多翼多涡卷混沌系统生成、同步及其在保密通信中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性动力学,通常称为混沌理论,它改变了看待自然和社会系统动力学的传统科学思维方式,在过去的几十年里得到了蓬勃的发展。混沌是非线性系统的一种本质特征,是一个有界的不稳定的动力学行为,对初始条件敏感,包含无限不稳定周期运动。虽然它貌似随机,但是它发生在确定的条件下确定的非线性系统中。
     对于许多工程应用来说,生成一个具有复杂拓扑结构如多翼或多涡卷吸引子的混沌系统,有时成为一个关键问题。在这一过程中,基于光滑和非光滑非线性函数的自治系统中产生多翼吸引子和基于非光滑非线性函数的自治系统中产生多涡卷吸引子是目前主要两种实现方法。在大多数物理和工程应用中,由于混沌的不可预测性,混沌通常被视为有害的和不受欢迎的。然而,近二十年来,随着对混沌控制和混沌同步等开创性工作的研究,混沌被证明可用于保密通信领域。通过研究复杂混沌系统生成和同步理论,本文主要的创新工作可概括如下:
     (1)采用非线性的指数函数和双曲函数,构造了二个只有五项的三维指数型和双曲型混沌系统。当所有平衡点稳定的时候,系统能产生二翼混沌吸引子。与已发表的三维混沌系统相比,不仅系统项数要少一些,且在参数变化时,呈现出混沌的范围也大。基于相同理论,本文还提出了二个二翼指数型和双曲型超混沌系统。该二个系统都是自治的且只有一个平衡点,并系统在该平衡点处发生了Hopf分岔。
     (2)本文提出了一组具有五个实平衡点的四维自治混沌系统。随着系统某个单一参数的变化,该组系统可以分别产生一翼、二翼、三翼和四翼吸引子,且吸引子在所有方向上都能表现出多翼形式。在三维单涡卷混沌Colpitts振荡器模型中引入两个分段线性三角波函数,构造了一个四维斜网格多涡卷超混沌系统。通过对一个三角波函数内部参数的调节,实现了多涡卷网格倾斜度的控制。同时,通过对两个三角波函数的零点配置来扩展相空间中指数2的鞍焦平衡点,使涡卷数量不但随着转折点数量的增加而增加,且能产生任意倍的乘积。
     (3)本文研究了具有完全不确定参数的混沌系统投影同步。基于李雅普诺夫稳定性理论和Barbalat引理,设计了一个新的具有参数自适应律的控制器,利用该控制器分别实现了二个结构相同的双曲型和不相同混沌系统的渐进性和全局性完全同步和反同步。基于传统的投影同步技术,提出了一个新同步方法——完全切换改进型函数投影同步,驱动和响应系统的状态变量之间完全切换,且同步到一个标尺函数。该不确定标尺函数在完全切换改进型函数投影同步中可以有效地增强通信的保密性。最后,以五项指数型混沌系统为例,数值模拟验证了该控制方案的有效性和可行性。大多数同步方法在同步过程中需要构建合适的李雅普诺夫函数,在实际应用中,构建李雅普诺夫函数仍然是困难的。基于此,本文采用雅克比矩阵方法提出了一种扩展的同步控制机制,实现了二个混沌系统的同步,而且在同步过程中并未删除驱动系统的非线性项。最后,以双曲型超混沌系统为例验证了该方法的有效性。
     (4)基于完全切换投影同步和指数型超混沌系统,提出了一种改进的混沌掩盖保密通信方案,在发送端和接收端的混沌系统中,分别引入有用信号和混沌信号的混合信号的反馈,提高同步精度,从而克服了传统的混沌掩盖的一些缺点,实现了有用信号的加密和恢复。其次,本文通过一个鲁棒的高阶滑模自适应控制器,研究了一个具有外界干扰的四翼混沌系统的保密通信机制。由参数调制理论和李雅普诺夫稳定性理论,实现了发射机与接收机之间的同步和保密通信,二个有用信号得以恢复。此外,通过所提出的自适应控制器,接收系统的增益可以连续可调、未知参数可以准确地识别以及外界干扰可以同时抑制。
Nonlinear dynamics, commonly called the chaos theory, changes the scientific way of looking at the dynamics of natural and social systems, which has been intensively studied over the past several decades. Chaos is a kind of characteristics of nonlinear systems, which is a bounded unstable dynamic behavior that exhibits sensitive dependence on initial conditions and includes infinite unstable periodic motions. Although it appears to be stochastic, it occurs in a deterministic nonlinear system under deterministic conditions.
