高速光通信中若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来超大容量超长距离密集波分复用(WDM)技术发展十分迅猛,目前单个波长传输速率已达40Gb/s,单根光纤容量已超过10Tb/s。在如此高速率的光传输中,必然招致巨大的传输损伤,这些传输损伤有:噪声累积,主要是光放大器的放大自发辐射噪声(ASE);色散,包括群速度色散(GVD)和偏振模色散(PMD);非线性效应,包括自相位调制(SPM)、交叉相位调制(XPM)、受激拉曼散射(SRS)、受激布早渊散射(SBS)和四波混频(FWM)。为了克服这些传输损伤,必须解决若干关键技术:色散补偿、偏振模色散补偿、拉曼放大、纠错编码和调制格式等。其中新型调制格式是减轻传输损伤,提高频带利用率的一种重要手段。
     WDM技术极大地提高了光纤的传输容量,随之带来了对电交换结点的压力和变革的动力,因此必须在交换方面引入光子技术,于是产生了WDM全光网。WDM光网络是在现有的传输网上加入光层,在光上进行分插复用(OADM)和交叉连接(OXC)。在WDM光网络中,还存在一种特殊的传输损伤,那就是串扰,特别是带内串扰(也称同频串扰)的影响较大。串扰是指在WDM光网络中,由于光器件隔离度的不理想,其它光通道的信号会泄漏到传输通道,形成串扰噪声,从而对传输性能造成影响。
     本论文主要研究的是高速光传输中的新型调制格式和WDM光网络中的串扰,主要的研究内容及成果如下:
     1.研究了适合10Gb/s系统的新型调制格式。这些调制格式包括光双二进制、光单边带和光四进制,这三种调制格式的信号的谱宽是二进制信号的一半。研究表明光四进制传输受噪声和激光器的边模等因素的影响较大,导致较大的代价;对10Gb/s系统,光双二进制和光单边带是比较理想的调制格式,在完全消光下其色散限制的中继传输距离是二进制(或双边带)的一倍:并且发现只有当消光比大于25dB(或20dB)时,光双二进制(或光单边带)相对于二进制(或双边带)的优越性才呈现出来。
     2.研究了40Gb/s系统的若干关键技术。定性地分析了归零(RZ)码比非归零(NRZ)码的抗非线性能力强。对基于RZ的40Gb/s常规单模光纤传输系统进行了仿真,该系统的色散补偿分别采用前置补偿和后置补偿,结果发现在存在非线性情况下,其色散补偿采用后置补偿的传输性能明显优于采用前置补偿的传输性能。也对NRZ、RZ、载波抑制的RZ(CSRZ)和单边带RZ(SSB-RZ)四种调制格式在非零色散位移光纤(NZDSF)上单信道传输进行了仿真,结果表明:在色散完全补偿情况下,RZ、CSRZ和SSB-RZ抗非线性能力都比NRZ强,其中CSRZ最强;RZ、CSRZ和SSB-RZ三种格式抗EDFA噪声能力差不多,但都比NRZ强:并且CSRZ的谱宽适中。因此40Gb/s DWDM系统中,选择CSRZ作为调制格
    
    式是适‘宣的。
    3.针对五种基于空间光开关的OXC和两种具有组播通信能力的OXC,用最坏值
     方法对其串扰进行了分析,推导出它们的功率输出方程,并对每种OXC的总
     串扰随空},nJ光开关和复用器/解复用器的串扰变化情况以及波长数和光纤数变
     化情况进行了详细研究。通过研究发现,在五种基于空间光开关的OXC中,
     一种基于分离的空间光开关和复用器/解复用器结构的OXC串扰性能最好;由
     此得出OXC的串扰不仅与元件参量有关,也与其结构有关。虽然一般的OXC
     中的串扰已有很多研究,但对具有组播通信能力的OXC的串扰研究在国内外
     文献中还未见报道,又寸这两种具有纠播通信能力的OXC的研究发现,两种OXC
     组播工作时串扰性能差不多,单播工作时在一定条件下基于MOSaD的OXC
     优于基于SaD的OXC;在现有的技术条件下,即使光纤数入任2和波长数九介4,
     两种OXC组播工作时的串扰也高达一17 dB。
    4.使用高斯模型和非高斯模型分别推导了串扰对WDM光网络传输性能的影响,
     其中非高斯模型使用了格莱姆一查里级数,先求串扰噪声的特征函数,再求其
     概率密度函数,最后得到误码率公式。并仿真了带内串扰和带间串扰对10Gb/s
     WDM光网络传输性能的影川句,得到了一些有用的结论:带内串扰对一传输性能
     的影响比带间串扰要大得多;以10一9误码率为标准,无串扰时接收灵敏度为
     一33.7dBlll,有带内串扰时接收灵敏度为一32.sdBm,功率代价为1.2dB;存在带
     内串扰的情况下,消光比对误码率的影响比无串扰情况更为严重,这说明在
     WDM光网络中,消光比的影响比对点到点光纤通信系统更严重,光网络对消
     光比的要求更为严格;当带内串扰与信号的相对偏振角为90度(垂直)时,误
     码率最小,相对偏振角为O度或180度(平行)时,误码率最大;对于10Gb/s
     的信号和带间串扰,信号和串扰的中心频差至少要大于巧GHz。
    关键词:高速光纤通信传输损伤调制格式串扰
Large-capacity and long-haul dense wavelength-division multiplexed (WDM) transmission technologies have been rapidly developed recently. Up to now, numerous WDM transmission experiments at 40Gb/s per wavelength have been reported, and have demonstrated the achievements of more than 10Tb/s capacity per fiber. Transmission at so high speed must be severely limited by transmission impairments. In high-speed optical fiber communication the impairments include accumulated ASE (Amplified Spontaneous Emission) noise from optical amplifiers, group-velocity dispersion (GVD), polarization mode dispersion (PMD) and fiber nonlinear effects such as self-phase modulation (SPM), cross-phase modulation (XPM), stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS) and four-wave mixing (FWM). In order to overcome these transmission impairments, several key enabling technologies such as GVD compensation, PMD compensation, distributed Raman amplification (DRA), forward error correction (FEC) and suitable