表面活性剂的QSPR、界面吸附和自组装理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大分子体系的理论计算一直是具有挑战性的研究领域,尤其是表面活性剂大分子体系的理论研究具有重要意义。运用量子化学方法研究表面活性剂的定量结构-性质关系,可以帮助人们进一步了解表面活性剂的电子结构与表面活性剂性质之间的结构关系,从而有目地的修饰表面活性剂的结构、设计并合成新型的表面活性剂。运用量子化学方法研究表面活性剂与溶剂分子间的相互作用和表面活性剂的自组装等,有利于分析表面活性剂在界面吸附时的结构变化以及与溶剂分子间相互作用的实质。论文用量子化学方法研究表面活性剂与溶剂分子间的相互作用,不仅能带动量子化学方法在表面活性剂领域中的应用,而且能从理论上为更好地解释表面活性剂在气液界面上的吸附及自组装特性提供理论参考。
     浊点(Cloud Point,CP)是非离子表面活性剂的一个重要参数,它在非离子表面活性剂的实际应用中起着很重要的作用。因此,建立表面活性剂的分子结构与其浊点的定量-结构关系(quantitative structure-property relationship,QSPR),根据QSPR来设计、筛选或预测新化合物的浊点,将会对非离子表面活性剂的应用起重要的指导作用。本研究用反映表面活性剂分子空间结构信息的拓扑学参数:价连接性指数0J和价键连通性指数χv,以及0级Kier & Hall指数KH0作为描述符,建立起了非离子表面活性剂浊点与分子结构的定量结构-性质关系(QSPR)模型,模型复相关系数R2=0.962,明显好于目前所报到的QSPR模型。亲水亲油平衡(Hydrophile-Lipophile Balance, HLB)值是用来定量表示表面活性剂双亲性质相对大小的经验指标。本研究用反映分子微观电子结构和空间形态方面的量子化学参数作为主要描述符建立了两种阴离子表面活性剂亲水亲油平衡(HLB)值的定量结构-性质关系模型,两种模型复相关系数R2均大于0.99。
     以常见的烷基硫酸盐为例,探讨了量子化学方法在表面活性剂领域的应用。采用量子化学方法中的密度泛函理论,对CH3OSO3? (H2O)n(n=1-8)存在的所有几何构型进行了全优化。用结合能二阶差分的方法分析不同水合物的稳定性。结果表明CH3OSO3?至少与六个水分子相互作用形成稳定结构的水合物。对CH3(CH2)mOSO3? (H2O)6(m=9)水合物的水合层面积进行了计算。首先对该水合物用B3LYP/6-31+G(d)方法优化,然后计算水合层-SO4? (H2O)6的体积,然后再根据体积计算得到水合层半径为4.27 ?,其横截面积为57.2 ?2,计算结果与文献中的实验结果非常接近。
     C6F14、C8F18及CF3CH2OH (三氟乙醇,TFE)等氟碳化合物在低压蒸汽条件下具有表面活性,被称为挥发性表面活性剂。蒸汽氟碳表面活性剂的发现对于从原子水平了解这一现象的物理学提出了理论挑战。目前关于挥发性表面活性剂的实验研究及理论研究很少。本研究运用量子化学方法研究挥发性表面活性剂的分子结构、与溶剂分子间相互作用及自组装。通过对三氟乙醇的理论研究,发现:(1)三氟乙醇不论是cis构型还是trans构型,水作为质子受体形成的水合物比水作为质子供体形成的水合物稳定。三氟乙醇单体的焓、自由能及恒容热容与温度均成很好的线性关系;(2)三氟乙醇多聚体以氢键的形式相互作用。生成多聚体的过程是放热过程。在25℃时,0-6.66kPa压力下三氟乙醇自组装的可能性很小,主要以单体形式存在,这一结论与实验结果一致。而且在293.15-363.15K温度范围及对应的饱和蒸汽压下△G>0,多聚体不能自发形成,即三氟乙醇不能自组装。为了研究CF3CH2OH的表面活性,从理论上研究了CF3CH2OH与水的相互作用。结果表明在常温常压下,CF3CH2OH至少和三个水分子能自发形成水合物。此水合物在25℃,3-90kpa范围内进行热力学分析发现:在25℃,P<40kPa时,?G>0,说明水合物不能自发形成。当P>40kPa,?G<0,水合物可以自发形成。说明CF3CH2OH在40kpa低压条件下,可以自发吸附在水的表面,降低水的表面张力。TFE和水分子之间的相互作用为放热过程。
     通过对C6F14和C8F18氟碳化合物的理论研究,结果表明:(1) C6F14和C8F18的焓、自由能、熵及恒容热熔均与温度和压强呈线性关系;从焓变、熵变及自由能分析,C6F14和C8F18在低温低压条件下分子间的相互作用增强。二聚化、三聚化和四聚化是放热过程。(2) C6F14和C8F18的二聚体、三聚体及四聚体均在最低温度和最低饱和蒸气压时△G最小,进一步说明C6F14和C8F18作为挥发性表面活性剂,在低温低蒸汽压条件下多聚体更容易形成;(3) C8F18单体和CH3CH2OH分子之间的相互作用很弱(属于很弱的氢键)。C8F18在CH3CH2OH界面上吸附是吸热过程。
Theoretical calculation of macromolecules has been challenging area of research, especially in surfactant system. In this paper, quantitative structure-property relationship (QSPR) for surfactants is investigated. This helps better understanding of the relationship between the electronic structure of surfactant and properties of surfactants, and modifies structure of surfactant as well as designs and synthesizes a new type of surfactant. Then, interactions of surfactant with solvents and adsorption of surfactant at the interface were discussed with quantum chemistry method. It will not only provide theoretical reference for explaining the adsorption of surfactant at the interface, but also enlarge the application of the quantum chemistry method in surfactant area.