     Generating a chaotic system with a more complicated topological structure such as multi-wing or multi-scroll attractors becomes a desirable task and sometimes a key issue for many engineering applications. In this endeavor, there are two major efforts as follows:based on generalizing smooth and nonsmooth nonlinear function autonomous systems with multi-wing attractor and generalizing nonsmooth nonlinear function autonomous systems with multi-scroll attractors. Meanwhile, based on linear sciences, chaos was often regarded as a harmful and undesirable characteristic for most physics and engineering applications due to its unpredictable nature. However, in the last two decades, and since the pioneer work of chaos control, and chaos synchronization, chaos proved to be of effective use for secure communications. Based on the complex chaos system modeling and synchronization theory, the main innovative works of this dissertation are as follows:
     (1) In this dissertation we introduce a three-dimensional (3D) exponential-type chaotic system and a3D hyperbolic-type chaotic system with only five terms including one nonlinear term in the form of exponential function and hyperbolic function respectively. The two systems can generate a two-wing chaotic attractor when all of equilibria are stable. Compared with other3D chaotic systems, not only the terms of the two systems are less, but also the range of chaos is wider when the parameter varies. Based on the same method, this dissertation proposes two-wing exponential-type hyperchaotic system and hyperbolic-type hyperchaotic system equipped with a nonlinear term in the form of exponential function and hyperbolic function respectively. The two systems are autonomous with a unique equilibrium, especially, a Hopf bifurcation occurs at this equilibrium.
     (2) In this dissertation, we propose a group of four-dimensional (4D) autonomous chaotic systems with five real equilibria. These systems can generate one-, two-, three-and four-wing attractors with variation of a single parameter, and the multi-wing type of the attractors can be displayed in all directions. In this dissertation we initiate a new approach for oblique grid multi-scroll hyperchaos generation. Through introducing two piecewise-linear triangular wave functions into a three-dimensional spiral chaotic Colpitts oscillator model, a4D grid multi-scroll hyperchaotic system is constructed. By adjusting a build-in parameter in a variable of one triangle wave function, the control of the gradient of the multi-scroll grid is achieved. Meanwhile, by deploying the zero points of the two triangular wave functions to extend the saddle-focus equilibrium points with index-2in phase space, the scroll numbers not only increase along with the number of turning points, but also can generate arbitrary multiples of products.
     (3) Projective synchronization (PS) of two chaotic systems with fully uncertain parameters is investigated in this dissertation. Based on Lyapunov stability theory and Barbalat's lemma, a new adaptive controller with parameter update laws is designed to complete synchronization (CS) and antiphase synchronization (AS) between two chaotic systems asymptotically and globally, including two identical hyperbolic-type chaotic systems and two different chaotic systems. Based on PS technique, in this dissertation we also propose a new synchronization, complete switched modified function projective synchronization (CSMFPS), for two different chaotic systems, where the drive and response systems could be complete switched synchronized to a function matrix. The unpredictability of the function matrix in CSMFPS can additionally strengthen the security of communications. Finally, the five-term exponential-type chaotic system is taken for example and the corresponding numerical simulations are presented to verify the effectiveness and feasibility of the proposed control scheme. Most of synchronization methods mainly concerned the synchronization that needed to construct the appropriate Lyapunov functions. As is well known, the construction of the appropriate Lyapunov functions is still a difficult issue. An extended control scheme is presented by using Jacobin matrix method, which realizes synchronization of two different4D chaotic systems, and the nonlinear terms in the drive system are not removed. To illustrate the effectiveness of the proposed scheme, a numerical example based on the exponential-type hyperchaotic system is presented.
