利用选择导入系定位水稻优良恢复系开花期耐热QTL
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温已成为严重影响水稻生长、产量和品质的一个主要因素。通过发掘水稻耐热基因/QTL,并结合分子设计育种手段来培育耐热水稻品种,被认为是提高水稻耐热性的有效途径之一。本研究以中国生产上已经大面积推广应用的两个优良籼稻恢复系蜀恢527和明恢86做为轮回亲本,以来自不同地理区域的13个品种为供体构建了13个BC2F2群体,在温室40℃的高温胁迫下以结实率为耐热指标以各自的轮回亲本为对照严格筛选到244个耐热高代回交导入系(13个BC2F5群体),开展了耐热及相关性状的鉴定和QTL定位,获得以下主要结果:
     1.在2011和2012年湖南正常条件下,以蜀恢527为背景的9个导入系群体平均表现与蜀恢527相近;在高温胁迫条件下,这9个群体中蜀恢527/明恢63热害指数和单株产量表现最好,其次为蜀恢527/孟关大麻谷和蜀恢527/紫恢100,蜀恢527/辐恢838表现最差,其他群体的表现不尽一致。在湖南正常条件下,以明恢86为背景的4个导入系群体的平均表现和明恢86的相近;高温胁迫条件下,平均两年的抗旱指数和单株产量为耐热评价指标,全部4个明恢86背景的群体耐热性都较轮回亲本明恢86有明显改良。共计获得了10个优良耐热导入系,来自蜀恢527和明恢86背景的各有5个。在浙江杭州的正常和高温胁迫条件下,共获得6个优良株系,蜀恢527/孟关大麻谷和蜀恢527/BG902群体各有3个株系。而且,在2012年来自蜀恢527/孟关大麻谷群体的3个株系在正常和高温胁迫条件下都比耐热对照品种N22表现出更高的实粒数和单株产量。
     2.蜀恢527/孟关大麻谷和蜀恢527/BG902群体,共检测到与9个性状有关的58个QTL,其中5个控制抽穗期、1个控制株高、3个控制有效穗数、7个控制每穗实粒数、9个控制每穗颖花数、11个控制结实率、5个控制千粒重、5个控制单株产量和12个控制耐热指数。其中13个QTL在两地点被重复检测到。明恢86为轮回亲本与江西丝苗、IR65600-27-1-2-2、旱恢10和Bala为供体的导入系群体共检测到214个QTL,与抽穗期有关的位点有22个、与株高有关的位点18个、与有效穗数有关的位点32个、与每穗实粒数有关的位点23个、与每穗总粒数有关的位点28个、与结实率有关的位点24个、与单株产量有关的位点24个、与耐热指数有关的位点13个。
     本研究的结果表明,回交导入结合目标性状选择的策略进行水稻耐热性的改良和耐热基因/QTL的发掘和定位是有效的。
High temperature is a major disastrous factor on crop growth and reduction of yield and quality of rice. It is prime requirement to exploit and detect QTL controlling heat tolerance, combining with molecular designed breeding to develop heat tolerant cultivars for the warmer world. In our study,13BC2F2bulk harvested seeds were derived from two widely used indica elite restorers (Shuhui527and Minghui86) in China as the recurrent parents, and13varieties from different geographical regions as the donors. BC2F2Thirteen populations were screened for heat stress under green house condition with~40℃using spikelet fertility as selection criteria with RP. All the progenies were reevaluated for yield and its related phenotypic traits under heat stress condition (plastic shed) and normal condition in Hunan provinces in2011and2012while two populations of Shuhui527background were evaluated under both conditions for two years in Zhejiang province, Hangzhou. Two populations with Shuhui527background and four populations with Minghui86background were genotyped to identify quantitative trait loci (QTL) underling heat tolerance in rice. The main results were as follow:
     1. Phenotypic evaluation in2011and2012in Hunan for nine ILs populations of Shuhui527under normal condition have shown that more or less the same performance with the recurrent parent (Shuhui527). Considering average heat stress index and grain yield under stress condition for two years, the best population was shuhui527/Minghui63out of nine populations, followed by Shuhui527/MGDMG and Shuhui527/Zihui100populations. Population Shuhui527/Fuhui838showed the lowest performance, while the remaining five populations had more or less same performances compared to Shuhui527. Phenotypic evaluation of four populations derived with Minghui86background in Hunan2011and2012under normal condition have shown not much different with Minghui86for measured data. However, considering average heat stress index and grain yield under stress condition for two years, all the four populations have shown improvement compared to RP (Minghui86). A total of ten promising heat tolerant ILs (five ILs from Shuhui527background and other five ILs from Minghui86background) were identified based on two rounds grain yield phenotypic evaluation. In addition to that, three promising lines from each population Shuhui527/MGDMG and Shuhui527/Bg90-2were identified under normal and heat stress conditions in Zhejiang province, Hangzhou. Interestingly, all the3lines from Shuhui527/MGDMG population have shown higher filled grain rate and grain yield under both normal and stress conditions compared to N22heat check in2012.
