水稻响应灌浆初期高温的转录组和蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻起源于低纬度地区,对高温气候具有一定的忍耐能力,但温度超过水稻最适生长的临界值时,水稻的正常生长便会受到影响。在我国,水稻生产中的高温热害主要发生在长江流域及其以南的双季稻区;通常在7月上中旬,控制这些地区的副高气压脊线往往呈停滞状态,于是在较长时间内维持高温天气。而此时正值双季早稻灌浆期,水稻灌浆期遇高温热害不仅限制稻米品质而且降低籽粒充实度,从而造成水稻品质和产量损失。双季早稻又是我国重要的一茬粮食作物,也是南方各省中不可替代的优势粮食作物。因此,加强水稻耐热的分子机理研究,加速灌浆期耐热的优质早稻品种选育,对保持我国水稻产量及品质的稳定,从而保障国家的粮食安全具有重要意义。
     前期研究中本课题组以耐热水稻N22和热敏感水稻协青早B为亲本,通过杂交、回交、自交和定向选育获得了791个回交重组自交株系。本文以该回交重组自交系为材料,
     (1)采用表型性状鉴定和基因组多态性分析,鉴定了该重组自交系的灌浆耐热性和部分形态指标以及基因组多态性差异;(2)于水稻抽穗后第10天进行3、6、9、24、48、72、96和120小时的高温处理后,分析了高温热害和常温对照条件下与水稻剑叶光合作用、细胞膜氧化和渗透调节有关的生理指标;(3)于水稻抽穗后第10天进行3、6、9、24、48和72小时的高温处理后,采用cDNA-AFLP基因差异显示技术分析了水稻籽粒中与高温热害相关的差异表达基因;(4)于水稻抽穗后第10天进行24、72和120小时的高温处理后,运用比较蛋白质组学鉴定了水稻籽粒中与灌浆初期高温热害有关的差异表达蛋白质。研究取得如下结果:
     (1)从791个重组自交系中鉴定并获得了2个基因组差异较小而灌浆初期耐热性存在极显著差异的2个水稻纯系XN0437T(耐热)和XN0437S(热敏感)。
     (2)高温热害降低水稻剑叶叶绿素含量和光合作用效率,加剧了细胞膜氧化作用、增加了细胞膜透性的同时改变了细胞内环境,热敏感水稻纯系XN0437S受影响的程度大于耐热水稻纯系XN0437T。
     (3)获得了54个与水稻灌浆期耐热性有关的差异表达基因,其中27个基因在GenBank数据库中有同源序列,另外27个为新发现的与水稻灌浆初期耐热性有关的基因。27个功能已知的差异表达基因中,与逆境胁迫有关的基因表现上调表达,且在耐热水稻纯系XN0437T中的上调表达丰度大于在热敏感水稻纯系XN0437S中的上调表达丰度;与代谢、转录、生物合成和氧化作用有关的基因也表现上调表达,但是在耐热水稻纯系中的上调表达丰度小于在热敏感水稻纯系中的上调表达丰度;与转录、生物合成、光合作用、甲基化和物质转运有关的基因表现下调表达,在热敏感水稻纯系中的下调表达丰度大于在耐热水稻纯系中的下调表达丰度。
     (4)获得了23个与水稻灌浆期耐热性有关的差异表达蛋白质,仅9个蛋白在数据库Matrixscience中具有相似蛋白质,其功能分别与氧化作用、生物合成、基因转录、磷酸化和淀粉合成有关;高温热害条件下,与氧化作用和生物合成相关的蛋白表现上调表达,而与基因转录、磷酸化和淀粉合成酶相关的蛋白表现下调表达;另有12个功能未知的蛋白质在高温热害条件下表现上调表达、2个功能未知的蛋白质在高温热害条件下表现下调表达。
     研究结果表明:由于灌浆初期高温热害降低了水稻剑叶光合作用效率,加强了细胞膜氧化而造成细胞膜透性增加的同时改变了细胞内环境,最终导致向籽粒运输的光合产物和储藏物质减少是高温热害降低水稻籽粒充实度的生理原因。灌浆初期高温导致水稻籽粒中与储藏物质合成、转录相关的基因和与转录、磷酸化、淀粉合成有关的蛋白质下调表达;与逆境胁迫有关的基因和与氧化作用、(部分)生物合成有关的蛋白质上调表达,是灌浆初期高温造成水稻籽粒充实下降的分子生物学基础。
     本文鉴定的54个与水稻响应灌浆初期高温热害有关的差异表达基因(片段)和23个差异表达蛋白质,为进一步研究水稻灌浆期耐热的分子机理奠定了研究基础。
Originating from low latitude areas, rice can survive certain high temperatures, but its normal growth will be impaired once the temperature is higher than the threshold of its growth-optimal temperature. Unfortunately, it is highly likely that crops will have to adjust to even higher temperatures in the near future because of global climate change. In China, high-temperature damage happens mainly in the zone of double-cropping early-season rice at Yangtze River Valley and some areas to its south from early to middle July, because the ridge line of western pacific subtropical anticyclone located these areas at the period, which cause long hot weather in the middle and lower reaches of Yangtze River. This period happens to be the early grain-filling stage of double-cropping early-season rice in the area around the Yangtze River Valley, which often results in low grain quantity and yield loss. Double-cropping early-season rice is an important and irreplaceable food crop in southern China. Therefore, strengthening the researches on molecular mechanisms of heat tolerant characteristic in rice as well as breeding rice cultivars with heat tolerant characteristic at grain-filling stage plays a significant role in maintaining rice yield stability and guaranteeing the human food security.