     (4) A modified chaotic masking secure communication scheme applying complete switched projective synchronization of the exponential-type hyperchaotic system is proposed in this dissertation. In the chaotic systems of the sender and the receiver, the feedback of the mixed signal of the useful signal and chaotic signal is introduced, respectively. It can improve the precision of the synchronization, so as to overcome some shortcomings of the traditional chaos masking and realize the encryption and recovery of the useful signal. Secondly, another secure communication scheme based on a four-wing chaotic system with external disturbance via a convenient robust high-order sliding mode adaptative controller is also discussed in this dissertation. By parameter modulation theory and Lyapunov stability theory, synchronization and secure communication between transmitter and receiver is achieved and two message signals are recovered. In addition, the gains of the receiver system can be adjusted continually, the unknown parameters can be identified precisely and the external disturbance can be suppressed simultaneously by the proposed adaptative controller.
引文
[1]百度百科.李雅普诺夫.http://baike.baidu.com/view/79341.htm,2010-07-09
    [2]Lorenz E N. Deterministic non-periodic flow. Journal of the Atmospheric Sciences,1963,51(3):130-141
    [3]Li T Y, Yorke J A. Period three implies chaos. The American Mathematical Monthly,1975,82(10):985-992
    [4]Ruelle D, Takens F. On the nature of turbulence. Communications in Mathematical Physics,1971,20(3):167-192
    [5]May R M. Simple mathematical models with very complicated dynamics. Nature,1976,261(5560):459-461
    [6]Feigenbaum M J. Quantitative universality for a class of nonlinear transformations. Journal of Statistical Physics,1978,19(1):25-52
    [7]Hao B L. Chaos. Singapore:World Scientific,1984
    [8]Xie F G, Hao B L. Counting the number of periods in one-dimensional maps with multiple critical points. Physica A,1994,202(1-2):237-263
    [9]王兴元,王明军.二维Logistic映射的混沌控制.物理学报,2008,57(2):731-736
    [10]尹逊和,任勇,山秀明.广义Henon映射的滑模变结构控制同步.物理学报,2002,51(9):1949-1953
    [11]刘建东,付秀丽.基于耦合帐篷映射的时空混沌单向Hash函数构造.通信学报,2007,28(6):30-38
    [12]周茜.混沌理论及应用若干问题的研究:[南开大学博士学位论文].天津:南开大学,2010,63-81
    [13]Rossler O E. An equation for continuous chaos. Physics Letters A,1976,57(5): 397-398
    [14]Chen G, Ueta T. Yet another chaotic attractor. International Journal of Bifurcation and Chaos,1999,9(7):1465-1466
    [15]Celikovsky S, Chen G. On a generalized Lorenz canonical form of chaotic systems. International Journal of Bifurcation and Chaos,2002,12(8): 1789-1812
    [16]Lv J, Chen G. A new chaotic attractor coined. International Journal of Bifurcation and Chaos,2002,12(3):659-661
    [17]Lv J, Chen G, Cheng D, et al. Bridge the gap between the Lorenz system and the Chen system. International Journal of Bifurcation and Chaos,2002,12(12): 2917-2926
    [18]Celikovsky S, Vanecek A. Bilinear systems and chaos. Kybernetika,1994, 30(4):403-424
    [19]Celikovsky S, Chen G. On the generalized Lorenz canonical form. Chaos, Solitons and Fractals,2005,26(5):1271-1276
    [20]Shimizu T, Morioka N. On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Physics Letters A,1976,76(3-4):201-204
    [21]Liu C, Liu T, Liu L, et al. A new chaotic attractor. Chaos, Solitons and Fractals, 2004,22(5):1031-1038
