以细菌主要致病因子为靶标的脓毒症防治策略及措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、背景
     脓毒症(sepsis)是感染引起的全身性炎症反应综合征(systemic inflammatory response syndrome,SIRS),是严重烧伤、创伤、感染性疾病以及大手术后患者的常见并发症,脓毒症已成为导致临床危重症患者死亡的首要因素。但目前尚无可靠有效的防治药物用于临床治疗。
     研究表明,细菌是引发脓毒症最主要感染因素。临床上由细菌介导的脓毒症占95%以上,其中约50%的细菌脓毒症是直接由G-细菌引起,与此同时,在疾病状态下肠道G-菌群可发生移位,引起继发性G-细菌感染,也会导致脓毒症发病。因此拮抗G-细菌引发的脓毒症具有特殊的意义。G-细菌存在多种致病因子,但其外膜成分脂多糖/内毒素(lipopolysaccharide/endotoxin, LPS)和其细菌基因组DNA(bDNA/CpG DNA)在G-细菌普遍存在,分布最为广泛,同时毒力最强,因此是G-细菌诱发脓毒症最主要的致病因子/病原分子(pattern recognition molecular patterns, PAMPs)。LPS和CpG DNA分别与其模式识别受体(pattern recognition receptors, PRRs) TLR4(Toll like receptor 4,TLR4)和TLR9结合,诱导炎症反应细胞大量合成与释放多种炎症介质(如TNF-α、IL-1和IL-6等),引发机体免疫应答紊乱,最终导致脓毒症的发病。近来发现,LPS和CpG DNA在体内还可协同发挥作用,诱发更为剧烈的全身性炎症反应,导致更加严重的脓毒症。
     国内外针对脓毒症致病因子的拮抗策略和措施研究仍然主要围绕LPS进行,由于不能对另一个主要致病因子CpG DNA进行同步拮抗,因此往往疗效有限。基于上述认识,如能根据LPS和CpG DNA的特点与作用设计新颖的脓毒症拮抗策略,寻找同时针对LPS和CpG DNA的药物拮抗措施,脓毒症的防治就可能会取得突破性进展。
     中草药长期用于感染和炎症治疗。中草药制剂对于脓毒症具有一定疗效。但中药成分复杂,拮抗脓毒症的物质基础和作用机制不明,为解决该问题,在前期研究中我们将LPS和CpG DNA包被于生物传感器上,建立了以脓毒症主要病原分子为靶标的中药筛选和定向分离实验平台。先后从中药大黄和地骨皮中获得了具有同时结合和拮抗LPS和CpG DNA作用的活性组分。该结果为同时针对主要致病因子(LPS和CpG DNA)的脓毒症拮抗策略的实施奠定了基础。本研究采用生物传感器技术和色谱技术相结合的方法,从大黄和地骨皮活性组分中分离出具有同时拮抗LPS和CpG DNA活性的单体化合物,并通过体内外生物学活性评价方法对活性单体化合物拮抗脓毒症的效应和机制进行研究。
     二、目的
     建立以细菌主要致病因子LPS和CpG DNA为靶标的脓毒症防治策略,从中药活性组分中制备出对LPS和CpG DNA具有拮抗活性的单体化合物,并对其进行防治脓毒症的主要药效和作用机制研究。
     三、材料与方法
     1.应用标准物质高效液相色谱(high performance liquid chromatography, HPLC)比对的方法对前期获得的大黄活性组分(D组分,Fraction D)进行成分分析,检测D组分中含有的单体成分对LPS和CpG DNA的结合和拮抗活性;
     2.应用以LPS和CpG DNA为靶标的生物传感器技术平台,以前期得到的地骨皮活性粗组分(cortex lycii -4, CL-4)为研究对象,应用离子交换树脂和反相HPLC技术对CL-4组分进行纯化,对获得的各成分进行亲和力测定和拮抗LPS和CpG DNA的活性评价,最终对活性单体化合物进行纯度分析和结构鉴定。
     3.地骨皮活性单体化合物在体内外拮抗LPS和CpG DNA的活性及机制研究。
     3.1体外活性研究:①应用生物传感器技术平台,检测单体化合物与LPS或CpG DNA的结合作用并计算Kd值;②动态浊度法鲎试验测定单体化合物对LPS的体外中和能力;③激光共聚焦显微镜和流式细胞术观察/检测单体化合物对荧光素标记的LPS和CpG DNA与RAW 264.7细胞结合的影响;④real-time RT-PCR法检测单体化合物干预后,LPS和CpG DNA刺激炎症介质TNF-α、IL-6、iNOS和COX-2的mRNA在RAW264.7细胞的表达的变化;⑤ELISA方法检测单体化合物对LPS和CpG DNA刺激RAW264.7细胞活化(分泌细胞因子TNF-α)的影响(时效和量效关系);⑥观察单体化合物对在小鼠腹腔巨噬细胞(原代细胞)对LPS和CpG DNA的拮抗活性。
     3.2体内活性研究:采用尾静脉注射热灭活大肠埃希菌模拟LPS和CpG DNA的混合攻击,制备小鼠脓毒症模型:观察单体对致死剂量热灭活大肠埃希菌攻击小鼠的保护作用和对亚致死剂量热灭活大肠埃希菌攻击小鼠的治疗作用(造模后0、4、8、12、24、48和72 h采集血标本,动态浊度法鲎试验检测血LPS水平,ELISA法检测血清TNF-α水平);
     3.3机制研究:①单体化合物与LPS阳性拮抗剂PMB对LPS和CpG DNA的结合和抑制活性比较;②单体化合物对多个PAMPs的拮抗活性比较;③检测单体化合物不同加样方式对其拮抗LPS和CpG DNA活性的影响;④采用real-time RT-PCR检测单体对RAW264.7细胞TLR4和TLR9受体表达的影响;⑤westernblot检测单体化合物对LPS、CpG DNA、TNF-α和IL-1β刺激RAW264.7细胞信号分子IκB-α和p38活化影响;⑥ELISA法测定单体化合物对LPS和CpG DNA刺激RAW 264.7细胞转录因子NF-κB活化的影响。
     3.4单体化合物初步药物毒性评价实验:①MTT法检测单独给予25-800μM的KB对RAW 264.7细胞和小鼠腹腔巨噬细胞增殖活力的影响;②小鼠静脉注射60 mg/kg的单体化合物,观察对动物生存率和生存状态的影响,同时于静脉注射后24、48和72 h取主要的脏器组织,常规HE染色观察心、肺、肝、肾和肠组织学形态是否异常。
