度,2001,23(3):305-307.
    [113]吕震宙,孙颉,徐友良.机械结构系统模糊可靠性分析的数字计算方法[J].机械工程学报,2005,41(9):19-25.
    [114]江涛,陈建军,刘德平.一种简洁的模糊-随机干涉模型可靠度计算公式[J].机械科学与技术,2005,24(7):835-841.
    [115] Ma Juan, Chen Jianjun, Gao Wei. Dynamic response analysis of fuzzy stochastic trussstructures under fuzzy stochastic excitation[J]. Computational Mechanics.2006,38(3):283-292.
    [116] Huang Hongzhong. Calculation of fuzzy reliability in the case of random stress and fuzzyfatigue strength[J]. Chinese Journal of Mechanical Engineering,2000,13(3):197-200.
    [117]王磊,刘文珽.基于随机模糊参数的结构模糊可靠性分析模型[J].北京航空航天大学学报,2005,31(4):412-417.
    [118]董玉革,王爱囡,吴成龙.传统可靠性理论在模糊可靠性计算中的应用[J].农业机械学报,2007,38(2):142-146.
    [119]董玉革.随机变量和模糊变量组合时的模糊可靠性设计[J].机械工程学报,2000,36(6):25-29.
    [120]张义民.任意分布参数的机械零件的可靠性灵敏度设计[J].机械工程学报,2004,40(8):100-105.
    [121] Royd, Dasgupta T. A discretizing approach for evaluating reliability of complex systems understress-strength model[J]. IEEE Transactions on Reliability,2001,50(2):145-150.
    [122] Yao Chengyu, Zhao Jingyi. Reliability-based design and analysis on hydraulic system forsynthetic rubber press[J]. Chinese Journal of Mechanical Engineering,2005,18(2):159-162.
    [123] Sun Youchao, Shi Jun. Reliability assessment of entropy method for system consisted ofidentical exponential units[J]. Chinese Journal of Mechanical Engineering,2004, l7(4):502-506.
    [124] Zhang, Y. L. and Lam, Y., Reliability of consecutive-k-out-of-n: G repairable system[J].International Journal of System Science,1998,29(12):1375-1379.
    [125] Utkin, L.V., Reliability models of m-out of–n system under incomplete information[J].Computer and Operation Research.2004,31(3):1681-1702.
    [126] Xie Liyang, Zhou Jinyu, Hao Changzhong. System-level load-strength interference basedreliability modeling of k-out-of-n system[J]. Reliability Engineering and System Safety,2004,84(2):311-317.
    [127]王正,谢里阳.考虑失效相关的k/n系统动态可靠性模型[J].机械工程学报,2008,44(6):72-78.
    [128] XIE Liyang, ZHOU Jinyu, HAO Changzhong. System-level load-strength interference basedreliability modeling of k-out-of-n system[J]. Reliability Engineering and System Safety,2004,84(2):311-317.
    [129] Lewis E E. A load-capacity interference model for common-mode failures in1-out-of-2: Gsystems[J]. IEEE Transaction on Reliability,2001,50(1):47-51.
    [130]聂涛,盛文. K/N系统可修复备件两级供应保障优化研究[J].系统工程与电子技术,2010,32(7):1452-1457.
    [131] Xu Houbao, Guo Weihui, Yu Jingyuan, et al. Asymptotic stability of k-out-of n: G Redundantsystem[J]. Acta analysis fanctionalis applicata,2004,6(3):209-219.
    [132]汤胜道,汪凤泉.失效率随时间而变的n中取k表决系统可靠性分析[J].系统工程学报,2005,20(5):555-558.
    [133] Atwood C L, The binomial failure rate common cause model[J]. Technometerics,1986,28(2):139-148.
    [134] Ronold Knut O, Larsen Gunner C. Reliability based design of wind-turbine rotor bladesagainst failure in ultimate loading[J]. Engineering Structures,2000,22(3):565-574.
    [135] Lewis E E. A load-capacity inference model for common-model failures in-out-of-2: Gsystem[J]. IEEE Trans. Reliability,2001,50(1):47-51.
    [136] Liu Huamin. Reliability of a load-sharking k-out-of-n: G system: non-iid components witharbitrary distributions[J]. IEEE Trans. Reliability,1998,47(3):279-284.
    [137] Scheuer E M. Reliability of an m-out-of-n system when component failure induces higherfailure rates in survivors[J]. IEEE Trans. Reliability,1988,37(1):73-74.
    [138] Cojazzi G. The dylam approach for the dynamic reliability analysis of systems[J]. ReliabilityEngineering and System Safety,1996,53(3):279-296.
    [139]张义民,刘巧玲,闻邦椿.单自由度非线性随机参数振动系统的可靠性灵敏度分析[J].固体力学学报,2003,24(1):61-67.
    [140]陶俊勇,王勇,陈循.复杂大系统动态可靠性与动态概率风险评估技术发展现状[J].兵工学报.2009,30(11):1533-1542.