modulation format, should be employed. Some modulation formats may overcome the transmission limitations and improve spectral efficiency.Today WDM systems being installed are mainly point-to-point systems where the switching and processing is made by electronics. The introduction of optical add/drop multiplexer (OADM) and optical cross-connect (OXC) is a natural evolution of WDM technology to include switching in the optical layer. Optical crosstalk imposes a major limit to the practical implementation of WDM optical networks. Two crosstalk mechanisms, interband and intraband crosstalk, caused by nonideal wavelength (de)multiplexer, space switch and optical filter. The intraband crosstalk, where the crosstalk elements fall within the signal wavelength carrier band, is much more deleterious to the network end-end transparency performance.This paper deals with modulation formats for high-speed optical transmission and crosstalk in WDM optical networks, and the main research work and results are listed as follows.1. The modulation formats suitable for 10Gb/s systems, which include optical duo-binary, optical single sideband (SSB) and optical quaternary, are studied. The bandwidth of the three kinds of modulated format signal is approximately one half that of conventional binary (or double sideband: DSB) signal. Simulation results show that optical quaternary transmission is more susceptible to noise and laser's side mode, and results in large penalty. It is shown that transmission distance of the
    
    optical duobinary (or SSB) signal due to chromatic dispersion limitation is about twice that of the conventional binary (or DSB) signal in the perfect extinction. It is discovered that the optical duobinary (or SSB) transmission has characteristic superior to that of the binary (DSB) transmission only if the extinction ratio is more than 25dB(or 20dB).2. Some key enabling technologies for 40Gb/s systems are studied. A 40Gb/s RZ-based standard single-mode fiber (SMF) transmission system is simulated which uses precompensationing dispersion or postcompensationing dispersion separately. It is shown that transmission performance which uses postcompensation is superior to that uses precompensation and it can be concluded that the postcompensation should be used for dispersion compensation in long-haul, high-capacity optical transmission in the case of the nonlinear effects. Four different modulation formats including nonreturn-to-zero (NRZ), return-to-zero (RZ), carrier-suppressed return-to-zero(CSRZ) and single sideband return-to-zero (SSB-RZ), is introduced, and method of their modulated signal generation is described, and a comparison of their spectra and waveforms is made. 40Gb/s single channel transmission over nonzero dispersion-shifted fiber (NZDSF) is simulated for the four formats. It is shown that RZ. CSRZ or SSB-RZ format is more tolerant than NRZ in nonlinearities, and CSRZ tolerance to nonlinearities is the highest among the four formats. Compared to NRZ, CSRZ is 10.2dBm more tolerant in fiber input power. RZ, CSRZ and
引文
[1] 刘增基,周洋溢,胡辽林等.光纤通信.西安:西安电子科技大学出版社.2001.8
    [2] www.yahoo.com
    [3] 韦乐平.光通信技术的发展趋势与展望.电信科学,2003年第8期.