     四、结果
     1.中药大黄活性部位D组分经鉴定含有单体化合物大黄酸(rhein)和大黄素(emodin)。二者与LPS和CpG DNA具有高亲和活性,并可以单独或协同抑制LPS和CpG DNA刺激引起的TNF-α的释放。
     2.应用生物传感器平台和离子交换柱层析技术,从中药地骨皮活性部位CL-4中分离出三个组分CL-4a、CL-4b和CL-4c,其中CL-4b组分与LPS和CpG DNA具有高亲和力,可抑制LPS和CpG DNA刺激引起的TNF-α和IL-6的释放。在体外也可显著提高致死剂量热灭活大肠埃希菌攻击小鼠的存活率。对CL-4b采用反相HPLC技术纯化,制备得到两个单体化合物CL-4b1和CL-4b2。其中CL-4b2与LPS和CpG DNA具有高亲和活性,在体外能够中和LPS,抑制LPS和CpG DNA诱导RAW 264.7细胞释放TNF-α。经HPLC纯度分析显示,CL-4b2纯度大于99%,经过质谱和核磁共振分析,确定CL-4b2为苦柯胺B(kukoamine B, KB),分子式为C28H42N4O6。
     3.对KB的体外活性研究显示:①KB对LPS和CpG DNA均具有高亲和活性,其Kd值分别为1.24和0.66μM;②KB在体外可剂量依赖地中和LPS,并且可阻断LPS和CpG DNA与RAW 264.7细胞的结合;③KB可抑制LPS和CpG DNA刺激RAW 264.7细胞初级和次级炎症介质TNF-α、IL-6、iNOS和COX-2的mRNA表达上调;④KB可以剂量依赖和时间依赖的方式抑制LPS和CpG DNA刺激RAW 264.7细胞释放TNF-α;⑤MTT检测显示KB协同LPS或CpG DNA加样均不影响RAW 264.7细胞的活力;⑥KB在小鼠原代巨噬细胞同样能够阻断LPS和CpG DNA与细胞的结合,抑制二者刺激引起的TNF-α的释放增加。对KB的体内活性研究结果显示,KB对热灭活大肠埃希菌攻击小鼠具有显著的保护作用,并且呈现剂量-效应关系,同时KB还可降低该模型小鼠的血浆LPS及血清TNF-α水平。
     对KB的作用机制研究显示:①KB对LPS和CpG DNA具有双重结合和拮抗活性,PMB仅对LPS结合和拮抗活性;②KB对LPS和CpG DNA具有选择性拮抗活性,对Pam3CSK4、Poly I:C及TNF-α和IL-1β的刺激无抑制作用;③KB与LPS或CpG DNA预孵育,其拮抗活性明显增强,KB与细胞预孵育,拮抗活性无明显变化,延迟给予KB,其抑制作用逐渐减弱,直至消失。④KB可抑制LPS和CpG DNA对RAW 264.7细胞TLR4和TLR9表达的上调作用;⑤KB可抑制LPS和CpG DNA对信号分子IκB-α和p38的活化,但不影响TNF-α和IL-1β引起的IκB-α和p38的活化;⑥KB对LPS和CpG DNA诱导的转录因子NF-κB p50和p65的转位活化具有抑制活性。
     对KB的初步毒性评价显示:KB对RAW 264.7细胞和小鼠腹腔巨噬细胞均无毒性,体内单独注射KB对小鼠的生存和重要脏器(心、肝、肺、肾和肠)的组织学形态无明显影响。
     五、结论
     本论文立足于脓毒症发病机制的最新认识,提出以细菌LPS和CpG DNA为双靶标的全新脓毒症防治策略,并基于此策略对中药大黄和地骨皮抗脓毒症有效成分进行了分离制备和活性研究。明确中药大黄中的单体化合物大黄酸和大黄素具有结合和协同拮抗LPS和CpG DNA的作用。随后从中药地骨皮中分离获得与LPS和CpG DNA均具有更高亲和活力和更强拮抗活性的化合物苦柯胺B(kukoamine B, KB),首次证实了KB通过同时针对LPS和CpG DNA的选择性结合和中和作用,阻断了二者与受体的结合,有效抑制了后续炎症反应,从而避免了脓毒症致死效应产生这一新颖的作用机制。KB药效可靠,作用机制明确,具有良好的成药前景,经后续开发有望为解决脓毒症问题提供全新的药物防治措施。
Introduction Sepsis, a systemic inflammatory response syndrome caused by infection, is common complications for the severe burns, trauma, infectious diseases and major operations. Sepsis has become the leading cause of death for critical patients but no effective drugs are available currently.
     Bacteria is thought to be the major infectious factors for sepsis as over 95 % of sepsis cases in clinic are induced by bacterial infection. About 50% of the bacterial sepsis cases are triggered by G- bacterial infection directly. On the other hand, intestinal G-bacteria can enter circulation via translocation to trigger secondary G- bacterial infection. As a result, it is of vital importance to combat G- bacterial. There are two major pattern recognition molecular patterns (PAMPs) for the induction of G- bacterial sepsis, the out membrane lipopolysaccharide/endotoxin (LPS) and genome DNA (bDNA/CpG DNA). LPS and CpG DNA are widely distributed among all kinds of