    [141]周金宇,谢里阳,王学敏.多状态系统共因失效分析及可靠性模型[J].机械工程学报,2005,41(6):66-73.
    [142] Severo N C. A recursion theorem on solving difference equations and applications to somestochastic processes[J]. Applied Probabilistic,1969,52(6):673-681.
    [143] Siskind V. A. A solution of the general stochastic epidemic[J]. Biometrika,1965,52(5):613-616.
    [144] Ida Scheel, Magne Aldrin, Arnoldo Frigessi, Peder A Jansen. A stochastic model for infectioussalmon anemia (ISA) in Atlantic salmon farming[J]. Journal of the Royal Society Interface,2007,15(10):699-704.
    [145] Reza Yaesoubi, Ted Cohen. Deneralized Markov model of infectious disease spread: A novelframework for developing dynamic health polices[J]. European Journal of OperationalResearch,2011,215(12):679-687.
    [146] E. Barlow, A. S. Wu. Coherent system with multi-state components[J]. Mathematics ofOperations Reseach.1978,3(1):275-281.
    [147] S. Ross. Multi-valued state component systems[J].Annals of Probability,1979,7(2):379-383.
    [148] A. Lisnianski, G. Levitin. Multi-state system reliability[M]. Newyork: World Scientific,2003.
    [149] Gregory L. Structure optimization of multi-state system with two failure modes[J]. ReliabilityEngineering and System Safety,2001,72(1):75-89.
    [150] Ushakov I. A. Universal generating function[J]. Computer System Science,1986,24(5):118-129.
    [151] Gregory L. A universal generating function approach for the analysis of multi-state systemswith dependent elements[J]. Reliability Engineering and System Safety,2004,84(3):285-292.
    [152] T. Aven. On performance measures for multi-state monotone systems[J]. ReliabilityEngineering and System Safety,1993,41(3):259-266.
    [153] R. D. Brunelle, K. C. Kapur. Review and classification of reliability measures for multi-stateand continuum models[J]. Transactions of Institute of Industrial Engineers,1999,31(2):1171-1181.
    [154] N. Limnios, G. Oprian. Semi-Markov processes and reliability in statistics for industry andtechnology[M]. Boston: Birkhauser,2001.
    [155]Aven T, U. Jensen. Stochastic Models in Reliability[M]. NewYork: Springer-Verlag,1999.
    [156] B. Ouhbi, N. Limmmios. Nonparametric reliability for semi-Markov process[J]. Journal ofStatistical Planning and Inference,2003,44(4):155-165.
    [157] Aven T. On performance measures for multistate monotone systems[J]. Reliability Eng. Syst.Safety,1993,41(1):259-266.
    [158] B. Ouhbi, N. Limnions. Nonparametric reliability for semi-Markov processes[J]. Journal ofStatistical Planning and Inference,2003,109(1):156-166.
    [159] V. Barbu, M. Boussemart, N. Limnios. Discrete time semi-Markov processes for reliability andsurvival analysis[J]. Communcations in Statistic, Theory and Methods,2004,33(11):2833-2868.
    [160] Barlow R. E., A.S. Wu. Coherent systems with multistate components[J]. Math. Operat. Res.,1978,3(1):275-281.
    [161] Lisnianski A. G. Levitin. Multi-state system reliability: Assessment, Optimization andApplications[M]. Singapore: World Scientific Publishing Co. Ptv. Ltd.,2003.
    [162] Pourret O., J. Collet, J.L. Bon. Evaluation of the unavailability of a multi-state componentsystem using a binary model[J]. Reliability Eng. Syst. Safety,1999,64(1):13-17.
    [163] V. Barbu, N. Limnios. Discrete time semi-Markov processes for reliability and survivalanalysis-A nonparametric approach in parametric and semi-parametric models withapplications to reliability, survival analysis and quality of life[M]. Boston: Statistics forIndustry and Technology,2004.
    [164] V. Barbu, N. Limnios. Nonparametric estimation for failure rate functions of Discrete timesemi-Markov chain processes in probability, statistic and modeling in public health[J]. Specialvolume in honor of professor Marvin, Springer,2006.
    [165] V. Barbu, N. Limnios. Semi-Markov chain and hidden semi-Markov models towardapplications in lecture notes in statistic[M]. Springer,2008.
    [166] J. Janssen, R. Manca. Semi-Markov risk models for finance, Insurance and Reliability[M].Berlin, Germany: Springer-Verlag,2007.
    [167] Anatoly Lisnianski, David Elmakias, David Laredo, Hanoch Ben Haim. A multi-state Markovmodel for a short-term reliability analysis of a power generating unit[J]. ReliabilityEngineering and System Safety,2012,98(3):1-6.
    [168] Billinton R, Allan. G. Reliability evulation of power system[M]. New York: Plenum Press,1996.
    [169] Billinton R, Li Y. Incorporating multi-state unit models in composite system adequacyassessment[R], Proceedings of the international conference on “Probability methods Appliedto Power Systems”, New York:2004.