     The cloud point is an important property of nonionic surfactants and plays an important role in their applications. A QSPR for cloud point would allow us to sift and predict the cloud point of new compounds. Using the quantum chemical parameters, topological indexes and physical chemistry parameters as descriptors, a QSPR for the cloud point of nonionic surfactants has been found for nonionic surfactants. The correlation coefficient of multiple determination is as high as 0.962. The obtained model is significantly better than the previous. Two QSPR models for the hydrophile-lipophile balance (HLB) value of anionic surfactants were established by using the quantum chemical parameters for the first time. The correlation coefficient (R2) is larger than 0.993.
     This paper, taking the most commonly used alkyl sulfate surfactant for example, explored quantum chemical methods in the field of surfactants. The interaction of alkyl sulfate surfactant with water molecules was studied by using DFT. It was revealed for the first time that alkyl sulfate surfactant formed stable hydrate with six water molecules when it was saturation adsorption at the air - water interface. The area of hydration for CH3(CH2)mOSO 3? (H2O)6(m=9) was investigated. The calculated results showed that area of the hydrophilic group is 57.2 ?2, which is similar to the experimental results.
     The volatile fluorocarbon surfactants( such as CF3CH2OH, C6F14 and C8F18) need not be dissolved in liquid,only cover the liquid surface at low vapor pressure with the result of reducing the surface tension of a liquid. In this work, we aim to study the self-association of volatile surfactant by using quantum chemical method. We have investigated the interactions between volatile surfactant and the interaction of volatile surfactant with solvents. The main results were obtained through theoretical study of CF3CH2OH:(1)For configurations of cis-TFE and trans-TFE, hydrate in which water is as proton acceptor is more stable than the hydrate in which water is as proton donor. For TFE monomer, enthalpy, Gibbs free energy and Constant volume heat capacity have linear relationship with temperature. (2)TFE molecules link to each other through hydrogen bonds. The formation of polymer is an exothermic process. TFE exists mainly in the form of monomer at 25℃with the pressure 0-6.66kPa. This result is consistent with the experiment results. Moreover, the formation of dimers is nonspontaneous. And the TFE is little associated at different vapor pressure data in the ranges 293.15-363.15K. (3)TFE can interact with at least three water molecules at 298.15K and 1 atmosphere. The interaction of TFE with water molecules is an exothermic process. The interaction of TFE with three water molecules at 298.15K in the pressure range 3-90kpa is discussed. The calculated results showed that the values of ?G are positive at 298.15K and P<40kpa, indicting that adsorption of TFE at the air -water interface is nonspontaneous. The values of ?G are negative at 298.15K and P>40kpa, indicting that adsorption of TFE clusters at the air -water interface is spontaneous.