G- bacteria and act as major pathogenic factors fortors for sepsis. They bind with their pattern recognition receptors (PRRs) TLR4 and TLR9 to activate MyD88 dependent/independent signaling pathways, which lead to synthesis and release of large quantities of proinflammatory mediators (TNF-α, IL-1 and IL-6). The sequential reactions will cause the disorder of immune response and eventually cause sepsis. Recently, LPS and CpG DNA were also found to act simultaneously for the induction of sepsis more severely.
     Current anti sepsis study mainly focus on LPS. However, these measures are with limited effects as they are unable to fight against CpG DNA. However, there has been no report on the anti sepsis study targeting on both LPS and CpG DNA. So we believe bacterial sepsis will be prevented effectively if dual inhibitors of LPS and CpG DNA are found and developed based on a new anti sepsis strategy targeting on both LPS and CpG DNA.
     Traditional Chinese herbs have been traditionally applied in treating infectious and inflammatory diseases. Many herbal formulas are effective for less severe sepsis. Nevertheless, herbs are composed with complicated components which make it difficult to discover contributing compounds and elucidate the innate mechanisms. To solve the above problems, affinity biosensor was introduced in our previous study to establish traditional Chinese herbs screening and separation via LPS and CpG DNA based double targets. 140 herbs were screened and active fractions were separated from radix et rhizoma rhei and cortex lycii. To find the contributing compound inside the active fractions, biosensor technique and chromatography were coupled for the isolation of active monomers. Bioactivity assessments in vitro and in vivo were also applied to investigate the effects and mechanisms of their anti LPS and anti CpG DNA activity.
     Objectives To establish anti sepsis strategy targeting on both LPS and CpG DNA, isolate natural compounds with botj anti LPS and anti CpG DNA activities and investigate their effectiveness and mechanism of their activities.
     Methods First, HPLC technique was utilized for determination of standard monomers in Fraction D of radix et rhizoma rhei. Both binding affinities for LPS and CpG DNA and anti LPS/CpG DNA activities of the containing monomers were detected in vitro. Second, biosensor technique was coulped with chromatography to isolate active fractions and monomers with high affinity for LPS and CpG DNA from fraction CL-4 of coetex lyciii. These fractions and monomers were analyzed via bioactivity assessment and the active monomer underwent purity analysis and structure determination.