    [22]Pehlivan I, Uyaroglu Y. A new 3D chaotic system with golden proportion equilibria:Analysis and electronic circuit realization. Computers & Electrical Engineering,2012,38(6):1777-1784
    [23]Sundarapandian V, Pehlivan I. Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathematical and Computer Modelling,2012, 55(7-8):1904-1915
    [24]Abooee A, Yaghini-Bonabi H A, Jahed-Motlagh M R. Analysis and circuitry realization of a novel three-dimensional chaotic system. Communications in Nonlinear Science and Numerical Simulation,2013,18(5):1235-1245
    [25]Sprott J C. Chaos and Time-Series Analysis. Oxford:Oxford University Press, 2003
    [26]Munmuangsaen B, Srisuchinwong B. A new five-term simple chaotic attractor. Physics Letters A,2009,373(44):4038-4043
    [27]Wei Z, Yang Q. Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Analysis:Real World Applications,2011, 12(1):106-118
    [28]Yu F, Wang C. A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term. ETASR-Engineering, Technology & Applied Science Research,2012,2(2):209-215
    [29]Rossler O E. An equation for hyperchaos. Physics Letters A,1979,71(2-3): 155-156
    [30]刘扬正.超混沌Lu系统的电路实现.物理学报,2008,57(3):1439-1443
    [3 1]刘扬正,姜长生,李心朝等.复杂超混沌Lu系统的电路实验.物理学报,2008,57(11):6808-6814
    [32]Gao T, Gu Q, Chen Z. Analysis of the hyper-chaos generated from Chen's system. Chaos, Solitons and Fractals,2009,39(4):1849-1855
    [33]贾红艳,陈增强,袁著祉.一个大范围超混沌系统的生成和电路实现.物理学报,2009,58(7):4469-4476
    [34]Sahab A R, Ziabari M T, Modabbernia M R. A novel fractional-order hyperchaotic system with a quadratic exponential nonlinear term and its synchronization. Advances in Difference Equations,2012,2012(194): doi:10.1186/1687-1847-2012-194
    [35]Wang Z, Qi G, Sun Y, et al. A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems. Nonlinear Dynamics,2010,60(3):443-457
    [36]Qi G, Chen G, vanWyk M A, et al. A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos, Solitons and Fractals, 2008,38(3):705-721
    [37]Dadras S, Momeni H R. A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Physics Letters A,2009, 373(40):3637-3642
    [38]王忠林,邓斌,侯承玺.四翼Liu混沌系统的设计与电路实现.山东大学学报(理学版),2010,45(11):43-45
    [39]Grassi G, Severance F L, Miller D A. Multi-wing hyperchaotic attractors from coupled Lorenz systems. Chaos, Solitons and Fractals,2009,41(1):284-291
    [40]Qi G, Chen G. Analysis and circuit implementation of a new 4D chaotic system. Physics Letters A,2006,352(4-5):386-397
    [41]张宇辉,齐国元,刘文良等.一个新的四维混沌系统理论分析与电路实现.物理学报,2006,55(7):3307-3314
    [42]王繁珍,齐国元,陈增强等.一个四翼混沌吸引子.物理学报,2007,56(6):3137-3144
    [43]Dadras S, Momeni H R, Qi G, et al. Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dynamics,2012,67(2):1161-1173
    [44]Xue W, Fang Y, Li Q. A Novel Four-Wing Hyper-Chaotic System and Its Circuit Implementation. Procedia Engineering,2012,29:1264-1269
    [45]Yu S, Tang W K, Lv J, et al. Generation of n×m-Wing Lorenz-Like Attractors From a Modified Shimizu-Morioka Model. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2008,55(11):1168-1172
    [46]Lu J, Chen G, Yu X. Design and Implementation of Grid Multiwing Butterfly Chaotic Attractors From a Piecewise Lorenz System. IEEE Transactions on Circuits and Systems II:Express Briefs,2010,57(10):803-807
    [47]Zhang C, Yu S. On constructing complex grid multi-wing hyperchaotic system: Theoretical design and circuit implementation. International Journal of Circuit Theory and Applications,2010,41(2), DOI:10.1002/cta.736