    [4] Idler W, Bigo S. Design of 40Gbit/s-based multi-terabit/s ultr-DWDM systems. IEICE Trans Commun, 2002, E85-B(2): 394~399.
    [5] www.yahoo.com
    [6] Zhu Y, Lee W, Hadjifotiou A. 40Gbit/s-based long-span WDM transmission technologies. IEICE Trans Commun, 2002, E85-B(2): 386~391.
    [7] Miyamoto Y, Yonenaga K, Hirano A, et al. N×40-Gbit/s DWDM transport system using novel return-to-zero formats with modulation bandwidth reduction. IEICE Trans Commun, 2002, E85-B(2): 374~383.
    [8] Fukuchi K, Sekiya K, Ohhira R, et al. 1.6-Tb/s(40×40Gb/s) dense WDM transmission experiment over 480km(6×80km) using carrier-suppressed return-to-zero format. IEICE Trans Commun, 2002, E85-B(2): 403~408.
    [9] Kawanishi S. High bit rate transmission over 1Tbit/s. IEICE Trans Commun, 2001, E84-B(5): 1135~1141.
    [10] Shimizu K, Suzuki N, Kinjo K, et al. Unrepeatered 40Gbit/s-WDM transmission employing Aeff managed Raman amplification and CS-RZ modulation. IEICE Trans Commun, 2002, E85-B(2): 446~451.
    [11] Sato K, Kuwahara S, Miyamoto Y, et al. Carrier-suppressed retum-to-zero pulse generation using mode-locked lasers for 40-Gbit/s transmission. IEICE Trans Commun, 2002, E85-B(2): 410~414.
    [12] DeSalvo R, Wilson A G, Rollman J, et al. Advanced components and sub-system solutions for 40Gb/s transmission. J Lightwave Technol, 2002, 20(12): 2154~2181.
    [13] Yonenaga K, Kuwano S. Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver. J Lightwave Technol, 1997, 15(8): 1530~1537.
    [14] Kim S K, Lee J, Jeong J. Transmission performance of 10Gb/s optical duobinary transmission systems considering adjustable chirp of nonideal LiNbO_3 Mach-Zehnder modulators due to applied voltage ratio and filter bandwidth. J Lightwave Technol, 2001, 19(4): 465~470.
    [15] Ono K, Yano Y, Fukuchi K et al. Characteristics of optical duobinary signals in terabit/s capacity, high-spectral efficiency WDM systems. J Lightwave Technol, 1998, 16(5): 788-797.
    
    [16] Matsuura A, Yonenaga K, Miyamoto Y, et al.High power tolerant optical signal duobinary transmission. IEICE Trans Commun, 2001 ,E84-B(5): 1173~1177.
    [17] Walklin S, Conradi J. On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication syetems. IEEE Photon Technol Lett, 1997,9(7):1005-1007.
    [18] Walklin S, Conradi J. Effect of Mach-Zehnder modulator DC extinction ratio on residual chirp-induced dispersion in 10-Gb/s binary and AM-PSK duobinary lightwave systems. IEEE Photon Technol Lett, 1997,9(10): 1400-1402.
    [19] Nielsen T N. Ultra-high capacity 40-Gb/s WDM systems. IEICE Trans Commun,2001 ,E84-B(5): 1142-1144.
