仿马四足机器人机构分析与步态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四足机器人具有较强的承载能力、机动性和适应特殊地形的能力,在许多行业有着广泛的应用前景。本文以仿马四足机器人的机构和步态为研究对象,分析和制作了六自由度小型仿马四足机器人,建立了四足机器人一般步态的时间顺序分析模型和对称步态变换模型,然后利用庞加莱映射研究了四足机器人和关节型腿机构的被动跳跃步态,对四足机器人从步行到跳跃开展了基础研究。
     本文首先参考马的结构设计了一种四足机器人的结构模型,然后对该模型进行了运动学和动力学分析,得到了四足机器人机体和各关节间的运动关系以及系统的拉格朗日方程。然后根据步行仿真和移动效率的仿真,设定了四足机器人的结构参数,制作了实验用小型四足机器人系统。
     其次,基于四足动物腿部动作的时间顺序,提出了采用五个参数来描述四足机器人一般步态分析的时间序列,经过归一化处理,建立了一个步态周期内的常用对称步态和非对称步态的时间顺序模型。基于该模型建立了对称步态变换的分析模型,证明了在等速等占空系数以及等速等步态周期的对称步态之间需要一个变换步态。实验结果表明四足机器人能够实现稳定的步态变换行走。
     接着,采用拉格朗日法推导了四足机器人被动跳跃步态中各运动相的动力学方程,并根据跳跃步态特征给出了基于事件的运动相转换方程。利用被动跳跃步态周期性特点,合理降维定义了四足机器人被动跳跃步态的庞加莱映射,运用牛顿迭代法获得了庞加莱映射的某个固定点。此固定点作为初始条件对各运动相动力学方程进行了数值积分,得到了被动跳跃步态的周期性运动曲线,证明了四足机器人在某个初始条件下能够实现稳定的被动跳跃步态。
     然后,针对隔离地面冲击的需要设计一种由连杆和线性拉伸弹簧组成的关节型腿机构,利用最小二乘法将该被动缓冲型腿机构的等效刚度表示为由三次非线性刚度和线性刚度组成的分段非线性刚度。建立了缓冲过程的力学模型,通过数值计算,在并联最优阻尼比的情况下,该腿机构能够获得很小的缓冲系数。最后,采用相同的方法得到了关节型腿机构等效质量弹簧倒立摆被动跳跃步态的周期性运动曲线,证明了该腿机构在某个初始条件下能够实现稳定的被动跳跃步态。
With good performance in capacity, mobility and versatility, quadruped robot can be applied in many fields. This dissertation studies the structure and gaits of quadruped robot imitating a horse, presents the timing sequence analysis models of common gaits as well as the transition model between symmetric gaits, builds up a mini-quadruped imitating a horse, and carries out a gait transition experiment. It also studies the passive bounding gait of the quadruped and the articulated leg with Poincarémap, and conducts a basic research on quadruped from walk to bounding.
     Firstly, a structural model of a quadruped robot is designed according to a horse, and then kinematic and dynamic analyses of the model are conducted. Thus the relationship between body and limbs as well as the system Lagrange equation is achieved. The structural variables are laid out according to walking simulation and energy consumption simulation during locomotion. A mini-quadruped robot is built up for the experiment.
     Secondly, on the basis of the timing sequence of quadruped’s limbs movements, a timing sequence analysis model on common gaits in quadruped is presented with five variables. The timing sequence of common gaits in a stride cycle is achieved after being standardized, and then the gait transition analysis model is established. This dissertation proves that the gait transition between symmetrical gaits with the same duty factor or stride cycle can be completed in one stride cycle under a constant speed. The result of the experiment shows that the quadruped can perform the steady gait transition.
     Thirdly, the dynamic equations of the quadruped in the phases of bounding gait are derived with Lagrange method, and the transition equations between phases are presented according to the characteristic of bound gait. The Poincarémap of the quadruped bound gait is defined with reasonable dimensional reduction according to the characteristics of the periodic cycle. A fix point of Poincarémap is figured out with Newton-Raphson method. With the fixed point as initial condition, the dynamic equations are integrated numerically with Matlab, and the periodic motion curves are achieved. It is proved that quadruped robot can realize steady passive bound gait with a suitable initial condition.