     In our previous work, a recombinant inbred line (RIL) related to heat-tolerance at rice grain-filling stage and derived from Xieqingzao B/N22were inbred. In present study,791rice lines of the RIL were used as plant materials;1. The heat-tolerant and physiological characteristics of rice at grain-filling stage were determined and the genomic polymorphism were analyzed by SSR molecular markers, among the791RILs;2. The physiological indexes of flag leaves related to photosynthesis, oxidation of cell membrane and osmotic adjustment were analyzed and compared between treatment and control of both XN0437S and XN0437T rice lines;3. differentially expressed genes related to heat-tolerant characteristic of rice caryopsis were analyzed and compared between treatment and control of both XN0437S and XN0437T rice lines by cDNA-AFLP;4. differentially expressed proteins related to heat-tolerant characteristic of rice caryopsis were analyzed and compared between treatment and control of both XN0437S and XN0437T rice lines by proteomics based on two-dimensional electrophoresis (2-DE). The results are as follow.
     1. Two rice lines. XN0437T (heat-tolerant) and XN0437S (heat-sensitive) with similar genome but significant difference in heat-tolerant trait at grain-filling stage, were obtained from the791RILs.
     2. Chlorophyll content and photosynthesis rate of rice flag leaves were decreased, while the matters content of cell membrane oxidation and permeability of plasma membrane were increased, under high temperature stress, which resulted in a change of intracellular environment, but the influence of the heat sensitive rice was more severe than that of the heat tolerant rice.
     3. Fifty-four differentially expressed gene fragments from rice caryopsis were obtained by cDNA-AFLP. Among them,27genes had homologous genes in the GenBank database and another27gene fragments were newly identified. Further analysis with RT-PCR indicated that genes involved in adverse stress were showed up-regulation and the up-regulated degree in the heat-tolerant rice line XN0437T was higher than that of the heat-sensitive rice line XN0437S, while the other up-regulated genes were involved in metabolism, transcription, biosynthesis and oxidation, and the up-regulated degree of the heat-tolerant rice line XN0437T was lower than that of the heat-sensitive rice line XN0437S. Genes involved in transcription, biosynthesis, photosynthesis, methylation and substance transportation were down-regulated, and the down-regulated degree in the heat-sensitive rice line XN0437T was higher than that of the heat-tolerant rice line XN0437S.
     4. Twenty-three differentially expressed proteins from rice caryopsis were obtained after a proteomics study, but only9proteins had homologous proteins in the protein database of Matrixscience. Functions of the homologous proteins included oxidation, biosynthesis, gene transcription, phosphorylation and starch synthesis. Proteins involved in oxidation and biosynthesis showed up-regulation, while proteins involved in transcription, phosphorylation and starch synthesis showed down-regulation. There are12and2unknown proteins that showed up and down regulation respectively under high temperature stress.
     The research results indicated that physiological cause of rice plumpness decrease was that photo synthetic products and storage matters transported to plumpness were reduced, due to the decrease of photosynthesis rate and the increase of cell membrane oxidation and permeability of plasma membrane. Molecular biological cause of rice plumpness decreased was that genes involved in biosynthesis of storage products, and genes involved in transcription, phosphorylation and starch biosynthesis were down-regulated, while that genes involved in adverse stress and proteins encoded by genes involved in oxidation and biosynthesis were up-regulated.