     Third, effects and mechanism of anti LPS and CpG DNA activity of active monomer isolated from cortex lycii were studied. The binding affinity and dissociation constant (Kd value) for LPS and CpG DNA was first detected by biosensor. Then in vitro LPS neutralizing activity of the monomer was assayed via limulus amebocyte lysate test (LAL) tests and the binding of FITC-LPS and 5-FAM-CpG DNA to RAW 264.7 cells was analyzed by flow cytometry and laser scanning confocal microscopy (LSM). Effects of the monomer onmRNA expressions of TNF-α, IL-6, iNOS and COX-2 in RAW 264.7 cells were measured by real-time RT-PCR and the releases of cytokines were detected with ELISA. Lastly, the anti LPS and CpG DNA activity of the monomer was also observed in murine primary macrophages. In vivo, anti LPS and CpG DNA activity study of monomer was studied by observing effects of the monomer on survival of mice challenged intravenously with lethal dose of heat inactivated E. coli and detecting plasma LPS and serum TNF-αin mice injected with sublethal dose of E. coli. For mechanism study, binding and inhibitory activity of the monomer and PMB was studied and compared. Then inhibitory activity of monomer for multiple PAMPs was observed. Real-time RT-PCR was applied for the detection of TLR4 and TLR9 expression. Western blot and ELISA were used to detect activation of signaling molecules p38 and IκBαand transcription factor NF-κB p50 and p65. Finally, effects of various administration methods of the monomer on its anti LPS and CpG DNA activity. For preliminary drug safety analysis, effects of the monomer on RAW 264.7 cells and murine peritoneal cells in vitro and on mice survival and histomorphology of heart, lung, liver, kidney and intestine were studied..
     Results First, rhein and emodin were identified to be components of fraction D. they were shown with high affinity for LPS and CpG DNA and acted separately and synergistically to inhibited TNF-αrelease induced by LPS and CpG DNA.
     Second, three fractions CL-4a、CL-4b and CL-4c were separated from CL-4 of which CL-4b was identified to possess anti LPS and anti CpG DNA activity in vitro and in vivo. Two monomers were purified from CL-4b and the one with anti LPS and anti CpG DNA activity was identified to be kukoamine B (KB).
     Third, KB was identified with high affinity for LPS and CpG DNA (Kd value at 1.24 and 0.66μM each). It neutralized LPS in vitro in a well dose dependent manner and interfered LPS and CpG DNA from binding and internalization in RAW 264.7 cells. Kb was also shown to inhibit mRNA expression of TNF-α, IL-6, iNOS and COX-2 and suppressed the release of TNF-αtime and dose dependently in RAW 264.7 cells. Similar inhibitory activity of KB was also observed in murine peritoneal macrophages.In vivo,KB protected mice from challenged with heat inactivated E.coli probably via reducing circulatory LPS and CpG DNA levels. In mechanism study, KB was shown to be a dual binder and dual inhibitor for LPS and CpG DNA, compared to the fact that PMB only bind and inhibited LPS. KB could only inhibit LPS and CpG DNA but did not affect the effects of other stimuli. Additionally, preincubation of KB with LPS or CpG DNA significantly increased its inhibitory effects. KB attenuated the upregulation of TLR4 and TLR9 and thus inhibited sustained activation by LPS and CpG DNA. KB was demonstrated to selectively inhibited LPS and CpG DNA induced signaling transduction and cytokines (TNF-αand IL-6). KB was also shown to be nontoxic as it did not affect the cell viability and the survival or histomorphology of major organs in mice in prelimimary studies.
     Conclusions Dual targets (LPS and CpG DNA) targeted anti sepsis strategy was set up and active anti sepsis monomers purified from radix et rhizoma rhei and cortex lycii were obtaind based on this strategy. Rhein and emodin from radix et rhizoma rhei were found with binding and simultaneous anti LPS and CpG DNA activity for the first time. Then kukoamine B (KB) from cortex lycii was identified with stronger binding and inhibitory activity for LPS and CpG DNA, which was demonstrated to be attributed directly to its selective and specific binding and neutralizing activity for the two PAMPs. KB is an active compound. It will be a promising anti sepsis drug candidate with which the treatment of sepsis may be dramatically improved.
引文
1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250-6.
    2. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546-54.
    3. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35:1244-50.
    4. Ward PA. The dark side of C5a in sepsis. Nat Rev Immunol. 2004;4:133-42.
    5. Faust SN, Levin M, Harrison OB, Goldin RD, Lockhart MS, Kondaveeti S, Laszik Z, Esmon CT, Heyderman RS. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med. 2001;345:408-16.
    6. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138-50.
    7. Russell JA. Management of sepsis. N Engl J Med. 2006;355:1699-713.
    8. Medzhitov R, Janeway CA, Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997;91:295-8.
    9. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373-84.
    10. van der Poll T, Opal SM. Host-pathogen interactions in sepsis. Lancet Infect Dis. 2008;8:32-43.
    11. Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet. 2005;365:63-78.
    12. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449:819-26.
    13. Nathan C. Points of control in inflammation. Nature. 2002;420:846-52.
    14. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776-87.
    15. Sparwasser T, Miethke T, Lipford G, Borschert K, Hacker H, Heeg K, Wagner H.Bacterial DNA causes septic shock. Nature. 1997;386:336-7.