     2. A total of58QTL were identified for nine phenotypic traits in Shuhui527/MGDMG and Shuhui527/BG902populations under normal and heat stress conditions in Hunan and Zhejiang provinces in2011and2012, including five for heading data, one for plant height, three for panicle number, seven for filled grain number, nine for spikelet number per panicle, eleven for filled grain rate, five for thousand grain weight, five for grain yield and twelve for heat stress index. Thirteen QTL were detected at both Hunan and Zhejiang environments at least under one condition or both. Furthermore, a total of214QTL were identified in Minghui86populations with Jiangxisimiao, IR65600-27-1-2-2, HanhuilO and Bala as donors in Hunan, including22QTL for heading data,18QTL for plant height,32QTL for panicle number,23QTL for filled grain number,28QTL for spikelet number per panicle,24QTL for filled grain rate,30QTL for thousand grain weight,24QTL for grain yield and13QTL for heat stress index.
     In a word, the results of this study showed that the strategy of backcrossing combing with imposing critical selection on the target trait for improving heat tolerance and identifying favorable heat tolerance genes/QTL in rice is effective.
引文
1. Abdel, G.A.M., Al-Helal, I.M.2010. Solar energy utilization by a greenhouse:General relations. Renewable Energy,1-8.
    2. Ahsan, N., Donnart, T., Nouri, M., Komatsu, S.2010. Tissue specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J. Proteome. Res.9:4189-4204.
    3. Abeysiriwardena, D.S. de Z., Ohba, K. and Maruyama, A.2002. Influence of temperature and relative humidity on grain sterility in rice. J.Natn. Sci. Found. Sri Lanka, 30:33-41.
    4. Akaman, Z.2009. Comparison of high temperature tolerance in maize, rice and sorghum seeds, by plant growth regulators, Journal of Animal and Veterinary Advance.8: 358-361.
    5. Andronova, N.G., Schlesinger, M.E.2000. Causes of global temperature changes during the 19th and 20th centuries, Geophys Res Lett.27:2137-2140.
    6. Battisti, D.S., Naylor, R.L.2009. Historical warnings of future food insecurity with unprecedented seasonal heat, Science 323:240-244.
    7. Barnabas, B., Jager, K., and Feher, A.2008. The effect of drought and heat stress on reproductive processes in cereals, Plant Cell Environ.31:11-38.
    8. Bruke, J.J., O'Mahony, P.J.& Oliver, M.J.2000. Isolation of Arabidopsis mutants lacking components of acquired thermotolerance, Plant Physiology.123:575-587
    9. Carriger, S., Vallee, D.2007. More crop per drop, Rice Today 6:10-13.
    10. Cao, L.Y., Zhu, J., Zhao, S.T., He, L.B., Yan, Q.C.,2002. Mapping QTLs for heat tolerance in a DH population from indica-Japonica cross of rice (Oryza sativa L.) J.Agric. Biotech,10(3):210-214. (in Chinese with English abstract)
    11. Chang, P.F.L., Jinn, T.L., Huang, W.K., Chen, Y., Chang, H.M.& Wang, C.W.2007. Induction of a cDNA clone from rice encoding a class Ⅱ small heat shock protein by heat stress, mechanical injury, and salicylic acid, Plant Science 172:64-75.
    12. Chang, L. Z., Hui, X.Y., Ming, W.C., Ling, J., Hu-qu, Z., Min, W.J.2005. Mapping QTLs for Heat Tolerance During Grain Filling in Rice, Chinese J. Rice Sci.19 (2):117-121.
    13. Clarke, S.M., Critescu, S.M., Miersch, O., Harren, F.J.M., Wasternack, C.& Mur, L.A.J. 2009. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana, New Phytologist 182:175-187.
    14. Crowley, T.J.2000. Causes of climate change over the past 1000 years, Science,289: 270-277.
    15. Chen, Q.Q., Yu, S.B., Li, C.H., Mou, T.M.2008. Identification of QTLs for heat tolerance at flowering stage in Rice, Scientia Agricultura sinica,41(2):315-321.
    16. De Costa, W.A.J.M.,2004. Principles of crop physiology:towards an understanding of crop yield determination and improvement, Faculty of Agriculture, University of Peradeniya, Sri Lanka.