     The54candidate genes and23candidate proteins identified in the present study will be helpful for elucidating the molecular mechanism on rice adapting high temperature stress.
引文
[1]Welch J R, Vincent J R, Auffhammer M, et al. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures [J]. Proc Natl Acad Sci U S A,2010,107(33):14562-7.
    [2]Peng S, Huang J, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming [J]. Proc Natl Acad Sci U S A,2004,101(27):9971-5.
    [3]谢国生,曾汉来,林兴华,等.温度对两系杂交水稻育性恢复的影响[J].遗传学报,2003,30(02):142-6.
    [4]Prasap P V V, Boote K J, Allen J, et al. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress [J]. Field Crops Research,2006,95(2-3):398-411.
    [5]朱校奇,邓启云,龙世平,等.高温胁迫下2个超级杂交稻组合耐受性比较[J].植物资源与环境学报,2009,18(02):28-33.
    [6]楚志涛,朱顶目,孙扬国.2010年气候条件对水稻栽培的影响分析[J].大麦与谷类科学.2011,01:28-9.
    [7]石春林,金之庆,汤日圣,等.水稻颖花结实率对减数分裂期和开花期高温的响应差异[J].江苏农业学报,2010,26(06):1139-42.
    [8]谢晓金,李秉柏,申双和,等.抽穗期高温胁迫对水稻花粉活力与结实率的影响[J].江苏农业学报,2009,25(02):238-41.
    [9]时宽玉,崔永伟,胡瑞法.水稻花期高温对产量的影响研究[J].中国农业科技导报,2009,11(02):78-83.
    [10]Jagadish S V, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.) [J]. Journal of experimental botany,2007,58(07):1627-35.
    [11]张国发,王绍华,尤娟,等.结实期不同时段高温对稻米品质的影响[J].作物学报,2006,32(02):283-7.
    [12]罗丽华,刘国华,肖应辉,等.高温胁迫对水稻花粉和小穗育性及稻谷粒重的影响[J].湖南农业大学学报(自然科学版),2005,31(06):593-6.
    [13]田小海,松井勤,李守华,等.水稻花期高温胁迫研究进展与展望[J].应用生态学报,2007,18(11):2632-6.
    [14]肖本泽,赵爽,龚耀,等.水稻分蘖田间耐热性鉴定方法[J].华中农业大学学报.2011,30(05):539-44.
    [15]吴艳洪.水稻光合能力的高温稳定性评价指标研究[D];华中农业大学,2006,硕十学位论文.
    [16]邓运.田小海,吴晨阳,等.热害胁迫条件下水稻花药发育异常的早期特征[J].中国生态农业学报.2010,18(02):377-83.
    [17]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻花器官和产量构成要素及稻米品质的影响[J].湖南农业大学学报(自然科学版),2007,33(02):132-6.
    [18]Mmasui T, Omasa K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering anther characteristics [J]. Annals of botany,2002,89:683-7.
    [19]曹云英,段骅,杨立年.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J].作物学报,2008,34(14):2134-42.
    [20]王晴晴.高温胁迫对现代高产水稻受精和结实的效应研究[D];扬州大学,2008,硕士学位论文.
    [21]张彬,芮雯弈,郑建初,等.水稻开花期花粉活力和结实率对高温的响应特征[J].作物学报,2007,33(07):1177-81.
    [22]周浩,胡文彬,王作平,等.抽穗扬花期高温对水稻重组自交系群体RIL47结实率的影响[J].中国生态农业学报,2011,19(01):69-74.
    [23]童志婷,李守华,段维新,等.中稻花期致害高温主导的田间气象特征及其对不同杂交组合水稻结实的影响[J].中国生态农业学报,2008,16(05):1163-6.
    [24]汤日圣,郑建初,张大栋,等.高温对不同水稻品种花粉活力及籽粒结实的影响[J].江苏农业学报,2006,22(04):369-73.
    [25]Matsui T, Omasa K T H. Rapids welling of pollen grains in response to floret opening unfolds anther locules in rice (Oryza sativa L.) [J]. Plant Prod Sci,1999,2:196-9.
    [26]MATSUI T, OMASA K, T. H. High temperature at flowering inhibits s welling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.) [J]. Plant Prod Sci,2000,3(04): 430-4.
    [27]Matsui M, Omasa K. Rice cultivars tolerance to high temperature at flowering anthers characteristics [J]. Annals of botany,2002,89:683-7.