    [170] Reshid M, Abd Majid M.. A multi-state reliability model for gas fueled co generated powerplant[J]. Journal ofApplied Science,2011,11(11):1945-1951.
    [171]A. Lisnianski, G. Levitin. Multi-state system reliability[M]. NewYork: Word scientific,2003.
    [172] Goldner S. Markovmodel for a typical360MW coal fired generation unit[J]. Communicationin Dependability and Quality Management,2006,9(1):9-24.
    [173] J. E. Ramirez-Marquez, D. W. Coit. Composite importance measures for multi-stste systemswith multi-state components[J]. IEEE Trans. Reliability,2005,54(3):517-529
    [174] R. J. Ringlee, A. J. Wood. Frenquency and duration method for power system reliabilitycalculations[J]. IEEE Trans. Power App. Syst.1969,88(4):375-388.
    [175] Anatoly Lisnianski, David Elmakias, David Laredo, Hanoch Ben Haim. A multi-state Markovmodel for a short-term reliability analysis of a power generating unit[J]. ReliabilityEngineering and System Safety,2012,98(3):1-6.
    [176] Wang Xingang, Zhang Yimin, Wang Baoyan. Reliability-based design of automobilecomponents[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science.2009,223(C2):483-490.
    [177] Chen Jianbing, Li Jie. Dynamic response and reliability analysis of nonlinear stochasticstructures[J]. Probability Engineering Mechanics,2005,20(1):33–44.
    [178] Soong T T. Random Differential Equations in Science and Engineering[M]. New York andLondon: Academic Press,1973.
    [179] Schueller G I. On the treatment of uncertainties in structural mechanics and analysis[J].Computers&Structures,2007,85(5-6):235-243.
    [180] C. Jiang, G. Y. Lu, X. Han, L. X. Liu. A new reliability analysis method for uncertain structureswith random and interval variables[J]. International Journal of Machine Material Design,2012,8(1):169-182
    [181]邱志平.非概率集合理论凸方法及其应用[M].北京:国防工业出版社,2005.
    [182] Npcedal, J., Wright, S. J. Numerical Optimization[M]. Spring, New York,1999
    [183] D. L. Allaix, V. I. Carbone. An improvement of the response surface method[J]. StructuralSafety,2011,33(2):165-172
    [184] Soo-Chang Kang, Hyun-Moo Koh, Jinkyo F. Choo. An efficient response surface methodusing moving least squares approximation for structural reliability analysis[J]. ProbabilisticEngineering Mechanics,2010,35(4):355-371.
    [185] Huang Hongzhong. Calculation of fuzzy reliability in the case of random st[css and fuzzyfatigue strength[J]. Chinese Journal of Mechanical Engineering,2000,13(3):197-200.
    [186] Tanaka H, Fan L T, Lai F S, et al. Fault-tree analysis by fuzzy probability[J]. IEEETransactions on Reliability,1983,32(2):453-457.
    [187]高伟,陈建军,马娟,胡太彬.基于信息熵模糊桁架结构有限元分析[J].西安电子科技大学学报,2004,31(30):413-417.
    [188]雷震宇,陈虬.基于信息熵的模糊随机结构有限元法[J].力学季刊,2001,22(3):140-145.
    [189] Breiting, K. W.. Asympototic approximation for probability integrals[M]. Berlin: Springer,1994.
    [190]吕震宙,孙颉,徐友良.机械结构系统模糊可靠性分析的数字计算方法[J].机械工程学报,2005,41(9):19-25.
    [191] Madsen, H. O., Krenk, S., Lind, N. C.. Method of structural safety[M]. Englewood Cliffs:Prentice-Hal,1986.
    [192]黄洪钟.结构强度的模糊可靠性分析[J].机械科学与技术,1994,8(2):1-5.
    [193]黄洪钟,孙占全,郭东明等.随机应力模糊强度时模糊可靠性计算理论[J].机械强度,2001,23(3):305-307
    [194]王正,谢里阳.考虑失效相关的k/n系统动态可靠性模型[J].机械工程学报,2008,44(6):72-80.
    [195] Xie Liyang, Zhou Jinyu, Hao Changzhong. System-level load-strength interference basedreliability modeling of k-out-of-n system[J]. Reliability Engineering and System Safety,2004,84(2):311-317.
    [196] Mahadevan S, Zhang R X, Smith N. Bayesian networks for system reliability reassessment[J].Structural Safety,2001,23(3):231-251.
    [197] Percy, David F. Bayesian elthanced strategic decision making for reliability[J]. EuropeanJournal of Operational Research,2002,139(1):133-145.
    [198] Park K S, Kim J S. Fuzzy weighted-checklist with linguistic variable[J]. IEEE Transactions onReliability,1990,39(2):389-393.
    [199] Hrenk O, Madsen. First order vs. second order reliability analysis of series structure[J].Structural Safety,1985,2(3):207-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700