    17. Efeoglu, B.2009. Heat shock proteins and heat shock response in plants. Gazi University Jounal of Science 22:67-75.
    18. Foolad, M.R.1999. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 1999,42:727-734.
    19. Fu Guan-fu, Tao Long-xing, Song Jian, Wang Xi, Cao Li-yong, Cheng Shi-hua.2008, Rice Scinece, Resposes of Yield Characteristics to High Temperature During Flowering stage in Hybrid rice Guada 6, Elsevier BV. Rice Science,2008,15(3):215-222.
    20. Gang, Z.Z, Ling, J., Ying-hui, X., Wen-Wei, Z., Hu-Qu, Z. and Jian-Min, W.2006. Identification of QTLs for Heat Tolerance at the Booting Stage in Rice (Oryza sativa L.), Acta Agronomica Sinica,32 (5):640-644.
    21. Gammulla, C., Pascovici, D., Atwell, B., Haynes, P.2010. Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high and low temperature stress, Proteomics 10:3001-3019.
    22. Gao, L.Z., Jin, Z.Q., Huang, Y., Zhang, L.Z.1992. Rice clock model-a computer model to simulate rice development, Agric.For.Meteoro.60:1-16.
    23. Goldberg, R.B., Beals, T.P. and Sanders, P.M.1993. Anther development:basic principles and practical applications. Plant Cell5:1217-1229.
    24. Hall, A.E.1992. Breeding for heat tolerance, Plant Brrd. Rev.10,129-169.
    25. Han, F., Chen, H., Li, X., Yang, M., Liu, G., Shen, S.2009. A comparative proteomic analysis of rice seedlings under various high temperatures stresses, Biochim Biophys Acta 1794:1625-1634.
    26. Horie, T., Matsui, T., Nakagawa, H., Omasa, K.1996. Effect of elevated CO2 and global climate change on rice in Japan.In:Omasa K, Kai K, Toda H, Uchijima Z, Yoshino M, eds. Climate change and plants in East Asia. Tokyo:Springer-Verlag,39-56.
    27. Huang, B.& Xu, C.2008. Identification and characterization of proteins associated with plant tolerance to heat stress. Journal of Integrative Plant Biology 50:1230-1237.
    28. Howarth, C.J.2005. Genetics improvements of tolerance to high temperature. In:Ashraf, M., Harris, P.J.C. (Eds.), Abiotic Stresses:Plant Resistance Through Breeding and Molecular Approaches. Howarth Press Inc., New York.
    29. IPCC (International panel for Climate Change),2001. Climate Change 2001:The Scientific Basis, Cambridge Univ. Press, Cambridge.
    30. IPCC.2007. Climate change 2007:The physical science basis, Summary for plicymakers, WMO/UNEP, Paris.
    31. IRRI (1977). Annual Report, Manila, The Philippines:IRRI.
    32. Ismail, A.M. and Hall, A.E.1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci.39:1762-1768.
    33. Jagadish, S. V. K., Cairns. J., Lafitte. R. et al 2010. Genetic analysis of heat tolerance at anthesis in rice [J]. Crop science,50(5):1633-1641.
    34. Jagadish, S., Muthurajan, R., Oane, R., wheeler, T., Heuer, S., Bennett, J., Craufurd, P. 2010a. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.), J Exp Bot 61:143-156.
    35. Jagadish, S.V.K., Craufurd, P.Q. and Wheeler, T.R.2008. Phenotyping Parents of Mapping Populations of Rice for Heat Tolerance during Anthesis, Crop Sci.48:1140-1146.
    36. Jagadish, S.V.K., Craufurd, P.Q.,& Wheeler, T.R.2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.) Journal of Experimental Botany 58:1627-1635.
    37. Jones, M.P., Dingkuhn, M., Aluko, G.K.& Semon, M.1997. Interspecific Oryza sativa L. ×O. glaberrima Steud. Progenies in uplant rice improvement, Euphytica 92:237-246.
    38. Karim, M. A., Fracheboud, Y., and Stamp, P. (1997). Heat tolerance of maize with reference of some physiological characteristics. Ann. Bangladesh Agri.7:27-33.
    39. Klueva, N.Y., Maestri, E., Marmiroli, N.& Nguyen, H.T.2001. Mechanisms of thermotolerance in crops, In crop responses and Adaptations to Temperature Stress (Ed. A.S. Basra), PP 177-218, Binghampton, NY:food Products Press.
    40. Keeler, S.J., Boettger, C.M., Gaynes, J.G., Kuches, K.A., Johnson, M.M., thureen, D.L., Keeler, C.L. Jr. and Kitto, S.L.2000. Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiol.123:1121-1132.