    16. Endotoxin and sepsis: molecular mechanisms of pathogenesis, host resistance, and therapy. Proceedings of the 4th Conference of the International Endotoxin Society. Nagoya, Japan, October 23-27, 1996. Prog Clin Biol Res. 1998;397:1-398.
    17. Opal SM, Gluck T. Endotoxin as a drug target. Crit Care Med. 2003;31:S57-64.
    18. Pridmore AC, Wyllie DH, Abdillahi F, Steeghs L, van der Ley P, Dower SK, Read RC. A lipopolysaccharide-deficient mutant of Neisseria meningitidis elicits attenuated cytokine release by human macrophages and signals via toll-like receptor (TLR) 2 but not via TLR4/MD2. J Infect Dis. 2001;183:89-96.
    19. Agrawal S, Kandimalla ER. Medicinal chemistry and therapeutic potential of CpG DNA. Trends Mol Med. 2002;8:114-21.
    20. De Nardo D, De Nardo CM, Nguyen T, Hamilton JA, Scholz GM. Signaling crosstalk during sequential TLR4 and TLR9 activation amplifies the inflammatory response of mouse macrophages. J Immunol. 2009;183:8110-8.
    21. Hume DA, Underhill DM, Sweet MJ, Ozinsky AO, Liew FY, Aderem A. Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state. BMC Immunol. 2001;2:11.
    22. Cowdery JS, Chace JH, Yi AK, Krieg AM. Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. J Immunol. 1996;156:4570-5.
    23. Varon J. Herbal medicine in acute care medicine: past, present, and future? Am J Emerg Med. 2009;27:113-4.
    24. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. Int Immunopharmacol. 2005;5:1007-1017.
    25. An anti-sepsis monomer, 2',5,6',7-tetrahydroxyflavanonol (THF), identified from Scutellaria baicalensis Georgi neutralizes lipopolysaccharide in vitro and in vivo. Int Immunopharmacol. 2008;8:1652-1657.
    26. Utaisincharoen P, Anuntagool N, Chaisuriya P, Pichyangkul S, Sirisinha S. CpG ODN activates NO and iNOS production in mouse macrophage cell line (RAW 264.7). Clin Exp Immunol. 2002;128:467-73.
    27. Gibot S, Kolopp-Sarda MN, Bene MC, Bollaert PE, Lozniewski A, Mory F, Levy B,Faure GC. A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J Exp Med. 2004;200:1419-26.
    28. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740-5.
    29.陈娟,郑江,周红,等.以CpG ODN为靶点应用生物传感器技术筛选抗炎中药.中国临床药理学与治疗学2005;10:1240-1244.
    30. Novakova L, Vlckova H. A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta. 2009;656:8-35.
    31. Kusmierek K, Chwatko G, Glowacki R, Bald E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:3300-8.
    32. Li HL, Chen HL, Li H, Zhang KL, Chen XY, Wang XW, Kong QY, Liu J. Regulatory effects of emodin on NF-kappaB activation and inflammatory cytokine expression in RAW 264.7 macrophages. Int J Mol Med. 2005;16:41-7.
    33. Martin G, Bogdanowicz P, Domagala F, Ficheux H, Pujol JP. Rhein inhibits interleukin-1 beta-induced activation of MEK/ERK pathway and DNA binding of NF-kappa B and AP-1 in chondrocytes cultured in hypoxia: a potential mechanism for its disease-modifying effect in osteoarthritis. Inflammation. 2003;27:233-46.
    34. McDonnell JM. Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol. 2001;5:572-7.
    35. Scarano S, Mascini M, Turner AP, Minunni M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron. 2010;25:957-66.
    36. Jean-Baptiste E. Cellular mechanisms in sepsis. J Intensive Care Med. 2007;22:63-72.
    37. Crouser E, Exline M, Knoell D, Wewers MD. Sepsis: links between pathogen sensing and organ damage. Curr Pharm Des. 2008;14:1840-52.
    38. Da Violante G, Zerrouk N, Richard I, Provot G, Chaumeil JC, Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol Pharm Bull. 2002;25:1600-3.
    39.魏秀丽,粱敬钰.地骨皮的化学成分研究.中国药科大学学报. 2003;34:580-1.
    40.伏建峰. 2’,5,6’,7-四羟基二氢黄酮醇的定向分离及其拮抗细菌脓毒症的生物学活性评价.学位论文. 2008.
    41. Markwick PR, Malliavin T, Nilges M. Structural biology by NMR: structure, dynamics, and interactions. PLoS Comput Biol. 2008;4:e1000168.
    42. Liu S, Lei P, Li XZ, Chen YH. [Separation and purification processes of alkaloids from Lotus plumule with macroporous adsorption resin]. Zhongguo Zhong Yao Za Zhi. 2007;32:912-5.