     The main results were obtained through theoretical study of C6F14 and C8F18. (1) For C6F14 and C8F18 monomer, enthalpy, Gibbs free energy and constant volume CV have linear elationship with temperature. From the analysis of the enthalpy change, entropy change and free Energy change, Intermolecular interactions for C6F14 and C8F18 were enhanced at lower temperature and pressure. Polymerization process is an exothermic process. (2)The Dimers, trimers and tetramers for C6F14 and C8F18 have the smallest△G value at the lowest temperature and the lowest saturated vapor pressure. This further reveals that the formation of polymerization is easier at lower temperature and the lower saturated vapor pressure. (3) C8F18 and CH3CH2OH have very weak interactions. Adsorption of C8F18 at the surface of CH3CH2OH is an endothermic process.
引文
1. Hansch C, Quinlan John E, Lawrence Gary L. Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids . J Org Chem,1968, 33 (1): 347–350
    2. Becher P, Hydrophile-Lipophile Balance: History and Recent Developments Langmnir Lecture J Dispersion Sci Technol, 1984,5(1): 81-96
    3. Ravey J C, Gherbi A, Stebe M, Comparative study of fluorinated and hydrogenated nonionic surfactants. I. Surface activity properties and critical concentrations.J Prog Colloid Polym Sci, 1988, 76: 234-241
    4. Puvvada S, Blankschtein D. Molecular-thermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions. I. Application to nonionic surfactants. J Chem Phys, 1990, 92(6): 3710
    5. Nagarajan R, Ruchenstein E. Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir, 1991, 7(12): 2934-2969
    6. Huibers Paul D T, Lobanov Victor S, Katritzky Alan R, et al. Prediction of Critical Micelle Concentration Using a Quantitative Structure?Property Relationship Approach. 1. Nonionic Surfactants. Langmuir, 1996, 12(6): 1462-1470
    7. Huibers Paul D T, Lobanov Victor S, Katritzky Alan R, et al. Prediction of Critical Micelle Concentration Using a Quantitative Structure–Property Relationship Approach. J Colloid Interface Sci, 1997, 187(1): 113-120
    8. Rosen J, Surfactants and Interfacial Phenomena, 2nd, Wiley, New York, 1989.
    9. Pan Y, Jiang J C, Wang R, et al. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices. Journal of Hazardous Materials. 2008, 157(2-3): 510-517
    10. Svante W, Michael S, Lennart E. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 2001, 58(2): 109-130
    11. Toropov A A, Toropova A P. QSPR modeling of stability of complexes of adenosine phosphate derivatives with metals absent from the complexes of the teaching access. Russian Journal of Coordination Chemistry. 2001, 27(8): 574-578
    12.戴猷元,秦炜,张瑾.溶剂萃取体系定量结构-性质关系[M].北京:化学工业出版社, 2005: 1-8
    13. Karelson M, Lobanov V S, Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem Rev, 1996, 96(3): 1207-1044
    14. Blum D J W, Speece R E. Determining chemical toxicity to aquatic species. Environ Sci Technol, 1990, 24(3): 284-287
    15. Donaldson W T. The role of property-reactivity relationships in meeting the EPA's needs for environmental fate constants. Environ Toxi Chem, 1992, 11(7): 887-891
    16. Garrido, Nuno M, Queimada, Antnio J, Jorge, Miguel, et al. 1-Octanol/Water Partition Coefficients of n-Alkanes from Molecular Simulations of Absolute Solvation Free Energies. J Chem Theory Comput, 2009, 5 (9): 2436-2446
    17. Rai, Neeraj, Wagner, Alexander J, Ross, Richard B, et al. Application of the TraPPE Force Field for Predicting the Hildebrand Solubility Parameters of Organic Solvents and Monomer Units. J Chem Theory Comput, 2008, 4 (1): 136-144
    18. Modarresi, Hassan, Dearden, John C and Modarress, Hamid. QSPR Correlation of Melting Point for Drug Compounds Based on Different Sources of Molecular Descriptors. J Chem Inf Model, 2006, 46 (2): 930–936
    19.王连生,韩朔睽.分子结构、性质与活性[M].北京:化学工业出版社, 1997. 1-3
    20. Balaban, Alexandru T. Can topological indices transmit information on properties but not on structures? Journal of Computer-Aided Molecular Design, 2005, 19(9/10): 651-660
    21. Liu J Z, Yang L, Li Y, et al. Prediction of plasma protein binding of drugs using Kier - Hall valence connectivity indices and 4D-fingerprint molecular similarity analyses. Journal of Computer-Aided Molecular Design. 2005, 19(8): 567-583
    22. Butina D. Performance of Kier - Hall E-state descriptors in quantitative structure activity relationship (QSAR) studies of multifunctional molecules. Molecules, 2004, 9(12): 1004-1009
    23.苑世领.两亲分子自组装体系的分子模拟[D].山东:山东大学, 2003.