    41. Keijzer, C.J., Leferink, T., Klooster, H.B. and Reinders, M.C.1996. The mechanics of grass flower:anther dehiscence and pollen shedding in maize, Annals Botany 78:15-21.
    42. Kobata, T. and Moriwaki, N.1990. Grain growth rate as a function of dry matter production rate:An experiment with two rice cultivars under different radiation enveronments, Jpn.J. Crop Sci.59:1-7.
    43. Katiyar-Agarwal, S., Agarwal, M., Gallie, D.R. and Grover, A.2001. Search for the cellular functions of plant Hsp100/Clp family proteins. Crit.Rev.Plant Sci.20:277-295.
    44. Katiyar-Agarwal, S., Agarwal, M. and Grover, A.2003. Heat-tolerant basmati rice engineered by over-expression of hsp101, Plant Molecular Biology51:677-686.
    45. Kobata, T., Sugawara, M. and Takatu, S.2000. Shading during the early grain filling period does not affect potential grain dry matter increase in rice, Agron.J.92:411-417.
    46. Kobata, T. and Uemuki, N.2004. High temperatures during the grain filling period do not reduce the potential grain dry matter increase of rice, Agron.J.96:406-414.
    47. Kovacs, D., Kalmar, E., Torok, Z., Tompa, P.2008. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol.147:381-390.
    48. Kropff, M.J., Mathews, R.B., Van Laar, H.H., and Ten Berge, H.F.M.1995. The rice model Oryza 1 and its testing, In:Modeling the Impact of Climate Change on Rice Production in Asia (Eds R.B. Mathews, M.J. Kropff, D. Bachelet and H.H. Van Laar), PP 27-50, Wallingford, Oxon, UK & Los Banos, Phillippines:CABI & IRRI.
    49. Kwak, K.S. and Lee, C.K.2006. How will the increased air temperature by global warming influence on the yield capacity and quality of rice in Korea, proceedings of Japanese Society of Crop Science Symposium (Spring) on "Current research topics on crop eco-physiology in Asia, with emphasis on the impact of global warming on rice eco-physiology".
    50. Larkindale, J.& Vierling, E.2008. Core genome responses involved in acclimation to high temperature, Plant Physiology,146:748-761.
    51. Larkindale, J., Hall, J.D., Knight, M.R.& Vierling, E.2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology 138:882-897.
    52. Larkindale, J. and Knight, M.R.2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid, Plant Physiology 146:748-761.
    53. Lee, D., Ahsan, N., Lee, S., Kang, K., Bank, J., Lee, I., Lee, B.2007. A proteomic approach in analyzing heat responsive proteins in rice leave, Proteomics 7:3369-3383.
    54. Lee, J.H., Hubel, A.& Schoffl, F.1995. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis, Plant Journal 8:603-612.
    55. Li, Q., Chen, F., Sun, L., Zhang, Z., Yang, Y., and He, Z.2006. Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray, Physiol. And Mole. Plant Pathology,6:51-60.
    56. Li-mie, K., Lu-bin, T., Jian, T.U., Yi-xuan, L., Chuan-qing, S.2008. Identification of QTLs Associated with Heat Tolerance of Yuanjiang Common Wild Rice (Oryza rufipogon grif.) at Flowering Stage, Jou. Of Agricul. Biotech.16 (3):461-464.
    57. Lin, C.J., Li, C.Y., Lin, S.K., Yang, F.H., Huang, J.J., Liu, Y.H., Lur, H.S.2010. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.) J. Agric. Food. Chem.58:10545-10552.
    58. Lin, S.K., Chang, M.C., Tsai, Y.G., Lur, H.S.2005. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5:2140-2156.
    59. Liu, J.G., Qin, Q.L., Zhang, Z., Peng, R.H., Xiong, A.S.., Chen, J.M & Yao, Q.H.2009. OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. Biochemistry and Molecular Biology Reports 42:16-21.
    60. Liyoun, C., Jun, Z., Songtao, Z., Libin, H. and Qichuan, Y.2002. Mapping QTLs for heat tolerance in a DH population from indica-Japonica cross of Rice (Oryza sativa L.), Journal of Agricultural Biotechnology,10 (3):210-214.
    61. Mackill, D.J.1981. Studies on the mechanism and genetics of high temperature tolerance in rice. Ph.D. Dissertation, University of California Davis, California, USA.
    62. Mackill, D.J. and Coffman, W.R.1983. Inheritance of high temperature tolerance and pollen shedding in a rice cross. Z Pflanzesuchtg 91:61-69.
    63. Mackill D J, Coffman W R, Rutger J N.1982. Pollen shedding and combining ability for high temperature tolerance in rice. i. Crop Science 22:730-73.