    43.王跃生王洋.大孔吸附树脂研究进展.中国中药杂志. 2006;31:961-5.
    44. Jia G, Lu X. Enrichment and purification of madecassoside and asiaticoside from Centella asiatica extracts with macroporous resins. J Chromatogr A. 2008;1193:136-41.
    45.刘小平,李湘南,徐海星.中药分离工程.第一版. 2005:95-100.
    46.郭毅斌.白鲜皮抗内毒素的物质基础及作用机制研究.学位论文. 2008.
    47. Ziegler J, Facchini PJ. Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol. 2008;59:735-69.
    48. Hoffmann CV, Lammerhofer M, Lindner W. Separation of Cinchona alkaloids on a novel strong cation-exchange-type chiral stationary phase-comparison with commercially available strong cation exchanger and reversed-phase packing materials. Anal Bioanal Chem. 2009;393:1257-65.
    49. Knox JH, Jurand J. Separation of morphine alkaloids, heroin, methadone and other drugs by ion-exchange chromatography. J Chromatogr. 1973;82:398-401.
    50. Williams A, Frasca V. Ion-exchange chromatography. Curr Protoc Mol Biol. 2001; Chapter 10:Unit 10
    51. Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005;4:854-65.
    52. Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003;16:379-414.
    53. Lambert M, Wolfender JL, Staerk D, Christensen SB, Hostettmann K, Jaroszewski JW. Identification of natural products using HPLC-SPE combined with CapNMR. Anal Chem. 2007;79:727-35.
    54. Wolfender JL. HPLC in natural product analysis: the detection issue. Planta Med. 2009;75:719-34.
    55. Antonovich RS, Keller PR. Applicability of mass spectrometry to detect coelutingimpurities in high-performance liquid chromatography. J Chromatogr A. 2002; 971:159-71.
    56. Zhou L, Mao B, Reamer R, Novak T, Ge Z. Impurity profile tracking for active pharmaceutical ingredients: case reports. J Pharm Biomed Anal. 2007;44:421-9.
    57. Escarpa A, Gonzalez MC. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J Chromatogr A. 1998;823:331-7.
    58. Garcia-Mayor MA, Garcinuno RM, Fernandez-Hernando P, Durand-Alegria JS. Liquid chromatography-UV diode-array detection method for multi-residue determination of macrolide antibiotics in sheep's milk. J Chromatogr A. 2006;1122:76-83.
    59.陆蕴如主编.中药化学.北京:学苑出版社,. 2005:24-9.
    60.宁永成主编.有机化合物结构鉴定与有机波谱学第二版.北京:科学出版社. 2000:266-317.
    61.吴立军主编.天然药物化学.第一版.北京:科学技术文献出版社,. 2006.:16-20.
    62. Funayama S Z, GR, Nozoe S. Kukoamine B, a spermine alkaloid from Lycium chinense. Phytochemistry 1995;38:1539-1.
    63. Thorpe SM, Rose C. Biological and clinical relevance of Kd values for estradiol binding in primary breast cancer tumors. Eur J Cancer Clin Oncol. 1988;24:1163-70.
    64. Heinrich L, Tissot N, Hartmann DJ, Cohen R. Comparison of the results obtained by ELISA and surface plasmon resonance for the determination of antibody affinity. J Immunol Methods. 2010;352:13-22.
    65. Mahurter L, Garceau C, Marino J, Schmidhammer H, Toth G, Pasternak GW. Separation of binding affinity and intrinsic activity of the potent mu-opioid 14-methoxymetopon. J Pharmacol Exp Ther. 2006;319:247-53.
    66. Corrigan JJ, Jr., Kiernat JF. Effect of polymyxin B sulfate on endotoxin activity in a gram-negative septicemia model. Pediatr Res. 1979;13:48-51.
    67. Danner RL, Joiner KA, Rubin M, Patterson WH, Johnson N, Ayers KM, Parrillo JE. Purification, toxicity, and antiendotoxin activity of polymyxin B nonapeptide. Antimicrob Agents Chemother. 1989;33:1428-34.
    68. Brandenburg K, David A, Howe J, Koch MH, Andra J, Garidel P. Temperature dependence of the binding of endotoxins to the polycationic peptides polymyxin B and its nonapeptide. Biophys J. 2005;88:1845-58.
    69. Blondin C, Le Dur A, Cholley B, Caroff M, Haeffner-Cavaillon N. Lipopolysaccharide complexed with soluble CD14 binds to normal human monocytes. Eur J Immunol. 1997; 27:3303-9.
    70. Bosshart H, Heinzelmann M. Human neutrophil-derived CAP37 inhibits lipopolysaccharide- induced activation in murine peritoneal macrophages. Immunol Lett. 2004;94:175-82.
    71. Eliopoulos AG, Dumitru CD, Wang CC, Cho J, Tsichlis PN. Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J. 2002;21:4831-40.