    24.陈凯先,蒋华良,嵇汝运.计算机辅助药物设计-原理、方法及应用[M].上海:上海科出版社, 2000
    25.王连生,韩朔睽.有机物定量结构-性质相关[M].北京:中国环境科学出版社, 1992.
    26.陈艳.新的价连接性指数与脂肪酯、脂肪酮的溶解度及疏水参数的预测[J].南京工业大学学报, 2005, 27(4): 41-43
    27.倪才华,冯志云,李良超.不饱和烃的理化性质与分子拓扑指数的关系研究[J].化学学报, 1998, 56(3): 359-363
    28. Wang Z W, Li G Z, Mu J H, et al. Quantitative Structure-Property Relationship on Prediction of Surface Tension of Nonionic Surfactants. Chin Chem Lett, 2002, 13(4): 363-366
    29. Wang Z W, Feng J L, Wang H J, et al. Effectiveness of Surface Tension Reduction by Nonionic Surfactants with Quantitative Structure-Property Relationship Approach. J Disp SciTech. 2005, 26(4): 441-447
    30. Wang Z W, Feng J L, Wang Z N, et al. Quantitative Structure-Property Relationship on Prediction of the Interaction Parametersδ2t of Organic Compounds. J Disp Sci Tech. 2006, 27(1): 11-14
    31. Yuan S L, Cai Z T, Xu G Y, et al. Prediction of Cloud Point of Nonionic Surfactants Using Quantitative Structure-Property Relationship Method. Acta Phys -Chim Sin, 2003, 19(4):334-337
    32. Li Y M, Xu G Y, Luan Y X, et al. Property Prediction on Surfactant by Quantitative Structure-Property Relationship: Krafft Point and Cloud Point. J Disp Sci Tech, 2005, 26(6): 799 -808
    33. Huibers P D T, Shah D O, Katritzky A R. Predicting Surfactant Cloud Point from Molecular Structure. J Colloid Interface Sci, 1997, 193(1): 132-136
    34. DUARTE L J N, CANSELIER J P. Cloud point, critical micelle concentration and HLB relationships for alcohol ethoxylates. Surfactants.&Detergents, 2005, (3): 2-5
    35. Gu T, Galera-G?mez P A. The effect of different alcohols and other polar organic additives on the cloud point of Triton X-100 in water. Colloid Surf A, 1999, 147(3) : 365-370
    36.莫小刚,刘尚营.非离子表面活性剂浊点的研究进展.化学通报. 2001, 64(8): 483-487
    37.赵国玺.表面活性剂物理化学(修订版).北京:北京大学出版社, 1991. 75-80
    38. Gang Chen, Interaction decay of nonionic surfactants at water surfaces.Chemical Physics Letters, 2003, 376(6): 758-760
    39. Bresme F, Faraudo J. Temperature dependence of the structure and electrostatics of Newton black Films: insights from computer simulations. Molecular Simulation, 2006, 32(12-13): 1103-1112