    [48]周欣,王春华,郭小蓉.一个新的网格多翅膀混沌系统及其电路实现.物理学报,2012,61(20):200506
    [49]罗明伟,罗小华,李华青.一类四维多翼混沌系统及其电路实现.物理学报,2013,62(2):020512
    [50]Chua L, Komuro M, Matsumoto T. The double scroll family. IEEE Transaction on Circuits and System I,1986,33(11):1072-1118
    [51]禹思敏,丘水生,林清华.多涡卷混沌吸引子研究的新结果.中国科学E辑,2003,33(4):365-374
    [52]Yu S, Lu J, Leung H, et al. Design and implementation of n-scroll chaotic attractors from a general jerk circuit. IEEE Transactions on Circuits and Systems-I:Regular Papers,2005,52(7):1459-1476
    [53]刘明华,禹思敏.多涡卷高阶广义Jerk电路.物理学报,2006,55(11):5707-5713
    [54]Lv J, Murali K, Sinha S, et al. Generating multi-scroll chaotic attractors by thresholding. Physics Letters A,2008,372(18):3234-3239
    [55]Yalcin M E. Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions. Chaos, Solitons and Fractals,2007,34(5): 1659-1666
    [56]包伯成,徐强,徐煜明等.三维多涡卷Coipitts混沌系统及其数字硬件实现.电路与系统学报,2011,16(1):69-73
    [57]王发强,刘崇新.一类多折叠环面多涡卷混沌吸引子的仿真研究.物理学报,2007,56(4):1983-1987
    [58]Zhang C X, Yu S M. Design and implementation of a novel multi-scroll chaotic system. Chinese Physics B,2009,18(1):119-129
    [59]Lv J, Han F, Yu X, et al. Generating 3-D multi-scroll chaotic attractors:A hysteresis series switching method. Automatica,2004,40(10):1677-1687
    [60]Lii J, Chen G, Yu X, et al. Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Transactions on Circuits and Systems-I: Regular Papers,2004,51(12):2476-2490
    [61]禹思敏.用三角波序列产生三维多涡卷混沌吸引子的电路实验.物理学报, 2005,54(4):1500-1509
    [62]Lv J, Yu S, Leung H, et al. Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Transactions on Circuits and Systems-I: Regular Papers,2006,53(1):149-165
    [63]Deng W, Lv J. Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system. Physics Letters A,2007,369(5-6): 438-443
    [64]Yu S, Lu J, Chen G. Theoretical Design and Circuit Implementation of Multidirectional Multi-Torus Chaotic Attractors. IEEE Transactions on Circuits and Systems-I:Regular Papers,2007,54(9):2087-2098
    [65]张朝霞,禹思敏.用时滞和阶跃序列组合生成网格多涡卷蔡氏混沌吸引子.物理学报,2009,58(1):120-130
    [66]陈仕必,曾以成,徐茂林等.用多项式和阶跃函数构造网格多涡卷混沌吸引子及其电路实现.物理学报,2011,60(2):020507
    [67]刘崇新.蔡氏对偶混沌电路分析.物理学报,2002,51(6):1198-1202
    [68]李亚,禹思敏,戴青云等.一种新的蔡氏电路设计方法与硬件实现.物理学报,2006,55(8):3938-3944
    [69]禹思敏,禹之鼎.一个新的五阶超混沌电路及其研究.物理学报,2008,57(11):6859-6867
    [70]李亚,张正明,陶志杰.一个超混沌六阶蔡氏电路及其硬件实现.物理学报,2009,58(10):6818-6822
    [71]Suykens J A K, Vandewalle J. Generation of n-double scrolls (n= 1; 2; 3; 4;...). IEEE Transaction on Circuits and System I,1993,40(11):861-867
    [72]Han F, Yu X, Wang Y, et al. n-scroll chaotic oscillators by second-order systems and double-hysteresis blocks. Electronics Letters,2003,39(23): 1636-1637
    [73]禹思敏,丘水生.N-涡卷超混沌吸引子产生与同步的研究.电子学报,2004,32(5):814-818
    [74]禹思敏.一种新型混沌产生器.物理学报,2004,53(12):4111-4119
    [75]Rodriguez-Vazquez A, Delgado-Restituto M. CMOS design of chaotic oscillators using statevariables:a monolithic Chua's circuit. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing,1993,40(10): 596-613
    [76]Gonzales O A, Han G, De G, et al. Lorenz-based chaotic cryptosystem:a monolithic implementation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2000,47(8):1243-1247
    [77]Ozoguz S, Elwakil A S, Salama K N. n-scroll chaos generator using nonlinear transconductor. Electronics Letters,2002,38(14):685-686