    [28]薛秀芳.粳稻结实期温光逆境对产量形成和稻米品质的影响特征研究[D];扬州大学,2010,硕士学位论文.
    [29]Morita S, Yonemaru J, Takanashi J. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.) [J]. Annals of botany,2005,95(04):695-701.
    [30]盛婧,陶红娟,陈留根.灌浆结实期不同时段温度对水稻结实与稻米品质的影响[J].中国水稻科学,2007,21(04):396-402.
    [31]陶龙兴,王熹,廖西元.灌浆期气温与源库强度对稻米品质的影响及其生理分析[J].应用生态学报,2006,17(04):647-52.
    [32]Lin C J, Li C Y, Lin S K, et al. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.) [J]. Journal of agricultural and food chemistry,2010,58(19):10545-52.
    [33]Li H, Chen Z, Hu M, et al. Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling [J]. Plant cell reports,2011. 30(09):1641-59.
    [34]张宏玉,刘凯.钟平安,等.水稻品种灌浆期耐热性的综合评判[J].生态学报,2006, 26(07):2154-60.
    [35]曹云英,段骅,杨立年,等.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J].作物学报,2008,34(12):2134-42.
    [36]方先文,汤陵华,王艳平.水稻孕穗期耐热种质资源的初步筛选[J].植物遗传资源学报,2006,7(03):3342-4.
    [37]黄英金,罗永锋,黄兴作,等.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系[J].中国水稻科学,1999,13(04):205-10.
    [38]雷东阳,陈立云,李稳香,等.高温对不同杂交稻开花期影响的生理差异[J].农业现代化研究,2005,26(05):397-400.
    [39]李木英,熊伟,石庆华,等.高温胁迫对早稻不同品种灌浆结实和稻米品质的影响[J].江西农业大学学报,2006,28(04):483-7.
    [40]盛婧,陈留根,朱普平,等.不同水稻品种抽穗期对高温的响应及避热的调控措施[J].江苏农业学报,2006,26(04):325-30.
    [41]钱卫红.播期和栽培方式对南京地区粳稻品种产量和品质等性状的影响[D];南京农业大学,2005,硕士学位论文.
    [42]罗筱平,黎世龄.水稻品种高温下结实能力鉴定技术研究初报[J].种子,2007,26(10):74-7.
    [43]谢晓金,申双和,李秉柏,等.抽穗期高温胁迫对水稻开花结实的影响[J].中国农业气象,2009,32(02):252-6.
    [44]谢晓金,李秉柏,李映雪,等.抽穗期高温胁迫对水稻产量构成要素和品质的影响[J].中国农业气象,2010,31(03):411-5.
    [45]韦克苏,程方民,张其芳,等.高温胁迫下水稻胚乳淀粉分支酶各同工型基因的表达特征[J].中国水稻科学,2009,23(01):19-24.
    [46]陈庆全,余四斌,李春海,等.水稻抽穗开花期耐热性QTL的定位分析[J].中国农业科学,2008,41(02):315-21.
    [47]周伟辉.水稻耐热性生理机理和耐热资源的鉴定与筛选[D];浙江大学,2011,硕士学位论文.
    [48]盘毅,罗丽华,邓化冰,等.水稻开花期高温胁迫下的花粉育性QTL定位[J].中国水稻科学,2011,25(01):99-102.
    [49]高俊凤,主编.植物生理学实验指导[M].2006,北京:高等教育出版社.
    [50]汤日圣,童红玉,黄益洪,等.高温胁迫对草地早熟禾某些生理指标的影响[J].江苏农业学报,2010,26(06):1192-6.
    [51]李萍萍,程高峰,张佳华,等.高温对水稻抽穗扬花期生理特性的影响[J].江苏大学学报(自然科学版),2010,31(02):125-30.
    [52]谢晓金,李秉柏,申双和,等.高温胁迫对扬稻6号剑叶生理特性的影响[J].中国农业气象,2009,30(01):84-7.
    [53]郑小林,董任瑞.水稻热激反应的研究Ⅲ.高温对水稻幼苗叫‘片过氧化物酶的影响[J].湖南农业大学学报,1998,24(06):351-4.
    [54]Larkum A W. Limitations and prospects of natural photosynthesis for bioenergy production [J]. Curr Opin Biotechnol,2010,21 (03):271-6.
    [55]Nagai T, Makino A. Differences between rice and wheat in temperature responses of photosynthesis and plant growth [J]. Plant & cell physiology,2009,50(04):744-55.