    40. Hector D, Margarita R. Mixtures of sodium dodecyl sulfate /dodecanol at the air/water interface by computer simulations. Langmuir, 2005, 21(16): 7257-7262
    41. Hector D. Computer simulation studies of surfactant monolayer mixtures at the water/oil interface: charge distribution effects. Journal of Colloid and Interface Science, 2004, 274(2): 665-672
    42. Li Y M, Yuan S L, Xu G Y. Applications of computer simulation in the study of surfactant system. Wuli Huaxue Xuebao, 2003, 19(10): 986-992
    43. Hector D. Computer Simulations of Surfactant Mixtures at the Liquid/Liquid Interface. Journal of Physical Chemistry B, 2002, 106(23): 5915-5924
    44. Schweighofer Karl J, Essmann Ulrich, Berkowitz Max. Simulation of Sodium Dodecyl Sulfate at the Water-Vapor and Water-Carbon Tetrachloride Interfaces at Low Surface Coverage. Journal of Physical Chemistry B, 1997, 101(19): 3793-3799
    45. Dominguez H and Berkowitz ML.Computer Simulations of Sodium Dodecyl Sulfate at Liquid/Liquid and Liquid/Vapor Interfaces. J Phys Chem B, 2000, 104(22): 5302-5308
    46.卫一龙,戎宗明,刘洪来,胡英.直链型非离子表面活性剂在油水界面吸附的动态Monte Carlo模拟.化工学报, 2005, 56(5): 894-899
    47. Dong F L, Li Y, Zhang P. Mesoscopic simulation study on the orientation of surfactants adsorbed at the liquid/liquid interface. Chemical Physics Letters, 2004, 399(3): 215-219
    48. RYSZARD ZIELI?SKI, HENRYK SZYMUSIAK. Structure of Stable Double–Ionic Model Water Clusters of Quaternary Alkyl ammonium Surfactants with Some Monovalent Counterions as Derived by the DFT Method. International Journal of Quantum Chemistry, 2004, 99(5): 724-734
    49.颜肖慈,罗明道,曾晖,张高勇.不同疏水基表面活性剂溶剂化的电子结构特征.化学学报, 2004, 62(19): 1948-1950
    50. Pople J A著.分子轨道近似方法理论[M].北京:科学出版社, 1978
    51.封继康.基础量子化学原理[M].北京:高等教育出版社, 1987
    52. Hohenberg P, Kohn W. Inhomogenous Electron Gas. Phys Rev B, 1964, 136(3): 864-869
    53.徐光宪,黎乐民.量子化学(基本原理和从头计算法)[M].北京:科学出版社, 1984
    54.林梦海,林银钟.结构化学[M].北京:科学出版社, 2004
    55.王志中,李向东.半经验分子轨道理论与实践[M].北京:科学出版社, 1981
    56.肖慎修,王崇愚,陈天郎.密度泛函理论的离散变分方法在化学核材料物理学中的应用[M].北京:科学出版社, 1998.