    [78]Radwan A G. Soliman A M. El-Sedeek A. MOS realization of the double-scroll-like chaotic equation. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2003,50(2):285-288
    [79]Radwan A G. Soliman A M. El-Sedeek A. MOS realization of the modified Lorenz chaotic system. Chaos, Solitons & Fractals,2004,21(3):553-561
    [80]Yalcin M E, Ozoguz S, Suykens J A K, et al. n-scroll chaos generators:a simple circuit model. Electronics Letters,2001,37(3):147-148
    [81]Yalcin M E, Suykens J A K, Vandewalle J. Families of scroll grid attractors. International Journal of Bifurcation and Chaos,2002,12(1):23-41
    [82]Yalcin M E, Ozoguz S. n-scroll chaotic attractors from a first-order time-delay differential equation. Chaos,2007,17(3):033112
    [83]Sanchez-Lopez C, Trejo-Guerra R, Munoz-Pacheco J M, et al. N-scroll chaotic attractors from saturated function series employing CCII+s. Nonlinear Dynamics,2010,61(1-2):331-341
    [84]林愿,王春华,徐浩.基于电流传输器的网格多涡卷混沌吸引子在混合图像加密中的研究.物理学报,2012,61(24):240503
    [85]王春华,尹晋文,林愿.基于电流传输器的网格多涡卷混沌电路设计与实现.物理学报,2012,61(21):210507
    [86]Trejo-Guerra R, Tlelo-Cuautle E, Jimenez-Fuentes J M, et al. Integrated circuit generating 3-and 5-scroll attractors. Communications in Nonlinear Science and Numerical Simulation,2012,17(11):4328-4335
    [87]刘孝贤,耿淑娟.混沌控制理论和方法.山东大学学报(工学版),2003,33(5):522-525
    [88]闵富红.混沌系统同步控制的有关问题研究:[南京理工大学博士学位论文].南京:南京理工大学,2007,22-29
    [89]Carroll T L, Perora L M. Synchronization in Chaotic Systems. Physical Review Letters,1990,64(8):821-824
    [90]牛大海.几种自治系统的混沌同步方法研究:[大连理工大学硕士学位论文].大连:大连理工大学,2007,16-19
    [91]Carroll T L. Cascading Synchroniztion Chaotic Systems. Physica D,1993, 67(2):126-140
    [92]Kocarev L, Parlitz U. General approach for chaotic synchronization with application to communication. Physical Review Letters,1995,74(25): 5028-5031
    [93]刘明华.一类新超混沌系统的产生、同步及其应用:[华南理工大学博士学位论文].广州:华南理工大学,2011,17-19
    [94]刘扬正,姜长生,林长圣.一类四维混沌系统切换混沌同步.物理学报,2007,56(2):707-712
    [95]Liu Y, Jiang C, Lin C, et al. Chaos synchronization between two different 4D hyperchaotic Chen systems. Chinese Physics,2007,16(3):660-665
    [96]刘扬正,林长圣,姜长生.新的四维超混沌Liu系统及其混沌同步.电子科技大学学报,2008,37(2):235-296
    [97]朱志宇.基于反馈精确线性化的混沌系统同步控制方法.物理学报,2006,55(12):6248-6252
    [98]Hua C, Guan X. Synchronization of chaotic systems based on adaptive observer design. Chinese Physics,2004,13(9):1391-1395
    [99]Celikovsky S, Chen G. Secure synchronization of a class of chaotic systems from a nonlinear observer approach. IEEE Transactions on Automatic Control, 2005,50(1):76-82
    [100]Jiang G P, Tang W K S, Chen G. A State-Observer-Based Approach for Synchronization in Complex Dynamical Networks. IEEE Transactions on Circuits and Systems I:Regular Papers,2006,53(12):2739-2745
    [101]Lv L, Zhang Q L, Guo Z A. Backstepping synchronization of uncertain chaotic systems by a single driving variable. Chinese Physics B,2008,17(2):498-502
    [102]Njah A N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dynamics,2010,61(1-2):1-9
    [103]Sahab A R, Ziabari M T, Alamdari S A S. Chaos Control via Optimal Generalized Backstepping Method. International Review of Electrical Engineering,2010,5(5):2129
    [104]Zemouche A, Boutayeb M. Nonlinear-Observer-Based H∞ Synchronization and Unknown Input Recovery. IEEE Transactions on Circuits and Systems I: Regular Papers,2009,56(8):1720-1731
    [105]Zheng H Q, Jing Y W. Robust H∞ observer-based control for synchronization of a class of complex dynamical networks. Chinese Physics B,2011,20(6): 060504