     Fourthly, an articulated leg mechanism, consisting of links, a linear tension spring, which is used to isolate the ground impact on legged robot is presented. The equivalent stiffness of the leg mechanism is expressed in piecewise as a cubic stiffness and a linear stiffness through least-squares procedure. The mechanic model of buffering is built up, and it is calculated with numeric method. The result shows that when the leg mechanism connects to an optimal damping ratio in parallel, it can achieve a small buffer coefficient.
     Finally, in the same way, the periodic motion curves of the spring load inverted pendulum equivalent to the articulated leg are achieved. It is proved that the articulated leg can realize steady passive bound gait with a suitable initial condition.
引文
[1] M.H. Raibert , Legged robots that balance, The MIT Press, Cambridge, MA,1986.
    [2]陈学东,郭鸿勋,渡边桂吾.四足步行机器人爬行步态的正运动学分析,机械工程学报,2003.39(2):8~12.
    [3]孙汉旭.四足步行机器人研究[博士学位论文],北京:航空航天大学,1989.
    [4]王新杰.多足步行机器人运动及力规划研究[博士学位论文],武汉:华中科技大学, 2005.
    [5] J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. Springer-Verlag, New York, 1997.
    [6] D.J.Todd. Walking Machines: An Introduction to Legged Robots, Kogan Page Ltd, London, 1985.
    [7] R.S. Mosher, Test and Evaluation of a Versatile Walking Truck, in: Procs. Off-Road Mobility Research Symp. 1968: 359~379.
    [8] www.ipcn.org
    [9] Kan Yoneda, Hiryouki Iiyama, and Shigeo Hirose. Design of Prismatic Qua-druped Walking Vehicle TITAN VI, Proc. of 5th ICAR, 1991: 723~728.
    [10] K. Arikawa and S. Hirose, Development of Quadruped Walking Robot TITAN-VIII, in: Procs.of the 1996 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Osaka, Japan, 1996: 208~214.
    [11] Dinesh, K. Pai, Roderick A.et al, Platonic Beasts: A New Family of Multilimbed Robots, Proceedings of the IEEE International Conference on Robotics and Automation, 1994.
    [12] W. B. Stuart and K. J. Waldron. Field trials of a legged vehicle and their implications for the design of forestry machines. In Proceeding of the second LARP Workshop on Robotics in Agriculture and the Food Industry, Genoa, 1991: 239~250.
    [13] J. E. Bares and D. S. Wettergrenn. Dante II: Technical description ,results, and lessons learned. International Journal of Robotics Research, 1999, 18(7): 621~649.
    [14] A.Spiessbach,B.M.Gothard,D.G.Morgenthalter,K.J.Waldron,R.S.Price,J.E.Bares,W.H.Chun,F.L.Garrett,and B. Stout. Final report for Mars Rover Sample Return (MRSR) rover mobility and surface rendezvous studies. Technical report, Matin Marietta Space System Company, Denver, 1989.
    [15] Raibert M.H, Cheppinos.M and Brown“Running on Four Legs as Though They Were One”in IEEE Tr. On Robotics and Automation, 1986, Vol.2: 70~82.
    [16] Kimura H., Akiyama S. and Sakurama K.,“Realization of Dynamic Walking and Running of the Quadruped Using Neural Oscillator”. Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1998: 406– 412.
    [17] Kimura H., Fukuota Y, Konaga K., Hada Y. and Takase K.,“Towards 3D Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain by Using Neural System Model”, Proc of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2001: 2312– 2317.
    [18] A.I. Dagg, A. de Vos, The Walking Gait of Some Species of Pecora, J. Zool. London, 1968: 103–110.
    [19] M. Hildebrand, Analysis of the Symmetrical Gaits of Tetrapods, Fol. Biotheor. 1966(6): 9–22.
    [20] M. Hildebrand, Analysis of Asymmetrical Gaits, Journal of Mammal. 1977(5): 131–156.