    [20] Siddiqui A S, Edirisinghe S G, Lepley J J, et al. Dispersion-tolerant transmission using a duobinary polarization-shift keying transmission scheme. IEEE Photon Technol Lett,2002,14(2):158-160.
    [21] Ennser K, Laming R I, Zervas M N. Phase-encoded duobinary transmission over non-dispersion shifted fibre links using chirped grating dispersion compensators.Electron Lett,1997,33(l):72~74.
    [22]Yonenaga K, Miyamoto Y,Toba H,et al.320Gbit/s WDM repeaterless transmission using fully encoded 40Gbit/s optical duobinary channels with dispersion tolerance of 380ps/nm. Electron Lett, 2001, 37(2): 109-110.
    [23] Smith G H, Novak D, Ahmed Z. Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electron Lett, 1997, 33(1): 74-75.
    [24] Sieben M, Conradi J, Dodds D E. Optical single sideband transmission at 10Gb/s using only electrical dispersion compensation. J Lightwave Technol, 1999, 17(4):1742-1749.
    [25] Yonenaga K, Norimatsu S. Dispersion compensation for homodyne detection systems using a 10-Gb/s optical PSK-VSB signal. IEEE Photon Technol Lett, 1995,7(8): 929-931.
    [26] Davies B, Conradi J. Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband. IEEE Photon Technol Lett, 1998, 10(4):600-602.
    [27] Griffin R A, Lane P M, O'Reilly J J. Optical amplifier noise figure reduction for optical single-sideband signals. J Lightwave Technol, 1999, 17(10): 1793-1796
    [28] Walklin S, Conradi J. Multilevel signaling for increasing the reach of 10Gb/s lightwave systems. J Lightwave Technol, 1999, 17(11): 2235-2248.
    [29] Hodzic A, Konrad B, Petermann K. Alternative modulation formats in N□40Gb/s WDM standard fiber RZ-transmission systems. J Lightwave Technol, 2002, 20(4): 598~607.
    [3
    
    [30] Dahan D, Eisenstein G. Numical comparison between distributed and discrete amplification in a point-to-point 40-Gb/s 40-WDM-based transmission system with three different modulation formats. J Lightwave Technol, 2002, 20(3): 379~388.
    [31] Cheng K S, Conradi J. Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems. IEEE Photon Technol Lett, 2002, 14(1): 98~100.
    [32] Sano A, Miyamoto Y. Performance evaluation of prechirped RZ and CS-RZ formats in high-speed transmission systems with dispersion management. J Lightwave Technol, 2001, 19(12): 1864~1871.
    [33] Sahara A, Inui T, Komukai T, et al. 40-Gb/s RZ transmission over a transoceanic distance in a dispersion managed standard fiber using a modified inline synchronous modulation method. J Lightwave Technol, 2000, 18(10): 1364~1373
    [34] Hirano A, Miyamoto Y, Kuwahara S, et al. A novel mode-splitting detection scheme in 43-Gb/s CS- and DCS-RZ signal transmission. J Lightwave Technol, 2002, 20(12): 2029~2034.
    [35] Hos. hida T, Vassilieva O, Yamada K, et al. Optimal 40Gb/s modulation formats for spectrally efficient long-haul DWDM systems. J Lightwave Technol, 2002, 20(12): 1989~1995.
    [36] Lee J, Kim S, Kim Y, et al. Optically preamplified receiver performance due to VSB filtering for 40-Gb/s optical signals modulated with various formats. J Lightwave Technol, 2003, 21 (2): 521~527.
    [37] Miyamoto Y, Hirano A, Kuwahara S, et al. Novel modulation and detection for bandwidth- reduced RZ formats using duobinary-mode splitting in wideband PSK/ASK conversion. J Lightwave Technol, 2002, 20(12): 2067~2078.
    [38] Hirano A, Asobe M, Sato K, et al. Dispersion tolerant 80-Gbit/s carrier-suppressed return-to- zero(CS-RZ) format generated by using phase- and duty-controlled optical time division multiplexing(OTDM) technique. IEICE Trans Commun, 2002, E85-B(2): 431~435.