    64. Maestri, E., Klueva, N., Perrota, C., Gulli, M., Nguyen, H.T.& Marmiroli, N.2002. Molecular genetics of heat tolerance and heat shock proteins in cereals, Plant Molecular biolgy.48:667-681.
    65. Matsui, T.& Kagata, H.2003a. Characteristics of floral organs related to reliable self pollination in rice (Oryza sativa L.) Annals of Botany 91:473-477.
    66. Matsui, T.,& Kagata, H.2003b. Gas exchange through the slit between the lemma and the palea in the rice (Oryza sativa L.) floret before anthesis, Plant Production Science 6: 262-264.
    67. Matsui, T.,& Omasa, K.2002. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering:anther characteristics, Annals of Botany 89:683-687.
    68. Matsui, T., Kobayasi, K., Yoshimota, M.& Hasegawa, T.2007. Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales, Australia, Plant Production Science 10:57-63.
    69. Matsui, T., Kobayasi, K.., Kagata, H.& Horie, T.2005. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot and humid condition, Plant Production Science 8:109-114.
    70. Matsui, T., Omasa, K.& Horie, T.2000. High temperature at flowering hinhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.), Plant Production Science 3:430-434.
    71. Matsui, T., Omasa, K., Horie, T.1999a. Rapid swelling of pollen grains in response to floret opening unfolds locule in rice. Plant Production Science 2:196-199
    72. Matsui, T., Omasa, K., Horie, T.1999b. Mechanism of anther dehiscence in rice (Oryza sativa L.) Annals of Botany 84:501-506.
    73. Matsui, T., Omasa, K. and Horie, T.2001. The difference in sterility due to high temperatures during the flowering period among japonica rice varieties, Plant prod. Sci.4: 90-93.
    74. Matsui, T., Omasa, K. and Horie, T.1997.High temperature induced spikelet sterility of Japonica rice at flowering in relation to air temperature, Humidity and wind velocity conditions, Jpn.J.Crop Sci.66 (3):449-455.
    75. Meng, L.J., Lin, X.Y., Wang, J.M., Chen.K., Cui,Y.R., Xu, J.L., Li, Z.K.2013. Simultaneous improvement of cold tolerance and yield of temperate japonica rice (Oryza sativa L.) by introgression breeding. Plant Breeding (in press)
    76. Mohammed, A.R.& Tarpley, L.2009b. Impact of high night time temperature on respiration, membrane stability, antioxidant capacity and yield of rice plants. Crop Science 49:313-322.
    77. Mohammed, A.R. and Lee, T.2010. Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants, European Journal of Agronomy,33:17-123.
    78. Morita, S., Shiratsuchi, H., Takahashi, J.& Fujita, K.2004. Effect of high temperature on ripening in rice plants:analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant, Japanese Journal of Crop Science 73: 77-83 (in Japanese with English summary).
    79. Morita, S., Shiratsuchi, H., Takahashi, J. and Fujita, K.2005. Effect of high temperature on ripening in rice plants:analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Japanese Journal of Crop Science 73: 77-83.
    80. Moya, T.B., Ziska, L.H.,Namuco, O.S.,& Olszyk, D.1998. Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature, Global Change Biology 4:645-656.
    81. Murakami, T., Matsuba, S., Funatsuki, H., Kawaguchi, K., Saruyama, H., Tanida, M., Sato, Y.2004. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol. Breed.13:165-175.
    82. Nagato, K.,1973. On the quality of rice. Proc. Crop Sci.soc.Jpn.42:238-257 (in Japanese).
    83. Nagato,K., Ebata M., and Kono, Y.1961. On the ability of rice varieties to high temperature in the ripening periods. Jpn.J. Crop Sci.29:337-340 (In Japanese with English summary).
    84. Nakagawa, H., Horie, T., Matsui, T.2002. Effects of climate change on rice production and adaptive technologies, In Mew TW, Brar DS, Peng s, Dawe D, Hardy B, eds, Rice science:Innovations and impact for livelihood, China, International Rice Research Institute,635-657.
    85. Nishiyama, I.,& Blanco, L.1980. Avoidance of high temperature sterility by flower opening early in the morning, Japan Agricultural Research Quarterly 14:116-117.
    86. Nishiyama, I.,& Blanco, L.1981. Artificial control of flower opening time during the day in rice plants, Japanese Journal of Crop Science 1:59-66.
    87. Nishiyama, I. and Satake, T.1981. High temperature damage in the rice plant. Japanese Journal of Tropical Agriculture 26:19-25.
    88. Osada, A., Sasiprada, V., Rahong, M., Dhammanuvong, S., and chakrabandhu, M.1973. Abnormal occurrence of empty grains of indica rice plants in the dry, hot season in Thailand. Proc.Crop Sci. Soc.Jpn.42:103-109.