    [21] M. Hildebrand, Analysis of Tetrapod Gaits: General Considerations and Symmetrical gaits. Neural control of locomotion, Plenum Press, New York, 1976: 203~236.
    [22] P.P.Gambaryan. How Mammals Run: Anatomical Adaptations. John Wiley & Sins, New York, 1974.
    [23] R.M.Alexander, N.J.Dimery and R.F.Ker. Elastic Structures in the Back and Their Roll in Galloping in Some Mammals. Journal of Zoology, London, 1985: 467~482.
    [24] M.Hildebrand. Analysis of asymmetrical gaits. Journal of Mammalogy, 1997: 131~156.
    [25] E. Muybridge. Animals in Motion .Dover Publications Inc, New York, 1957.
    [26] P. M. D. L. Croix. The evolution of locomotion in mammals. Journal of Mammalogy, 1976: 51~54.
    [27] M. Hildebrand. The adaptive significance of tetrapod gaits, selection. American Zoologist, 1977, Vol.20: 97~103.
    [28] R.B. McGhee, Some Finite State Aspects of Legged Locomotion, Math Biosci., 1968.2: 67~84.
    [29] S. Hirose, H. Kikuchi and Y. Umetani, The Standard Circular Gait of the Quadruped WalkingVehicle, J. of the Robotics Society of Japan, 1984 Vol.2(6): 545~556.
    [30] S.Hirose,A Study of Design and Control of a Quadruped Walking Vehicle, The International Journal of Robotics Research, 1984, Vol.3, No.2: 113~133.
    [31] S.M. Song and K.J. Waldron, An Analytical Approach for Gait Study and Its Application on Wave Gaits, Int. J. of Robotic Research, 1987, No.6: pp.60~71.
    [32] C.D. Zhang and S.M. Song, Gaits and Geometry of a Walking Chair for the Disabled, J. of Tettamechanics, 1989, No.6: 211~233.
    [33] X.D.Chen,K.Watanabe and K.Izumi,Study on the control algorithm of the transnational crawl for a quadruped robot , Systems, Man and Cybernetics,IEEE SMC’99,Vol.6: 953~958.
    [34] V.Hugel and P.Blazvic,Towards Efficient Implementation of Quadruped Gaits with Duty Factor of 0.75,Procs.Of the 1999 IEEE Int.Conf.on Robotics&Automation, 1999: 2360~2365.
    [35] J.Kodjabachian and J.A.Meyer,Evolution and Development of Neural Controllers for Locomotion,Gradient-Following,and Obstacle-Avoidance int Artificial Insects,IEEE Trans.on Neural Networks, 1998,Vol.9,No.5: 796~812.
    [36] G.S.Hornby, S.Takamura, J.Yokono, O.Hanagata, T.Yamamoto, and M.Fujita. Evolvingobust Gaits with AIBO, Procs.of the 2000 IEEE Int.Conf.on Robotics&Automation, 2000: 3040~3045.
    [37] D.W.Marhefka and D.E.Orin,Fuzzy Control of Quadruped Running,Procs.of the 2000 IEEE Int.Conf.on Robotics&Automation, 2000: 3063~3069.
    [38] H.Kimura and Y.Fukuoka, Adaptive Dynamic Walking of the Quadruped on Irregular Terrain:autonomous adaptation using neural system model,Procs.of the 2000 IEEE Int.Conf.on Robotics&Automation,2000: 436~443.
    [39]马培荪,马烈.全方位四足步行机器人JIUWM-II转弯步态控制的研究,上海交通大学学报,1995,Vol.29 No 5: 97~92.
    [40]陈佳品,程君实等.四足机器人对角小跑步态的研究,上海交通大学学报,1997,Vol. 31 No. 6:1771~1775.
    [41]潘俊民,程君实.四足步行机器人斜坡运动的研究,机器人,1991,Vol.13(4):22~26.
    [42]汪琼.四足步行机器人楼梯行走步态的稳定性及控制,桂林:全国第三届青年机器人学术讨论会论文集,1990.
    [43]甘建国,朱玮,干东英.六足步行机跟导步态研究,机器人,1994, Vol.16(4): 234~236.