    57.仇缀百.药物设计学[M].北京:高等教育出版社, 1999
    58.陈凯先,蒋华良,裕汝运.计算机辅助药物设计——原理、方法及应用[M].上海:上海科学技术出版社, 2000
    59. Parr R G, Yang W. Density-functional theory of atoms and molecules. Oxford: Oxfor Sciencd, 1989.
    60. Foresman J B, Frisch E, Exploring Chemistry with Electronic Structure Methods 2nded. Gaussian Inc: Pittsburgh 1996.
    61. Krishnan R, Frish M J, Pople J A. Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J Chem Phys. 1980, 72(7): 4244-4245
    62. Perdew John P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B, 1986, 33(2): 8822-8824
    63. Lee C, Yang W, Parr R G. Development of the Colle-Salvetti orrelation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37(2): 785-789
    64. Becke A D. Density-functional thermochemistry, III exchange. J Chem Phys, 1993, 98(7): 5648-5652
    65. Hehre W J, Stewart R F, Pople J A. Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. J Chem Phys, 1969, 51(6): 265-272
    66. Collins J B, Schleyer P v R, Binkley J S, et al. Self-Consistent Molecular Orbital Methods 17: Geometries and binding energies of second-row molecules-A comparison of three basis sets. J Chem Phys, 1976, 64(12): 5142-1550
    67. Binkley J S, Pople J A, Hehre W J. Self-Consistent Molecular Orbital Methods 21: Small Split-Valence Basis Sets for First-Row Elements. J Am Chem Soc, 1980, 102(3): 939-944
    68. Ditchfield R, Hehre W J, Pople J A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J Chem Phys, 1971, 54(2): 724-728
    69. McLean A D, Chandler G S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys, 1980, 72(10): 5639-5648
    70. Nyden M R, Petersson G A. Complete basis set correlation energies I: the asymptotic convergence of pair natural orbital expansions. J Chem Phys, 1981, 75(4): 1843-1852
    71. Ransil B J. Studies in molecular structure. IV. Potential curve for the interaction of two Helium atoms in single- configuration LCAO-MO-SCF approximation. J Chem Phys, 1961, 34(6): 2109-2118
    72. Boys S F, Bernadi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys, 1970, 19(4):533-566
    73. Mayer I. Towards a“chemical”Hamiltonian. Int J Quantum Chem, 1983, 23(2): 341-363
    74. Rosen M J. Surfactants and Interfacial Phenomena. New York: Wiley, 1989: 192-193
    75.牟建海,毛宏志,肖洪地,李英,李干佐.聚乙二醇对非离子十二烷基聚氧乙烯聚氧丙烯醚浊点的影响[J].化学物理学报, 2001, 14(1): 119-123
    76.陈希孺.概率论与数理统计[M].北京:中国科学技术出版. 1992: 260-262
    77. Shinoda K, Hutchinson E. Pseudo-Phase Separation Model for Thermodynamic Calculations on Micellar Solutions. J Phys Chem, 1962, 66(4): 577-582
    78. Hato M, Shinoda K. Krafft points of calcium and sodium dodecylpoly(oxyethylene) sulfates and their mixtures. J. Phys. Chem. 1973, 77(3): 378-381
    79.夏纪鼎,倪永全主编.表面活性剂和洗涤剂化学与工艺学.北京:中国轻工业出版社. 1997. 18, 371-372
    80. Griffin W C. Classification of surface-active agents by HLB. J Soc Cosmet Chem, 1949, (1): 311-326
    81. Rosen M J. Surfactants and Interfacial Phenomena [M], 2nd, New York: John Wilet and Sons. 1989. 326-329
    82.沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社, 1997. 358-366
    83.周家华,崔英德.表面活性HLB值的分析测定与计算I[J].精细石油化工,2001(2): 11-14
    84.周家华,崔英德.表面活性HLB值的分析测定与计算II [J].精细石油化工,2001(4):38-41
    85.夏纪鼎,倪永全.表面活性剂和洗涤剂化学与工艺学[M].北京:中国轻工业出版社, 1997. 4
    86. Davies J T. A quantitative kinetic theory of emulsion type I. Physical chemistry of the emulsifying agent. Proc Int Congr Surf Act, 1957, (1): 426-438
    87. Davies J T and Rideal E K. Interfacial Phenomena, New York: Academic Press, 1961. 371
    88. Lin I J, Friend J P and Zimmels Y. The effect of structural modifications on the hydrophile-lipophile balance of ionic surfactants. J. Colloid Interface Sci. 1973, 45 (2): 378-385
    89. Lin I J and Marszall L. CMC, HLB, and effective chain length of surface-active anionic and cationic substances containing oxyethylene groups. J. Colloid Interface Sci. 1976, 57 (1): 85-93
    90. I.J. Lin and Kevker M. Colloid and Interface Science, New York: Academic Press, 1976: 431
    91. Sowada R and McGowan J C. Calculation of hydrophile-lipophile balance (HLB) group numbers for some structural units of emulsifying agents. Tenside Surf Det, 1992, 29 (2): 109-113
    92. Guo X W, Rong Z M, Ying X G. Calculation of hydrophile–lipophile balance for polyethoxylated surfactants by group contribution method, J Colloid Interface Sci, 2006, 298(1): 441-450