    [106]刘锋,穆肇骊,王新梅等.混沌的同步及其在保密通讯中的应用.西安电子科技大学学报(自然科学版),2000,27(4):515-536
    [107]Hu J, Chen S, Chen L. Adaptive control for anti-synchronization of Chua's chaotic system. Physics Letters A,2005,339(6):455-460
    [108]Li W, Chen X, Shen Z. Anti-synchronization of two different chaotic systems. Physica A,2008,387(14):3747-3750
    [109]Elabbasy E M, El-Dessoky M M. Adaptive anti-synchronization of different chaotic dynamical systems. Chaos, Solitons and Fractals,2009,42(4): 2174-2180
    [110]El-Dessoky M M. Anti-synchronization of four scroll attractor with fully unknown parameters. Nonlinear Analysis:Real World Applications,2010, 11(2):778-783
    [111]Al-sawalha M M, Noorani M S M, Al-dlalah M M. Adaptive anti-synchronization of chaotic systems with fully unknown parameters. Computers & Mathematics with Applications,2010,59(10):3234-3244
    [112]Fu G, Li Z. Robust adaptive anti-synchronization of two different hyperchaotic systems with external uncertainties. Communications in Nonlinear Science and Numerical Simulation,2011,16(1):395-401
    [113]Mainieri R, Rehacek J. Projective synchronization in three-dimensioned chaotic systems. Physical Review Letters,1999,82(1):3042-3045
    [114]陈向荣,刘崇新,李永勋.基于非线性观测器的一类分数阶混沌系统完全状态投影同步.物理学报,2008,57(3):1453-1457
    [115]Park J H. Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. Journal of Computational and Applied Mathematics,2008,213(1):288-293
    [116]Li C. Tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance. Communica-tions in Nonlinear Science and Numerical Simulation,2012,17(1):405-413
    [117]Zhou P, Zhu W. Function projective synchronization for fractional-order chaotic systems. Nonlinear Analysis:Real World Applications,2011,12(2): 811-816
    [118]Fu G. Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance. Communica-tions in Nonlinear Science and Numerical Simulation,2012,17(6):2602-2608
    [119]Yu Y, Li H X. Adaptive generalized function projective synchronization of uncertain chaotic systems. Nonlinear Analysis:Real World Applications,2010, 11(4):2456-2464
    [120]Li Z, Zhao X. Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters. Nonlinear Analysis:Real World Applications,2011,12(5):2607-2615
    [121]Wu X, Lu H. Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidentical nodes. Communications in Nonlinear Science and Numerical Simulation, 2012,17(7):3005-3021
    [122]Sudheer K S, Sabir M. Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters. Communications in Nonlinear Science and Numerical Simulation,2010,15(12):4058-4064
    [123]Utkin V. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control,1977,22(2):212-222
    [124]关新平,范正平,陈彩莲等.混沌控制及其在保密通信中的应用.北京:国防工业出版社,2002,22-330
    [125]Dadras S, Momeni H R. Adaptive sliding mode control of chaotic dynamical systems with application to synchronization. Mathematics and Computers in Simulation,2010,80(12):2245-2257
    [126]Pourmahmood M, Khanmohammadi S, Alizadeh G. Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Communications in Nonlinear Science and Numerical Simulation,2011,16(7):2853-2868
    [127]范金锁,张合新,王桂明等.一种高阶滑模控制算法的改进及应用.控制与决策,2011,26(9):1436-1440
    [128]李鹏.传统和高阶滑模控制研究及其应用:[国防科学技术大学博士学位论文].长沙:国防科学技术大学,2011,20-21
    [129]Rodriguez A, Leon J D, Fridman L. Quasi-continuous high-order sliding-mode controllers for reduced-order chaos synchronization. International Journal of Non-Linear Mechanics,2008,43(9):948-961