    [44]汪劲松,张伯鹏.全方位双三足步行机器人―步行模式规划,清华大学学报(自然科学版), 1994, Vol.34,No.5: 63~71.
    [45]方亚彬等.四足机器人溜蹄步态动步行的研究,机器人,1995, Vol.17(1): 134~136.
    [46]赵铁石,赵永生,黄真.仿蟹步行机构模型灵活度分析,中国机械工程,1998, Vol.9(3):55~57.
    [47]徐小云,颜国正,丁国清.微型六足仿生机器人及其三角步态研究,光学精密工程,2002, Vol.10(4):42~45.
    [48]祝捷. SMA驱动的微型双三足步行机器人作全方位运动的研究,传动技术,2002, Vol.7(4):36~40.
    [49]田继廉,华谟诤.步行机器人的结构图与步态,农业机械学报,1994. Vol.25 (8):48~51.
    [50]马培荪,窦小红.全方位四足步行机器人的动力学研究,上海交通大学学报,1995, Vol.28(2):39~47.
    [51]欧阳兴,杨东超,陈恳等.仿人机器人双单脚支撑转换时的消振研究.中国机械工程, 2002,Vol.15(8):666~669.
    [52]马建旭,马培荪,杨保忠等.四足步行机器人中一种新型腿结构缓冲特性.上海交通大学学报, 1999,Vol.33(7):847~850.
    [53] G. Mennitto, M. Bueheler.“CARL: A Complaint Articulated Robot Leg for Dynamic Locomotion”. Robotics and Autonomous Systems. 1996 Vol.18:337~344.
    [54] D.W.Marhefka, D.E.Orin. Intelligent Control of Quadruped Gallops. IEEE/ASME Transaction on Mechatronics, 2003, Vol.8 (4):446~456.
    [55] Z.G.Zhang, Y.Fukuoka.“Stable Quadrupedal Running Based on a Spring-Loaded Two-Segment Legged Model”.Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orieans.LA:2601~2606.
    [56]欧阳兴,陈恳,赵明国等.仿人机器人支撑转换期振动分析.清华大学学报. 2004.44(5):641~644.
    [57] M.H. Kaplan and H. Seifert, Hopping transporters for lunar exploration, Journal of Spacecraft and Rockets, 1979,Vol. 6(3): 917~922.
    [58] M.H. Raibert, Legged robots that balance, The MIT Press, Cambridge, MA,1986.
    [59] M.H.Raibert, Dynamic stability and resonance in a legged hopping machine,Conference on Theory and Practice of Robots and Manipulators,1983:352~367.
    [60] G. Pratt,“Legged robots at MIT—What’s new since Raibert,”Clawar News, 2000: 4~7.
    [61] R.T. M'Closkey and J.W. Burdick, Periodic motion of a hopping robot with verticaland forward motion[J], International Journal of Robotics Research, 1993,Vol. 12(3):197~218.
    [62] Craig K. Black, Kevin M. Lynch. Planning and control for planar batting and hopping. Proceedings of the 36th Annual Allerton Conference on Communications, Control and Computing, 1998: 724~733.
    [63] Z. Li and R. Montgomery, Dynamics and optimal control of a legged robot in flight phase, IEEE Conference on Robotics and Automation, Cincinnati, OH, 1990:1816~1821.
    [64] D.E. Koditschek. and M. Bühler, Analysis of a simplified hopping robot,International Journal of Robotics Research, 1991,Vol. 10(6): 587~605.
    [65] V. V. Lapshin,“Dynamics and control of a hopping machine,”Izv. AN SSSR, Mekh.Tverd. Tela, 1994, No. 5: 34~42.
    [66] V.V. Lapshin, Motion control of a legged machine in the supportless phase of hopping, International Journal of Robotics Research, 1991, Vol. 10(4):327~337.
    [67] V. B. Larin,“Control of a hopping machine 1. Selection of a program trajectory,”Izv. AN SSSR, Mekh. Tverd. Tela, 1989, No. 6: 27~32.
    [68] V. B. Larin,“Control of a hopping machine 2. Stabilization of program motion,”Izv.AN SSSR, Mekh. Tverd. Tela, 1980, No. 1: 32~40.