    93. Ash M, Ash I. Encyclopedia of Surfactants, Chemical Publishing, New York, 1980.
    94.于涛,刘先军,丁伟,等.阴离子表面活性剂HLB值与结构关系的拓扑化学研究[J].日用化学工业. 2004, 34(6): 341-343
    95.张秀媚,曹力,赵凤廉.胶束增溶分光光度法原理与应用[M].哈尔滨:哈尔滨工程大学出版社. 1994. 47
    96. Chen M L, Wang Z W, Wang H J, et al. Investigation of Adsorption of Surfactant at the Air-Water Interface with Quantum Chemistry Method. China Sci Bull, 2007, 52 (11): 1451-1455
    97.张玉,武晓洁.阴离子表面活性剂的HLB值与端基和碳原子数的关系.内孟古石油化工, 2004, 30(4): 4
    98. Munoz Mara A, Galan Manuel, Carmona Carmen, Balon Manuel. Hydrogen-bonding interactions between 1-methylindole and alcohols. Chem Phys Lett. 2005, 401(1): 109-114
    99. Christian T, Daniel B A, Handy N C. Predicting the binding energies of H-bonded complexes: A comparative DFT study. Phys Chem Chem Phys, 1999, 1(17): 3939-3947
    100. Alavi S, Thompson D L. Hydrogen bonding and proton transfer in small hydroxyl ammonium nitrate clusters: A theoretical study. J Chem Phys, 2003, 119(8): 4274-4283
    101. Cai Z L, Jeffrey R R. The First Singlet (n, *) and ( , *) Excited States of the Hydrogen-Bonded Complex between Water and Pyridine. J Phys Chem A, 2002, 106(37): 8769-8778
    102. Zhang B L, Cai Y, Mu X L, et al. Multiphoton ionization and density functional studies of pyrimidine–(water)n clusters. J Chem Phys, 2002, 117(8): 3701-3711
    103. Ahmed D, Ludwik A, Guido M. Density Functional Theory Study of the Hydrogen-Bonded Pyridine-H2O Complex: A Comparison with RHF and MP2 Methods and with Experimental Data. J Phys Chem A, 2000, 104(10): 2112-2119
    104. Oleg V S, Leonid G., Jerzy L. Does the Hydrated Cytosine Molecule Retain the Canonical Structure?A DFT Study. J Phys Chem B, 2000, 104(22): 5357-5361
    105.蓝蓉,李浩然,韩世钧. DFT和热力学研究氢键协同效应及关联HNMR的影响[J].化学学报, 63(14): 1288-1292
    106.马文瑾,武海顺. AlmN2(m=1~8)团簇结构与稳定性的研究[J].物理化学学报, 2004, 20(3): 290-295
    107.贾建锋,武海顺,焦海军. (BN)n团簇结构与稳定性[J].化学学报, 2003, 61(5): 653-659
    108.丁迅雷.金团簇上小分子吸附的第一性原理研究[D]: [博士学位论文].合肥:中国科学技术大学化学系, 2004: 36-40
    109. M J Frisch et al, GAUSSIAN 03, Revision C. 01, Gaussian, Inc, Wallingford, CT, 2004
    110.沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社, 1997: 333-336
    111. Rosen M J. Surfactants and Interfacial Phenomena. New York: Wiley, 1987: 210
    112.周公度,段连云编著.结构化学基础(第3版).北京:北京大学出版社, 2003: 225
    113. Dominguez H and Berkowitz M L. Computer Simulations of Sodium Dodecyl Sulfate at Liquid/Liquid and Liquid/Vapor Interfaces. J Phys Chem B, 2000, 104(22): 5302-5308
    114.曾毓华.氟碳表面活性剂.北京:化学工业出版社. 2001, 25-27
    115. Song A X, Dong S L, Hao J C, et al. Functions of fluorosurfactants 1: Surfaceactives-improved and vesicle formation of the short-tailed chain sulfonate salt mixed with a fuorosurfactant. Journal of Fluorine Chemistry, 2005, 126(3): 1266-1273
    116.周晓东.含氟表面活性剂的结构、特性及应用研究.有机氟工业, 2004, (2): 14-16
    117. Stoilov Yuri Yu. Fluorocarbons as Volatile Surfactants. Langmuir, 1998, 14 (20): 5685-5690
    118. Stoilov, Yu Yu. Oscillation of evaporating liquids and ispalator paradoxes. Physics-Uspekhi (Translation of Uspekhi Fizicheskikh Nauk). 2000, 43(1): 39-53
    119. Riess Jean G. Blood substitutes and other potential biomedical applications of fluorinated colloids. J Fluorine Chem, 2002, 114(1): 119-126
    120. Svetlin Mitov, Alexander Panchenko, Emil Roduner. Comparative DFT study of non-uorinated and peruoronated. Chem Phys Lett, 2005, 402(2): 485-490