    [39] 王加莹.长途超大容量DWDM光通信技术及发展.光通信技术,2003年第1期,第2期.
    [40] 伍浩成,罗青松.40Gb/s DWDM传送技术及实际考虑.光通信技术,2003年第3期,第4期.
    [41] 王光全,王海军,程保等.40Gb/s长途DWDM系统及应用前景.电信科学,2003年第6期.
    
    [42] 程绪明,蒋鹰.CWDM在城域网中的应用.电信科学,2003年第6期.
    [43] 徐荣,龚倩,张光海.城域光网络.北京:人民邮电出版社,2003.1
    [44] 纪越峰.光波分复用系统北京:北京邮电大学出版社,1999.11
    [45] (日)小林功郎著,崔凤林译.光集成器件.北京:科学出版社,2002.8
    [46] 黄章勇.光纤通信用光电子器件和组件.北京:北京邮电大学出版社,2001.7
    [47] Yamada E, Takara H, Ohara T, et al. 150 channel supercontinuum CW optical source with high SNR and precise 25GHz spacing for 10Gbit/s DWDM systems. Electron Lett, 2001, 37(5): 304~306.
    [48] (日)斋藤富士郎著,崔承甲译.超高速光器件.北京:科学出版社,2002.7
    [49] 方强,梁猛.光纤通信.西安:西安电子科技大学出版社,2003.8
    [50] 杨祥林.光放大器及其应用.北京:电子工业出版社,2000.6
    [51] Tomizawa M, Kisaka Y, Ono T, et al. Statistical design of polarization mode dispersion on high-speed transmission systems with forward error correction. IEICE Trans Commun, 2002, E85-B(2): 454~461.
    [52] 顾畹仪.全光通信网.北京:北京邮电大学出版社,1999.11
    [53] 顾畹仪,李国瑞.光纤通信系统.北京:北京邮电大学出版社,1999.11
    [54] (美)Govind P.Agrawal著,贾东方,余震虹等译.非线性光纤光学原理及应用.北京:电子工业出版社,2002.12
    [55] Elrefaie A F, Wagner R E, Atlas D A, et al. Chromatic dispersion limitations in coherent lightwave transmission systems. J Lightwave Technol, 1988, 6(5): 704~709.
    [56] Sano A, Miyamoto Y, Kuwahara S, et al. A 40-Gb/s/ch WDM transmission with SPM/XPM suppression through prechirping and dispersion management. J Lightwave Technol, 2000, 18(11): 1519~1527.
    [57] Morgado J A P, Cartaxo A V T. Dispersion supported transmission technique: comparison of performance in anomalous and normal propagation regimes. IEE Pro-Optoelectron, 2001, 148(2): 107~116.
    [58] Cartledge J C. Combining self-phase modulation and optimum modulation conditions to improve the performance of 10-Gb/s transmission systems using MOW Mach-Zehnder modulators. J Lightwave Technol, 2000, 18(5): 647~655.
    [59] Gnauck A H, Korotky S K, Veselka J J, et al. Dispersion penalty reduction using an optical modulator with adjustable chirp. IEEE Photon Technol Lett, 1991, 3(10): 916~918.
    [60] Cartledge J C, Mckay R G. Performance of 10Gb/s lightwave systems using an adjusting chirp optical modulator and linear equalization. IEEE Photon Technol Lett, 1992, 4(12): 1394~1397.
    
    [61] Kim H, Gnauck A H. Chirp characteristic of dual-drive Mach-Zehnder Modulator with a finite DC extinction ratio. IEEE Photon Technol Lett, 2002, 14(3): 298~300.
    [62] Koyama F, Iga K. Frequency chirping in external modulators. J Lightwave Technol, 1988, 6(1): 87~92.
    [63] 朱震.偏振模色散及其补偿技术.光通信技术,2003年第5期.
    [64] Hui R, Demarest K R, Allen C T. Cross-phase modulation in multispan WDM optical fiber systems. J Lightwave Technol, 1999, 17(6): 1018~1026.