    [56]Makino A, Sage R F. Temperature response of photosynthesis in transgenic rice transformed with 'sense' or 'antisense' rbcS [J]. Plant & cell physiology,2007,48(10):1472-83.
    [57]Feng L, Wang K, Li Y, et al. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants [J]. Plant cell reports,2007,26(09):1635-46.
    [58]Wang D, Li X F, Zhou Z J, et al. Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant [J]. Physiologia plantarum,2010,139(01): 55-67.
    [59]Hirotsu N, Makino A, Yokota S, et al. The photosynthetic properties of rice leaves treated with low temperature and high irradiance [J]. Plant & cell physiology,2005,46(08):1377-83.
    [60]陈春光.超级杂交稻及其亲本光合作用对高温响应机理的研究[D];中南大学,2008,硕士学位论文.
    [61]Chiang A N, Wu H L, Yeh H I, et al. Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities [J]. Lipids,2006,41(08):797-803.
    [62]Feng W, Hongbin W, Bing L, et al. Cloning and characterization of a novel splicing isoform of the iron-superoxide dismutase gene in rice (Oryza sativa L.) [J]. Plant cell reports,2006,24(12): 734-42.
    [63]Kaminaka H, Moritas S, Tokumoto M, et al. Differential gene expressions of rice superoxide dismutase isoforms to oxidative and environmental stresses [J]. Free radical research,1999,31 Suppl:S219-25.
    [64]郭培国,李荣华.夜间高温肋迫对水稻叶片光合机构的影响[J].植物学报,2000,42(07):673-8.
    [65]Zou J, Liu A, Chen X, et al. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment [J]. Journal of plant physiology,2009,166(08):851-61.
    [66]IRRI. Annual report for 1977-1983 [R]. Los Banos, Philippines,1984.
    [67]李金军,徐美玲,彭桂福,等.粳型杂交水稻的耐热性和耐低温性研究[J].浙江农业学报,2004.16(03):162-6.
    [68]曹立勇,赵建根,占小登,等.水稻耐热性的QTL定位及耐热性与光合速率的相关性[J].中国水稻科学,2003,17(03):223-7.
    [69]汤日圣,郑建初,陈留根.等.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响[J].植物生理与分子生物学学报.2005,31(06):657-62.
    [70]雷东阳,陈立云,李稳香,等.杂交水稻抽穗扬花期高温对结实率及相关生理特性的影响[J].杂交水稻,2006,21(03):68-7].
    [71]李敏.马均.王贺止,等.水稻开花期高温胁迫条件下生理生化特性的变化及其与品种耐热性的关系[J].杂交水稻.2007,22(06):62-6.
    [72]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻剑叶保护酶活性和膜透性的影响[J].作物学报,2006,32(09):1306-10.
    [73]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻剑叶氮代谢的影响[J].杂交水稻,2007,22(04):57-61.
    [74]滕中华,智丽,吕俊,等.灌浆期高温对水稻光合特性、内源激素和稻米品质的影响[J].生态学报,2010,30(23):6504-11.
    [75]张涛,杨莉,蒋开锋,等.水稻抽穗扬花期耐热性的QTL分析[J].分子植物育种,2008,6(05):867-73.
    [76]奎丽梅,谭禄宾,涂建,等.云南元江野生稻抽穗开花期耐热QTL定位[J].农业生物技术学报,2008,16(03):461-4.
    [77]赵志刚,江玲,肖应辉,等.水稻孕穗期耐热性QTLs分析[J].作物学报,2006,32(05):640-4.
    [78]朱昌兰,肖应辉,王春明,等.水稻灌浆期耐热害的数量性状基因位点分析[J].中国水稻科学,2005,19(02):117-21.
    [79]Xiao Y, Pan Y, Luo L, et al. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L.) [J]. Euphytica,2011,178(03): 331-8.
    [80]张标金.特异耐高温水稻N22开花期耐高温遗传基础研究[D];华中农业大学,2009,硕士学位论文.
    [81]Minako T, Hideyuki H, Yoshinobu T, et al. Mapping of Quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of Rice (Oryza sativa L.) [J]. Breeding Science,2007,57(01):47-52.
    [82]任东路,吴乃虎.高等植物发育过程中基因表达的调控[J].生物工程进展,1993,14(03):5-13.
    [83]Zhang J, He Z, Tian H, et al. Identification of aluminium-responsive genes in rice cultivars with different aluminium sensitivities [J]. Journal of experimental botany,2007,58(08):2269-78.