    [69] Eric Hale, Nathan Schara, Joel Burdick, Paolo Fiorini, A minimally actuated hopping rover for exploration of celestial bodies, ICRA2000: 1756~1766.
    [70] Brown, H.B, Zeglin, G.Z. The bow leg hopping robot, IEEE international Conference onRobotics and Automation, 1998: 1132~1148.
    [71] Garth Zeglin. The bow leg hopping robot [EB/OL]. http://dmtwww.epfl.ch/~jzuffere/BowLegHopper/Doc/3DBowLegHopperReport.pdf.
    [72] Jean-Christophe Zufferey, First Jumps of the 3D Bow Leg Hopper [EB/OL]. zuff.info/BowLegHopper/Doc/3DBowLegHopperReport.pdf.
    [73] Garth J.Zeglin, A one legged dynamic hopping robot.[EB/OL]. http://www-2.cs.cmu.edu/~garthz/research/uniroo/Garth_Zeglin_Undergraduate_Thesis.pdf.
    [74] D.W.Marhefka and D.E.Orin,Fuzzy Control of Quadruped Running,Procs.of the 2000 IEEE Int.Conf.on Robotics&Automation, 2000: 3063~3069.
    [75] Matsuoka, K.“A mechanical model of repetitive hopping movements.”Biomechanisms 1989.No.5:251~258.
    [76] Berkemeier, M.D., Desai, K.V. 1996, Design of a robot leg with elastic energy storage, comparison to biology, and preliminary experimental results. Proceedings of ICRA, 1996, Vol. 11: 213~218.
    [77] Full R. J., Autumn K., Chung J. I., and Ahn A.,“Rapid Negotiation of Rough Terrain by the Death-Head Cockroach”, America Zoologist, 2002, Vol.38: 81~91.
    [78] Full R. J. and Koditschek D.,“Templates and Anchors: Neuro-mechanical Hypotheses of Legged Locomotion on Land”, in The J. of Experimental Biology, 1999,Vol. 22: 3325 ~3332.
    [79] Full R. J. and Farley C.,“Musculoskeletal Dynamics in Rhythmic Systems: A Comparative Approach to Legged Locomotion”, in Biomechanics and Neural Control of Movement, ed. J. M. Winters and P. E. Crago, Springer Verlag, 2000: 192~203.
    [80] Dickinson M. H., Farley C. T., Full R. J, Koehl M. A. L., Kram R. and Lehman S.,“How Animals Move: An Integrative Approach”, Science, 2000, Vol. 288: 100~106.
    [81] Alexander, R. M.,“Three Uses for Springs in Legged Locomotion”, in The Int. J. of Robotics Research, 1990, Vol. 9, No. 2: 658~670.
    [82] Blickhan R.,“The Spring-Mass Model for Running and Hopping”, in J. of Biomechanics, 1989, Vol. 22: 1217~1227.
    [83] Blickhan R. and Full R. J.,“Similarity in Multilegged Locomotion: Bouncing Like a Monopode”, in J. of Comp. Physiol., 1993, A. 173:509~517.
    [84] Koditschek D. and Buehler M.,“Analysis of a Simplified Hopping Robot”, The Int. J. of Robotics Research, 1991, Vol. 10, No. 6:587 ~ 605.
    [85] M’Closkey R. T. and Burdick J. W.,“An Analytical Study of Simple Hopping Robots with Vertical and Forward Motion”, Proc. of the IEEE Int. Conf. on Robotics and Automation, 1991: 1392~1397.
    [86] M. Ahmadi and M. Buehler, Stable control of a simulated one-legged running robot with hip and leg compliance," IEEE Transactions on Robotics and Automation, 1997, Vol. 13, NO.1: 96~104.
    [87] Kale Harbick and Gaurav S. Sukhatme, Height control for a one-legged hopping robot using a one-dimensional model," Tech. Rep. IRIS-01-406, Institute for Robotics andIntelligent Systems, University of Southern California, 2001.
    [88] D. W. Marquardt, \An algorithm for least-squares estimation of non-linear parameters," Journal of the Society of Industrial and Applied Mathematics, 1963, Vol. 11, No. 2:431~441.