    [65] Cartaxo A V T. Cross-phase modulation in intensity modulation direct detection WDM systems with multiple optical amplifiers and dispersion compensators. J Lightwave Technol, 1999, 17(2): 178~190.
    [66] Aisawa S, Kani J, Fukui M, et al. A 1580-nm band WDM transmission technology employing optical duobinary coding. J Lightwave Technol, 1999, 17(2): 191~199.
    [67] Penninckx D, Pierre M C L, Yhiery J E The phase-shaped binary transmission(PSBT): a new technique to transmit far beyond the chromatic dispersion limit. IEEE Photon Technol Lett, 1997, 9(2): 259~261.
    [68] Forestieri E, Prati G. Novel optical line codes tolerant to fiber chromatic dispersion. J Lightwave Technol, 2001, 19(11): 1675~1684.
    [69] Leibrich J, Wree C, Rosenkranz W. CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber. IEEE Photon Technol Lett, 2002, 14(2): 155~157.
    [70] Hodzic A, Konrad B, Petermann K. Prechirp in NRZ-based 40-Gb/s single-channel and WDM transmission systems. IEEE Photon Technol Lett, 2002, 14(2): 152~154.
    [71] Mu R M, Yu T, Grigoryan V S, et al. Dynamics of the chirped return-to-zero modulation format. J Lightwave Technol, 2002, 20(1): 47~57.
    [72] Mu R M, Menyuk C R. Convergence of the chirped retumoto-zero and dispersion managed soliton modulation formats in WDM systems. J Lightwave Technol, 2002, 20(4): 608~617.
    [72] 原荣.光纤通信.北京:电子工业出版社,2002.10
    [73] 李玉权,崔敏.光波导理论与技术.北京:人民邮电出版社,2002.12
    [74] 胡辽林,刘增基.光双二进制传输系统的性能研究.光子学报,2003,32(6):727~730.
    [75] 胡辽林,刘增基.消光比对光双二进制传输性能的影响.西安电子科技大学学报,2003,30(6):744~747
    [76] Lender A, Correlative level coding for binary-data transmission. IEEE Spectrum, 1966, 3(2): 104~115.
    
    [77] Yonenaga K, Kuwano S, Norimatsu S, Shibata N. Optical duobinary transmission system with no receiver sensitivity degradation. Electron Lett, 1995, 31(4):302~304.
    [78] 樊昌信,詹道庸,徐炳祥,吴成柯.通信原理.北京:国防工业出版社,1995.10
    [79] Corral J L, Marti J, Fuster J M. General expressions for IM/DD dispersive analog optical links with external modulation or optical up-conversion in a Mach-Zehnder electrooptical modulator. IEEE Trans Microwave Theory Tech, 2001, 49(10): 1968~1976.
    [80] Hui R, Zhu B, Huang R, et al. 10-Gb/s SCM fiber system using optical SSB modulation. IEEE Photon Technol Lett, 2001, 13(8): 896~898.
    [81] Han J, Erlig H, Chang D, et al. Multiple output photonic RF phase shifter using a novel polymer technology. IEEE Photon Technol Lett, 2002, 14(4): 531~533.
    [82] Yao X S. Brillouin selective sideband amplification of microwave photonic signals. IEEE Photon Technol Lett, 1998, 10(1): 138~140.
    [83] 胡辽林,刘增基.光的单边带传输的性能研究.光子学报,2004,33(2):179~182
    [84] Winzer P J, Kalmar A. Sensitivity enhancement of optical receivers by impulsive coding. J Lightwave Technol, 1999, 17(2): 171~177.
    [85] Pauer M, Winzer P J, Leeb W R. Bit error probability reduction in direct detection optical receivers using RZ coding. J Lightwave Technol, 2001, 19(9): 1255~1262.
    [86] Zhu Y, Fludger C R S, Lee W S, et al. Experimental comparison of all-Raman vs. Raman/EDFA hybrid amplification with 40Gb/s-based ETDM/DWDM transmissions over 400km. TW-RS fiber. OFC'2002, ThX1.
    [87] Leng L, Zhu B, Stulz S, et al. 1.6Tb/s(40x40Gb/s)transmission over 500km of nonzero dispersion fiber with 100-km amplified spans compensated by extrahigh-slope dispersion-compensating fiber. OFC'2002, ThX2.