    [130]Jiang Z P. A note on chaotic secure communication systems. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2002,49(1):92-96
    [131]Li Z, Xu D. A secure communication scheme using projective chaos synchronization. Chaos, Solitons and Fractals,2004,22(2):477-481
    [132]高金峰,廖旎焕,梁占红.一种超混沌混合保密通信方案.电路与系统学报,2005,10(4):128-130
    [133]禹思敏,丘水生.一种多级混沌调制保密通信系统.信息安全与通信保密,2000,22(4):18-21
    [134]An X L, Yu J N, Li Y Z, et al. Design of a new multistage chaos synchronized system for secure communications and study on noise perturbation. Mathema-tical and Computer Modelling,2011,54(1-2):7-18
    [135]Hua C, Yang B, Ouyang G, et al. A new chaotic secure communication scheme. Physics Letters A,2005,342(4):305-308
    [136]Zaher A A, Abu-Rezq A. On the design of chaos-based secure communication systems. Communications in Nonlinear Science and Numerical Simulation, 2011,16(9):3721-3737
    [137]Feki M. An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons and Fractals,2003,18(1):141-148
    [138]Chen M, Zhou D, Shang Y. A sliding mode observer based secure communicat-ion scheme. Chaos, Solitons and Fractals,2005,25(3):573-578
    [139]王兴元,段朝锋.基于线性状态观测器的混沌同步及其在保密通信中的应用.通信学报,2005,26(6):105-111
    [140]Hyun C H, Park C W, Kim J H, et al. Synchronization and secure communica-tion of chaotic systems via robust adaptive high-gain fuzzy observer. Chaos, Solitons and Fractals,2009,40(5):2200-2209
    [141]李辉.混沌数字通信.北京:清华大学出版社,2006,7-8
    [142]Devaney R L. An introduction to chaotic dynamical systems. NewYork: Addison Wesley publishing company,1987
    [143]陈保颖.三维多项式自治系统的混沌分类:[中山大学博士学位论文].中山:中山大学,2010,4-6
    [144]刘崇新.非线性电路及应用.西安:西安交通大学出版社,2007,174-269
    [145]黄霞.几类非线性系统的混沌同步与控制:[东南大学博士学位论文].南京:东南大学,2008,15-16
    [146]黎日松.集值映射的拓扑遍历性、传递性与混沌.南京大学学报数学半年刊,2008,25(1):114-121
    [147]王诗斌,谢胜曙.混沌及混沌电路的研究.国外电子测量技术,2004,5:26-28
    [148]百度百科.李雅普诺夫稳定性.http://baike.baidu.com/view/690876.htm, 2012-06-02
    [149]齐晓慧.“李雅普诺夫稳定性理论”的教学研究.电力系统及其自动化学报,2005,17(3):91-94
    [150]闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用.山东大学学报(工学版),2007,37(1):51-55
    [151]Wang B, Shi P, Karimi H R, et al. Robust H∞ synchronization of a hyper-chaotic system with disturbance input. Nonlinear Analysis:Real World Applications,2013,14(3):1487-1495
    [152]Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field. New York:Springer-Verlag,1983,151
    [153]Maggio G M, Feo O D, Kennedy M P. Nonlinear analysis of the Colpitts oscillator and applications to design. IEEE Transactions on Circuits and System I:Fundamental Theory and Applications,1999,46(9):1118-1130
    [154]包伯成,刘中,许建平等.基于Colpitts振荡器模型生成的多涡卷超混沌吸引子.物理学报,2010,59(3):1540-1548
    [155]包伯成,徐强,徐煜明等.三维多涡卷Colpitts混沌系统及其数字硬件实现.电路与系统学报,2011,16(1):69-73
    [156]周武杰,禹思敏,徐伟.n×m涡卷混沌吸引子的研究及硬件实现.量子电子学报,2009,26(6):715-721
    [157]Zhang Z W, Li H. The Chen's synchronization based on state observer. Computer Simulation,2005,26(4):198-201
    [158]Li H M, Li C L. Switched generalized function projective synchronization of two identical/different hyperchaotic systems with uncertain parameters. Physica Scripta,2012,86:045008
    [159]周平,危丽佳,程雪峰.只有一个非线性项的超混沌系统.物理学报,2009,58(8):5201-5208
    [160]百度百科.混沌通信.http://baike.baidu.com/view/944815.htm,2008-10-16
    [161]闵富红,王恩荣.超混沌Qi系统的错位投影同步及其在保密通信中的应用.物理学报,2010,59(11):7657-7662

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700