    72. Chan ED, Riches DW. IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am J Physiol Cell Physiol. 2001;280:C441-50.
    73. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402-8.
    74. Ulloa L, Tracey KJ. The "cytokine profile": a code for sepsis. Trends Mol Med. 2005; 11:56-63.
    75. Schumann RR. Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol. 1992;143:11-5.
    76. Tobias PS, Soldau K, Kline L, Lee JD, Kato K, Martin TP, Ulevitch RJ. Cross-linking of lipopolysaccharide (LPS) to CD14 on THP-1 cells mediated by LPS-binding protein. J Immunol. 1993;150:3011-21.
    77. Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, Busse LA, Zukowski MM, Wright SD. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994;179:269-77.
    78. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol. 2004;5:190-8.
    79. Wagner H. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr Opin Microbiol. 2002;5:62-9.
    80. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol. 2002;169:10-4.
    81. Opitz B, Schroder NW, Spreitzer I, Michelsen KS, Kirschning CJ, Hallatschek W, Zahringer U, Hartung T, Gobel UB, Schumann RR. Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J Biol Chem. 2001; 276:22041-7.
    82. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732-8.
    83. O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353-64.
    84. Ferguson AD, Welte W, Hofmann E, Lindner B, Holst O, Coulton JW, Diederichs K. A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins. Structure. 2000;8:585-92.
    85. Tobias PS, Soldau K, Iovine NM, Elsbach P, Weiss J. Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS. J Biol Chem. 1997; 272:18682-5.
    86. Tsubery H, Ofek I, Cohen S, Fridkin M. The functional association of polymyxin B with bacterial lipopolysaccharide is stereospecific: studies on polymyxin B nonapeptide. Biochemistry. 2000;39:11837-44.
    1. Ulloa L, Tracey KJ. The "cytokine profile": a code for sepsis[J]. Trends Mol Med, 2005,11(2):56-63.
    2. Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003; 348:1546–1554.
    3. Annane D, Aegerter P, Guidet B, et al. Current epidemiology of septic shock: the CUB-Rea Network. Am J Respir Crit Care Med. 2003; 168:165-172.
    4. Danai P, Martin GS. Epidemiology of sepsis: recent advances. Curr Infect Dis Rep. 2005; 7(5):329-334.
    5. Cheng B, Xie G, Yao S, et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China. Crit Care Med. 2007;35(11):2538-2546
    6. Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock. 2001; 16:83–96.
    7. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007; 449:819-826.
    8. Cohen J. The immunopathogenesis of sepsis. Nature. 2002; 420:885–891.
    9. Nathan C. Points of control in inflammation. Nature. 2002; 420:846–852.
    10. Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet. 2005; 365:63–78.
    11. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003; 348 (2):138-150.
    12. Efron PA, Tinsley K, Minnich DJ, et al. Increased lymphoid tissue apoptosis in baboons with bacteremic shock. Shock. 2004; 21 (6): 566-571.
    13. Remick DG. Pathophysiology of sepsis. Am J Pathol. 2007; 170(5):1435-1444.
    14.刘屏,陈凯先.我国天然药物研究的现状与未来.中国药物应用与监测. 2007; 4(3):1-3.
    15.张艺平,韩鹏.中药抗内毒素研究新进展.中国中西医结合急救杂志2001;8(2):122-124.
    16. Han JY, Fan JY, Horie Y, et al. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 2008;117(2):280-295.
    17. Wang X, Morris-Natschke SL, Lee KH. New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 2007;27(1):133-148.
    18. Peng SM, Wang SZ, Zhao JP. Effect of rhubarb on inflammatorycytokines and complements in patients with systemic inflammationreaction syndrome and its significance. Zhongguo Zhong Xi Yi Jie HeZa Zhi 2002; 22(4):264-266.
    19. Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003; 348:1546–1554.
    20.孙耀光.中药抗内毒素的作用及其机制.现代中医药. 2004; 6 :40-42.
    21.刘晓波,马布仁.应用产色基质偶氮法筛选抗内毒素中草药.实用中西医结合杂志. 1995; 8 (8): 583-584.
    22.刘志峰,李桂生,傅风华,等. 8种中药注射剂体外抗内毒素作用的观察.中草药.2002 33(1):
    23.谢恬.大黄对家兔内毒素发热及血浆cAMP和cGMP含量的影响.上海中医药杂志. 1991 ;( 2): 461.
    24.魏立召,郑江,蒋栋能.中药赤芍拮抗内毒素活性的实验研究.四川生理科学杂志. 2004;26(4):190-1.
    25. Lv GF, Zheng J, Zhou H, et al.The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. Int Immunopharmacol. 2005, 5(6): 1007-1017.