    [88] Ooi H, Nakamura K, Akiyama Y, et al. 3.5Tb/s(43Gbit/s×88ch)transmission over 600km NZDSF with VIPA variable dispersion compensators. OFC'2002, ThX3.
    [89] Zhu Y, Hardcastle I, Lee W S, et al. Experimental comparison of dispersionmanaged fiber types in a 16-channel 40Gb/s 500km(6×84.5km)Raman-assisted transmission link. OFC'2002, ThX4.
    [90] Zhu Y, Lee W S, Fludger C R S, et al. All-Raman unrepeated transmission of 1.28Tbit/s(32×40Gb/s)over 240km conventional 80mm~2 NDSF employing bidirectional pumping. OFC'2002, ThFF2.
    [91] Su Y, Raybon G, Wickham L K, et al. 40-Gb/s transmission over 2000km of nonzero-dispersion fiber using 100-km amplifier spacing. OFC'2002, ThFF3.
    [92] Mohs G, Cai J X, Golovchenko K E, et al. 40Gb/s WDM long-haul transmission on non-slope-matched fiber. ECOC'2002, 1013.PDF.
    
    [93] Tanaka A, Inada Y, Sugahara H, et al. Study on span configurations for longdistance 40Gb/s-based WDM transmissions with all-Raman amplification.ECOC'2002, 1014.PDF.
    [94] Lima C R, Faer B, Black J. et al. 40Gb/s DWDM optical transport systems:practical considerations. NFOEC'2002, 033.PDF.
    [95] Miyamoto Y, Yonenaga K, Hirano A, et al.Duobinary carrier-suppressed return-to-zero format and its application to 100GHz-spaced 8x43Gbit/s DWDM unrepeatered transmission over 163km. OFC'2001, TuU4.PDF.
    [96] Suzuki K, Kubota H, Nakazawa M. lTb/s(40Gb/sx25channel)DWDM quasi-DM soliton transmission over 1500km using dispersion-managed single-mode fiber and conventional C-band EDFAs. OFC'2001, TuN7.PDF.
    [97] Zhu Y, Lee W S, Scahill C, et al. 16-channel 40Gb/s carrier-suppressed RZ ETDM/DWDM transmission over 720km NDSF without polarization channel interleaving. OFC'2001, ThF4.PDF.
    [98] Idler W, Bigo S, Fribnac Y, et al. Vestigial side band demultiplexing for ultra high capacity(0.64bit/s/Hz)transmission of 128×40Gb/s channels. OFC'2001,MM3.PDF.
    [99] Bissessur H, Charlet G, Simonneau C, et al.3.2Tb/s(80×40Gb/s)C-band transmission over 3×100km with 0.8bit/s/Hz efficiency. ECOC'2001, Bissessur 53-1.PDF.
    [100]Sunnered H, Karlsson M, Xie C, et al.Polarization-mode dispersion in high- speed fiber-optic transmission systems. J Lightwave Technol, 2002, 20(12): 2204-2219.
    [101]Gyselings T, Morthier G, Baets R. Crosstalk Analysis of Multiwavelength Optical Cross Connects. J Lightwave Technol,1999 ,17(8):1273~1283.
    [102]Herben C G P, Leijtens X J M, Maat P, et al. Crosstalk Performance of Integrated Optical Cross-Connects. J Lightwave Technol, 1999,17(7): 1126-1134.
    [103]Zhou J, Cadeddu R, Casaccia E, Cavazzoni C, O'Mahony M J. Crosstalk in Multiwavelength Optical Cross-Connect Networks. J Lightwave Technol, 1996,14(6):1423~1435.
    [104]Monroy I T. Scalability of Optical Networks: Crosstalk Limitations. Photonic Network Commun, 2000,2(2): 111-121.
    [105]Ramamurthy B, Datta D, Feng H, et al. Impact of Transmission Impairments on the Teletraffic Performance of Wavelength-Routed Optical Networks. J Lightwave Technol, 1999,17(10):1713~1723.