    89. Oh-e, I., Saitoh, K., and Kuroda, T.2007. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Prod. Sci.10:412-422.
    90. Osada, A., Sasiprada, V., Rahong, M., Dhammanuvong, S., and Chakrabandhu, M.1973. Abnormal occurrence of empty grains of indica rice plants in the dry, hot season in Thailand. Proc. Crop Sci. Soc. Jpn.42:103-109.
    91. Pan, Y., Luo, L.H., Deng, H.B., Zhang, G.L, et al.2011. Quantitative Trait Loci Associated with Pollen Fertility under High Temperature Stress at Flowering Stage in Rice, Chin J. Rice Sci.25(1):99-102.
    92. Pareek, A., Singla, S.L. and Grover, A.1995. Immunological evidence for accumulation of two high molecular-weight (104 and 90kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera, Plant Molecular Biology 29:293-301.
    93. Peng, S., Huang, J., sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., Cassman, K.G.2004. Rice yields decline with higher night temperature from global warming, Proc Natl. Acad. Sci. USA 101:9971-9975.
    94. Prasad, P.V.V., Boote, K.J., Allen, L.H., Sheehy, J.E., Thomas, J.M.G.2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress, Field Crops Research 95:398-411.
    95. Queitsch, C., Hong, S.W., Vierling, E. and Lindqist, S.2000. Heat shock protein 101 plays a crucial role in thermotolereance in Arabidopsis. Plant Cell 12:479-492.
    96. Qi, Y.C., Wang, H.J., Zou Y., Liu, C., Liu, Y., Wang, Y., Zhang, W.2010. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice, FEBS Letters 585:231-239.
    97. Qing-quan, C., Si-bin, Y., Chuu-hai, L., Tong-min, M.2008. Identification of QTLs for Heat Tolerance at Flowering Stage in Rice, Scientia Agricultura Sinica,42 (2):315-321.
    98. Redona, E.D., Manigbas, N.L., Laza, M.A., Sierra, S.N., Bartolome, V.I., Nora, L.A., Barroga, W.V., and Noriel, J.M.,2009. Identification heat tolerant rice genotypes under different environments, SABRAO J. Breeding and Genetics,41 (special suppl.): Published in CD (ISSN 1029-7073).
    99. Redona, E.D., Mackill, D.J.1996. Mapping quantitative trait loci for seedling vigor in rice using RFLPs, Theor. Appl. Genet.92:395-402.
    100. Sakamoto, A. and Murata, N.2002. The role of glycine betaine in the protection of plants from stress, Clues from transgenic plants, Plant Cell Environ.25,163-171.
    101. Satake, T. and Yoshida, S.1978. High temperature induced sterility in indica rice at flowering, Japanese Journal of Crop Science 47:6-17.
    102. Shah, F., Huang, J., Cui, K., Nie, L., Shah, T., Chen, C. and Wang, K.2011. Impact of high temperature stress on rice plant and its traits related to tolerance, Jou. Of Agricultural Sciences,1-12.
    103. Savchenko, G.E., klyuchareva, E.A., Abrabchik, L.M., Serdyuchenko, E.V.2002. Effect of periodic heat shock on the membrane system of etioplasts. Russ.J. Plant Physiol.49: 349-359.
    104. Sairam, R.K., Tyagi, A.,2004. Physiology and molecular biology of salinity stress-tolerance in plants. Curr. Sci.86:407-421.
    105. Surekha, K.A., Manu, A. and Grover, A.2003. Heat-tolerant basmati rice engineered by over-expression of hsp 101. Plant Molecular Biology 51:677-686.
    106. Saini, H.S., and Aspinall, D.1982. Abnormal sporogenesis in wheat(Triticum asetivum 1) induced by shrort periods of high temperature. Ann.Bot.49:835-846
    107. Sheehy, J.E., Elmido, A., Centeno, G. and Pablico, P.2005. Searching for new plants for climate change, Jour. Of Agricultural Meteorology 60:463-468.
    108. Stone, P.2001. The effect of heat stress on cereal yield and quality. In Crop Responses and Adaptations to Temperature Stress (Ed. A.S. Basra), pp.243-291, Binghamton, NY, USA:Food Products Press.
    109. Scafaro, A.P., Haynes, P.A., Atwell, B.J.2010. Physiological and molecular changes in Oryza meridionalis Ng., a heat tolerant species of wild rice, J Exp Bot.61:191-202
    110. Shi, Q., Li, M., Hu, Z., Pang, X. and Tan X.2007. Effects of high temperature stress on activity of starch synthetic enzymes in endosperm of early indica rice varieties, In: Abstract, Cool rice for a warmer world, International workshop, Huazhong Agricultural University, Wuhan, China.