    [89] M. Ahmadi and M. Buehler, The ARL Monopod II Running Robot: Control and Energetics," in IEEE Intl. Conf. on Robotics and Automation, 1999: 1989~1994.
    [90] Schwind W. and Koditschek D.,“Control of Forward Velocity for a Simplified Planar Hopping Robot”, Proc. of the IEEE Int. Conf on Robotics and Automation, 1995: 691 ~ 696.
    [91] Li Z. and He J.,“An Energy Perturbation Approach to Limit Cycle Analysis in Legged Locomotion Systems”, Proc. of the IEEE Int. Conf. on Robotics and Automation, 1990: 1989~1994.
    [92] Kubow T. M. and Full R. J.,“The Role of the Mechanical System in Control: A Hypothesis of Self-stabilization in Hexapedal Runners”, in Philosophical Trans. of the Royal Society of London Series B– Biological Sciences, 1999, Vol.54 (13): 854~862.
    [93] Chigliazza R. M., Altendorfer R., Holmes P. and Koditschek D. E.,“Passively Stable Conservative Locomotion”, J. of Applied Dynamical Systems, 2001, Vol 36(7): 765~779.
    [94] Seyfarth A., Geyer H., Guenther M. and Blickhan R.,“A Movement Criterion for Running”, in J.of Biomechanics, 2002, Vol. 35: 649~655.
    [95] Murphy K. N.,“Trotting and Bounding in a Simple Planar Model”, in Technical Report, CMU-LL-4-1985, Carnegie Mellon University, The Robotics Institute, Pittsburgh, PA, USA, 1995.
    [96] Berkemeier M. D.,“Modeling the Dynamics of Quadrupedal Running”, in The Int. J. of Robotics Research, 2001, Vol. 17, No 9: 971– 985.
    [97] Brown Jr. H. B.,“Analysis of Planar Model for Two Limiting Cases”, in Technical Report, CMU-LL-4-1985, Carnegie Mellon University, the Robotics Institute, Pittsburgh, PA, USA, 1995.
    [98] McGeer T.,“Passive Bipedal Running”, Technical Report, CSS–IS TR 89-02, Simon Fraser University, Center For Systems Science, Burnaby, BC, Canada, 1989.
    [99] McGeer T.,“Passive Dynamic Walking”, in The Int. J. of Robotics Research, 1990, Vol. 9, No. 2: 62~82.
    [100] Murphy K. N. and Raibert M. H.,“Trotting and Bounding in a Planar Two-legged Model”, The 5thSymposium on Theory and Practice of Robots and Manipulators, A. Morecki, G. Bianchi, K. Kedzior, MIT Press, Cambridge MA,2002: 411~420.
    [101] Smith A. C. and Berkemeier M. D.,“Passive Dynamic Quadrupedal Walking”, Proc. of the IEEE Int. Conf on Robotics and Automation, 1997: 34– 39.
    [102]夏旭峰,葛文杰,张永红.基于弹簧-质量模型的仿袋鼠跳跃机器人步态稳定性研究.机器人. 2006, Vol.28 (5):488~494.
    [103]葛文杰,沈允文,杨方.仿袋鼠机器人跳跃运动步态的运动学.机械工程学报. 2006, Vol.42 (5): 22~24.
    [104]朱因远,周纪卿编,非线性振动和运动稳定性,西安交通大学出版社,1992.
    [105]刘延柱,陈立群编著,非线性振动,高等教育出版社,2001.
    [106]张韵华,奚梅成,陈效群等编,数值计算方法与算法,科学出版社,2006.
    [107]彭芳麟,管靖,胡静,卢圣治著,理论力学计算机模拟,清华大学出版社,2001.
    [108] Gerald Recktenwald著,伍卫国,万群,张辉等译,数值方法和MATLAB实现与应用,机械工业出版社,2004.
    [109]丁文镜.减振理论.北京,清华大学出版社, 1988.
    [110]翁雪涛,朱石坚,何琳.限位器抗冲击计算.中国造船,2002, Vol.43(2):85~89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700