    [106]Ohlen P. Noise and crosstalk limitations in optical cross-connects with reshaping wavelength converters. J Lightwave Technol, 1999,17(8): 1294-1301.
    
    [107]Gustavsson M, Gillner L, Larsen C P. Statistical Analysis of Interferometric Crosstalk Theory and Optical Network Examples. J Lightwave Technol, 1997,15(11):2006~2019.
    [108]Gillner L, Larsen C P, Gustavsson M. Scalability of optical multiwavelength switching networks: crosstalk analysis. J Lightwave Technol, 1997, 17(1): 58-69.
    [109]Dods S D, Lacey P R, Tucker R S. Performance of WDM ring and bus networks in the presence of homodyne crosstalk. J Lightwave Technol, 1999, 17(3): 388-395.
    [110]Ho K P. Analysis of homodyne crosstalk in optical networks using Gram-Charlier series. J Lightwave Technol, 1999, 17(2): 149-153.
    [111]Takahashi H, Oda K, Toda H. Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection. J Lightwave Technol, 1996, 14(6):1097-1105.
    [112]Legg P J, Tur M, Andonovic I. Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks. J Lightwave Technol, 1996, 14(9): 1943-1954.
    [113]Iannone E, Sabella R, Avattaneo M, et al. Modeling of in-band crosstalk in WDM optical networks. J Lightwave Technol, 1999, 17(7): 1135-1140.
    [114]Shen Y F, Lu K J, Gu W Y. Coherent and incoherent crosstalk in WDM optical networks. J Lightwave Technol, 1999, 17(6): 759-764.
    [115]Dorren H J S, Waardt H, Monroy I T. Statistical analysis of crosstalk accumulation in WDM networks. J Lightwave Technol, 1999, 17(12): 2425-2430.
    [116]Dods S D, Tucker R S. A comparision of the homodyne crosstalk characteristics of optical add-drop multiplexers. J Lightwave Technol, 2001, 19(12):1829~1838.
    [117]Yu C X, Wang W K, Brorson S D. System degradation due to mutipath coherent crosstalk in WDM network nodes. J Lightwave Technol, 1998, 16(8): 1380-1386.
    [118]Vaez M M, Lea C T. Blocking performance with crosstalk consideration of the photonic switching networks based on electrooptical directional couplers. J Lightwave Technol, 1999, 17(3): 381-386.
    [119]Monroy I T, Tangdiongga E, Waardt H. On the distribution and performance implacations of filtered interferometric crosstalk in optical WDM networks. J Lightwave Technol, 1999, 17(6): 989-997.
    [120] Monroy I T, Tangdiongga E. Performance evaluation of optical cross-connects by saddlepoint approximation. J Lightwave Technol, 1998, 16(3): 317-323.
    [121]Goldstein E L, Eskildsen L, Elrefaie A F. Performance implications of com- ponent crosstalk in transparent lightwave networks. IEEE Photon Technol Lett, 1994, 6(5): 657-659.
    
    [122]Jiang X, Roudas I. Asymmetric probability density function of a signal with interferometric crosstalk. IEEE Photon Technol Lett, 2001, 13(2): 160-162.
    [123]Khosravani R, Hayee M I, Hoanca B, et al. Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment. IEEE Photon Technol Lett, 1999, 11(1): 134-136.
    [124]Legg P J, Hunter D K, Andonovic I, et al.Inter-channel crosstalk phenomena in optical time division multiplexed switching networks. IEEE Photon Technol Lett,1994, 6(5): 661-663.
    [125]Danielsen S L, Joergensen C, Mikkelsen B, et al. Analysis of interferometric crosstalk in optical switch blocks using moment generating functions. IEEE Photon Technol Lett, 1998, 10(11): 1635-1637.
    [126]Hu W S, Zeng Q J. Multicasting Optical Cross Connects Employing Splitter-and-Delivery Switch. IEEE Photon Technol Lett, 1998,10(7):970-972
    [127] Ali M, Deogun J S. Power-Efficient Design of Multicast Wavelength-Routed Networks. IEEE J on Select Areas Commun,2000,18(10):1852-1862

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700