    111. Shimazaki, Y., Satake, T., Watanabe, K. and Ito, N.1964. Effect of day and night temperature accompanied by shading treatment during the booting stage upon the induction of sterile spikelets in rice plants, (Studies of cool weather injuries of rice plants in northern part of Japan,Ⅳ) [in Japanese, with English summary], Research Bulletin of the Hokkaido National Agricultural Experiment Station 83:10-16.
    112. Shin, J.C., Lee, C.G. Yun, Y.H., and Kang, Y.S.2000. Impact of climate variability and change on crop productivity, proceedings of Korean society of Agricultural and Forestry Meteorology Symposium (autumn):12-27.
    113. Singh, S., Aggarwal, P.K., Yadav, R.N.2010. Growth and yield response of rice under heat stress during vegetative, reproductive and ripening growth phases, Crop mamagement and physiology, International Rice Research Notes,0117-4185.
    114. Stone, P.2001. The effects of heat stress on cereal yield and quality. In Crop Responses and Adaptations to Temperature Stress (Ed. A.S. Basra), PP.243-291. Binghamton, NY, USA:Food Products Press.
    115. Schoffl, F., Prandl, R., Reindl, A.1999. Molecular responses to heat stress. In:Shinozaki, K., yamaguchi-Shinozaki, K. (Eds.), Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. R.G. Landes Co., Austin, Texas, pp.81-98.
    116. Tanaka, K., Kasai, Z., and Ogawa, M.1995. Physiology of ripening In Science of the rice Plant. Vol.2.Physiology, T.Matsuo, K.Kumazawa, K.I.Ishii, and H.Hirata, Eds, pp.07-118. Food and Agriculture Policy Research Center, Tokyo.
    117. Tashiro, T. and Wardlaw, I.F.1989. A comparison of the effect of high temperature on grain development in wheat and rice, Ann.Bot.64 (1):59-65.
    118. Tang, R.S., Zheng, J.C., Jin Z.Q., Zhang, D., Huang, H. and Chen, L.G.2008. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, Gas and ABA in rice (Oryza sativa L.) Plant Growth Regul.54:37-43.
    119. Tao, Z., Li, Y., Kaifeng, J., Min, H., Qun, S., Wenfu, C., Jiakui, Z.2008. QTL Mapping for Heat Tolerance of the Tassel Period of Rice, Mol. Plant Breeding,6 (5):867-873.
    120. Thanh, P.T., Phan, P.D.T., Ishikawa, R. and Ishii, T.2010. QTL analysis for flowering time using backcross population between Oryza sativa Nipponbare and O.rufipogon, Genes Genet. Syst.85:273-279.
    121. Timperio, A.M., Egidi, M.G.& Zolla, L.2008. Proteomics applied on plant abiotic stresses:role of heat shock proteins (HSP). Journal of proteomics 71:391-411.
    122. Trent, J.1996. A review of acquired thermotolerance, heat shock proteins, and molecular chaperones in archaea. FEMS Microbiol. Rev.18:249-258.
    123. Wahid, A. and Close, T.J.2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves, Biol.Plant.51:104-109.
    124. Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R.2007. Heat tolerance in plants:an overview, Environmental and Experimental Botany 61:199-223.
    125. Wang, W., Vinocur, B., Shoseyou, O., Altman, A.2004. Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci.9: 244-252.
    126. Wang, W., Vinocur, B., Altman, A.2003. Plant responses to drought, salinity and extreme temperatures, towards genetic engineering for stress tolerance, Planta 218:1-14.
    127. Wang, W.,Vinocur, B., Shoseyov, O., Altman, A.2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response, Trends Plant Sci.9:244-252.
    128. Wassmann R. and Dobermann A.2007. Direct and indirect consequences of global warming on rice growing regions in Asia, In:Abstract, Cool rice for a warmer world, International workshop, Huazhong Agricultural University, Wuhan, China.
    129. Wassmann, R., Jagadish, S.V.K., Sumfleth, K., Pathak, H., Howell, G., Ismail, A., Serraj, R., Redona, E., Serraj, R., Singh, R.K., Howell, G., Pathak, H.& Sumfleth, K.2009a. Climate change affecting rice production:the physiological and agronomic basis for possible adaptation strategies, Advances in Agronomy 101:59-122.
    130. Wassmann, R., Jagadish, S.V.K., Sumfleth, K., Pathak, H., Howell, G., Ismail, A., Serraj, R., Redona, E., Singh, R.K.& Heuer, S.2009b. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation, Advances in Agronomy 102: 91-103.