    26. Fu J, Cao H, Wang N, et al. An anti-sepsis monomer, 2,5,6,7-tetrahydroxyavanonol(THF), identied from Scutellaria baicalensis Georgineutralizes lipopolysaccharide in vitro and in vivo. Int Immunopharmacol. 2008;8(12):1652-1657;
    27. Jiang Z, Hong Z, Guo W, et al. A synthetic peptide derived from bactericidal/permeability -increasing protein neutralizes endotoxin in vitro and in vivo.Int Immunopharmacol. 2004, 4(4): 527-537.
    28.徐嘉红,邓文龙.云芝的益气解毒作用研究.中药药理与临床.1997;13(6) :231
    29. Hridayesh Prakash, Arif Ali, Madhu Bala, et al. Anti-inflammatory effects of Podophyllum hexandrum (RP-1) against lipopolysaccharides induced inflammation in mice. J Pharm Pharmaceut Sci. 2005; 8(1):107-114.
    30. Wang J, Zhou H, et al. Antimalarial artemisinin synergizes with antibiotics to protect against lethal live Escherichia coli by decreasing proinflammatory cytokine release. Antimicrob Agents Chemother. 2006; 50(7):2420-2427.
    31. Lee KH, Yeh MH, Kao ST. et al. Xia-bai-san inhibits lipopolysaccharide-induced activation of intercellular adhesion molecule-1 and nuclear factor-kappa B in human lung cells. J Ethnopharmacol. 2009 Jul 30;124(3):530-8.
    32. Yang S, Yihua L, Xingxin Wu, et al. Ethanol extract from Artemisia vestita, a traditional Tibetan medicine, exerts anti-sepsis action through down-regulating the MAPK and NF-κB pathways. International Journal of Molecular Medicine. 2006;17: 957-962.
    33. Fang SH, Hou YC, Chang WC, Morin sulfates/glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock. Life Sci. 2003; 26;74(6):743-56.
    34.沈长虹,田在善,李东华.大承气汤对肠源性内毒素血症大鼠组织PLA2、SOD活性变化的影响.中国中西医结合外科杂志.1996; 12(20) :4631
    35.王冬梅,李冬冬,田余祥.腑安冲剂对实验性腹膜炎内毒素血症的影响及对肺脏的保护作用.中国中西医结合外科杂志.1997; 3(1) 761.
    36. Gautam SC, Gao X, Dulchavsky S. Immunomodulation by curcumin.Adv Exp Med Biol. 2007;595:321-41.
    37. Wu CA, Wu JJ, Tsai MJ, et al. Immunomodulatory effects of a traditional Chinese medicine, Chi-Shie-Shuang-Bu-An-Shen-Tang, on BALB/c mice. J Ethnopharmacol. 20075;113(2):300-5.
    38. Ahn JY, Choi IS, Shim JY. The immunomodulator ginsan induces resistance to experim ental sepsis by inhibiting Toll-like receptor-mediated inflammatory signals. Eur J Immunol. 2006 Jan;36(1):37-45
    39. Shon YH, Kim JH, Nam KS. Effect of Astragali radix extract onlipopolysaccharide—induced inflammation in human amnion. Biol Phann Buu. 2002;25:77-80.
    40.黄泳,吴锐.凉膈散对家兔内毒素温病模型的化瘀作用研究.中药药理与临床, 1998 ,14(1) :71
    41.彭玲.复方丹参滴丸的药理与临床研究进展.实用中医药杂志. 2006. 22(6): 382-383.
    42.张宇忠,邱劲,黄启福,等.心脉灵注射液对内毒素休克大鼠脑组织脂质过氧化作用的影响.北京中医药大学学报. 2002. 25(5): 17-19
    43.郭毅斌;曹红卫;范莉,等.白鲜皮抗内毒素活性物质的分离提取与活性研究.第三军医大学学报. 2007. 29(17): 1654-1656.
    44. Yun N, Lee CH, Lee SM. Protective effect of Aloe vera on polymicrobial sepsis in mice. Food Chem Toxicol. 2009 Jun; 47(6):1341-8.
    45. Lin QY, Jin LJ, Cao ZH, Inhibition of inducible nitric oxide synthase by Acanthopanax senticosus extract in RAW264.7 macrophages J Ethnopharmacol. 2008 Jul 23;118(2):231-6.
    46.刘清泉,梁腾霄,刘红旭.血必净注射液治疗脓毒症的多中心临床研究.北京中医. 2007; 26(1): 15-18.
    47.胡晶,商洪才,李晶等.血必净注射液治疗脓毒症的系统评价.解放军医学杂志. 2010;35(1):9-12.
    48.陈浩,王佑华;邹长鹏祛瘀解毒益气方治疗重症脓毒症的临床研究上海中医药大学学报2008; 22(2):30-31.
    49.奚小土,钟世杰,李际强等.清气凉营汤治疗脓毒症30例.河南中医. 2009;29(6):571-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700