    121. El-Taher S. Ab initio and DFT investigation of fluorinated methyl hydroperoxides: Structures, rotational barriers,and thermochemical properties, J Fluorine Chem, 2006, 127(1): 54-62
    122. Allayarov Sadulla R, Konovalikhin Sergey V, Olkhov Yurii A, et al. Degradation of g-irradiatedlinear perfluoroalkanes at high dosage. J Fluorine Chem, 2007, 128(6): 575-586
    123. Joaquin L, Jorge R G. Internal rotation of fluorinated butane compounds -The maximum hardness principle and carbon-carbon rotational barrier. J Fluorine Chem, 2006, 127(3): 373-376
    124. Koiwai R, Kawanowa H, Gotoh Y, Souda R. Characterization of water, ethanol, and1-butanol films by interactionwith C6F14. Surface Science, 2007, 601(4): 4557-4561
    125. Dias A M A, Caco A I, Coutinho J A P, et al. Thermodynamic properties of perfluoro-n-octane. Fluid Phase Equilibria, 2004, 225(1): 39-47
    126. Van Biesen Geert, Bottaro Christina S. Ammonium perfluorooctanoate as a volatile surfactant for the analysis of N-methylcarbamates by MEKC-ESI-MS. Electrophoresis, 2006, 27(22): 4456-4468
    127. Vysotsky Yu B, Bryantsev V S, Boldyreva F L, et al. Quantum Chemical Semiempirical Approach to the Structural and thermodynamic Characteristics of Fluoroalkanols at the Air/Water Interface. J Phys Chem B, 2005, 109 (1): 454-462
    128. Wang J H S and Flygare W H. Microwave Spectrum and Intramolecular Hydrogen Bonding in 2-Fluoroethanol. J Chem Phys, 1970, 52(11): 5652 -5655
    129. Munoz Mara A, Manuel Galan, Carmen Carmona, Manuel Balon. Hydrogen-bonding interactions between 1-methylindole and alcohols. Chem.Phys.Lett. 2005, 401(1): 109-114
    130. Christian T, Daniel B A, Handy N C. Predicting the binding energies of H-bonded complexes: A comparative DFT study. Phys Chem Chem Phys, 1999, 1(17): 3939-3947
    131. Alavi S, Thompson D L. Hydrogen bonding and proton transfer in small hydroxyl ammonium nitrate clusters: A theoretical study. J Chem Phys, 2003, 119(8): 4274-4283
    132. Cai Z L, Jeffrey R R. The First Singlet (n, *) and ( , *) Excited States of the Hydrogen-Bonded Complex between Water and Pyridine. J Phys Chem A, 2002, 106(37):8769
    133. Zhang B, Cai Y, Mu X L, et al. Multiphoton ionization and density functional studies of pyrimidine–(water)n clusters. J Chem Phys, 2002, 117(8): 3533-4080
    134. Ahmed D, Ludwik A, Guido M. Density Functional Theory Study of the Hydrogen-Bonded Pyridine-H2O Complex: A Comparison with RHF and MP2 Methods and with Experimental Data. J Phys Chem A, 2000, 104(10): 2112-2119
    135. Chen M L, Wang Z W, Wang H J, et al. Tao F.M. Investigation of Adsorption of Surfactant at the Air-Water Interface with Quantum Chemistry Method. China Sci Bull, 2007, 52(2): 1451-1455
    136. Chaudhari S K, Patil K R, Allepús J, et al. Measurement of the vapor pressure of 2, 2, 2-trifluoroethanol and tetraethylene glycol dimethyl ether by static method. Fluid Phase Equilibria, 1995, 108 (2): 159-165.
    137. Smith Linda S, Tucker Edwin E, and Christian Sherril D. Vapor-density and liquid-vapor equilibrium data for binary mixtures of 2, 2, 2-trifluoroethanol with water, methanol, ethanol, and 2-butanol. J Phys Chem, 1981, 85 (9): 1120-1126
    138. Allayarov Sadulla R, Konovalikhin Sergey V, Yurii A. Olkhov, et al. Degradation ofγ-irradiated linear perfluoroalkanes at high dosage. J Fluorine Chem, 2007, 128(6): 575-586

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700