    131. Weerakoon, W.M.W., Maruyama, A.& Ohaba, K.2008. Impact of humidity on temperature induced grain sterility in rice (Oryza sativa L.), Journal of Agronomy and Crop Science 194:135-140.
    132. Xia, M. Y., Qi, H. X.2004. Effects of high temperature on the seed setting percent of hybrid rice breed with four male sterile lines. Hubei Agric Sci,2:21-22. (in Chinese)
    133. Xiao, Y.H., Pan, Y., Luo L.H, et al.2011. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L.), Euphytica, 178:331-338.
    134. Yamakawa, H., Hirose, T., Kuroda, M. and Yamaguchi, T.2007. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray, J. Plant Physiol.144:258-277.
    135. Yamanouchi, U., Yano, M., Lin, H.2002. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein, J. Proceedings of the National Academy of Sciences of USA,99 (11):7530-7535.
    136. Yamanouchi, U., Yano, M., Lin, H., Ashikari, M.& Yamada, K.2002. A rice spotted leaf gene, Sp17, encodes a heat stress transcription factor protein, proceedings of the National Academy of Sciences, USA 99:7530-7535.
    137. Yan, C., Ding, Y., Wang, Q., Liu, Z., Li, G., Muhammad, I. and Wang, S.2010. The impact of relative humidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice, Journal of Agricultural Sciences, Cambridge,148:329-339.
    138. Yang, H. C., Huang, Z. Q., Jiang, Z. Y., Wang, X. W.2004. High temperature damage and its protective technologies of early and middle season rice in Anhui Province. J Anhui Agric Sci,32(1):3-4. (in Chinese).
    139. Ye, C., Argayoso, M.A., Redona, E.D. et al 2012. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers, Plant Breeding,131,33-41.
    140. Yin, X., Kroff, M.J. and Goudriann, J.1996. Differential effects of day and night temperature on development to flowering in rice, Annals on Botany 77:203-213.
    141. Yin, Y., Li, S., Liao, W., Lu, Q., Wen, X., Lu, C.2010. Photosystem Ⅱ photochemistry, photoinhibition and the xanthophyll cycle in heat-stressed rice leaves, Journal of Plant Physiology,167:959-966.
    142. Ye, C.R., Argayoso, M.A., Redona, E.D., Sierra, S.N., Laza, M.A., Dilla, C.J., Mo, Y., Thomson, M.J., Chin, J., Delavina, C.B., Diaz, G.Q. and Hernaadez, J.E.2012. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breeding 131: 33-41.
    143. Yokotani, N., Ichkawa, T., Kondou, Y., Matsui, M., Herochika, H., Iwabuchi, M.& Oda, K.2008. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stressed in transgenic Arabidopsis. Planta 227:957-967.
    144. Yoshida, S.1978. Tropical Climate and its Influence on Rice, IRRI Research Paper Series 20, Los Banos, Philippines, IRRI.
    145. Yoshida, S., Satake, T., and Mackill, D.1981. High temperature Stress in rice. IRRI Res. Pap.67:1-15.
    146. Yoshida, S.1981. Fundamentals of rice crop science, the international rice research institute, Los Banos, Laguna, Philippines.
    147. Zeng, X.C., Zhou, X., Zhang, W., Murofushi, N., Kitahara, T.& Kamuro, Y.1999. Opening of rice floret in rapid response to methyl jasmonate, Journal of Plant Growth regulation 18:153-158.
    148. Zhang, G.L., Chen, L.Y., Xiao, G.Y., Xiao, Y.H., Chen, X.B., and Zhang, S.T.2009. Bulked Segregant Analysis to Detect QTL Related to Heat Tolerance in Rice (Oryza sativa L.) Using SSR Marker, Agricultural Sciences in China,8 (4):482-487.
    149. Zhu, Q.H., Ramm, K., Shivakkumar, R., Dennis, E.S. and Upadhyaya, N.M.2004. The ANTHER INDEHISCENCE1 Gene Encoding a Single MYB Domain Protein Is Involved in Anther Development in Rice, Plant Physiology,135 (3):1514-1525.
    150. Zou, J., Liu, A. L., Chen, X. B., Zhou, X. Y., Gao, G. F., Wang, W. F., Zhang, X. W. 2009. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol.166(8):851-861.
    151. Zhu, C. I., Xioa, Ying H., Wang, C.M., Jiang, L., Zhai, H.Q., Wan, J.M.,2005. Mapping QTL for Heat-Tolerance at Grain Filling Stage in Rice, Rice Science,12 (1):33-38.
    152. Zou, J., Liu, C., Chen, X.2011. Proteomic of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep.30:2155-2165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700