    [84]Ricachenevsky F K, Sperotto R A, Menguer P K, et al. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence [J]. Molecular biology reports,2010,37(08):3735-45.
    [85]Park D S, Lee S K, Lee J H, et al. The identification of candidate rice genes that confer resistance to the brown planthopper (Nilaparvata lugens) through representational difference analysis [J]. Theor Appl Genet,2007.115(04):537-47.
    [86]Sperotto R A, Ricachenevsky F K, Fett J P. Iron deficiency in rice shoots:identification of novel induced genes using RDA and possible relation to leaf senescence [J]. Plant cell reports. 2007,26(08):1399-411.
    [87]Song G S, Zhai H L. Peng Y G, et al. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice [J]. Molecular plant,2010,3(06):1012-25.
    [88]Song S, Qu H. Chen C. et al. Differential gene expression in an elite hybrid rice cultivar (Oryza sativa, L) and its parental lines based on SAGE data [J]. BMC plant biology,2007,7:49 doi: 10.1186/1471-2229-7-49.
    [89]Venu R C, Jia Y, Gowda M. et al. RL-SAGE and microarray analysis of the rice transcriptome after Rhizoctonia solani infection [J]. Molecular genetics and genomics,2007,278(04):421-31.
    [90]Gibbings J G, Cook B P, Dufault M R, et al. Global transcript analysis of rice leaf and seed using SAGE technology [J]. Plant biotechnology journal,2003,1(04):271-85.
    [91]Yuan L, Yang S, Liu B, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1 [J]. Plant cell reports,2011,9, doi:10.1007/s00299-011-1140-9.
    [92]胡利伟,崔大勇,臧爱萍,等.生长素介导OsRGP1和OsSuS参与水稻地上部基部向重性弯曲生长(英文)[J].分子细胞生物学报,2009,42(01):27-34.
    [93]Wang Q, Guan Y, Wu Y, et al. Overexpression of a rice OsDREBlF gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice [J]. Plant molecular biology,2008, 67(06):589-602.
    [94]Song B, Xiong J, Fang C, et al. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment [J]. Journal of chemical ecology,2008,34(05):688-95.
    [95]Zhao C J, Wang A R, Shi Y J, et al. Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani [J]. Theor Appl Genet,2008,116(04):501-16.
    [96]Zhang M, Liu X, Yuan L, et al. Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization [J]. Plant Physiol Biochem,2011,8, doi: 10.1016/j.plaphy.2011.07.015.
    [97]Gan Q, Li D, Liu G, et al. Identification of Potential Antisense Transcripts in Rice Using Conventional Microarray [J]. Molecular biotechnology,2011,18, doi:10.1007/s12033-011-9438-y
    [98]Mizuo H, Kawahara Y, Sakai H, et al. Massive parallel sequencing of mRNA in identification of unannotated salinity stress-inducible transcripts in rice (Oryza sativa L.) [J]. BMC genomics, 2010,11:683, doi:10.1186/1471-2164-11-683.
    [99]Yokotani N, Ichikawa T, Kondou Y, et al. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis [J]. Planta,2009,229(05): 1065-75.
    [100]Liu X, Zhang M, Duan J. et al. Gene expression analysis of germinating rice seeds responding to high hydrostatic pressure [J]. Journal of plant physiology,2008,165(18):1855-64.
    [101]Yamakawa H, Hakata M, Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation [J]. Plant & cell physiology,2010,51(05):795-809.
    [102]Yamakawa H, Hirose T, Kuroda M. et al. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray [J]. Plant physiology,2007, 144(01):258-77.
    [103]严春光,陈钧辉,王新吕.基因芯片及其应用[J].中国生化药物杂志.2006.05:321-3.
    [104]Wang X, Liu W, Chen X, et al. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction [J]. BMC plant biology,2010,10:9, http://www.biomedcentral.com/1471-2229 /10/9.
    [105]Bachem C W, Van Der H R S, De Bruijn S M, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development [J]. The Plant journal:for cell and molecular biology,1996,9(05):745-53.
    [106]Durrant W E, Rowland O, Piedars P, et al. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles [J]. The Plant cell,2000, 12(06):963-77.
    [107]Breyne P, Zabeau M. Genome-wide expression analysis of plant cell cycle modulated genes [J]. Current opinion in plant biology,2001,4(02):136-42.
    [108]Donson J, Fang Y, Espiritu-Santo G, et al. Comprehensive gene expression analysis by transcript profiling [J]. Plant molecular biology,2002,48(1-2):75-97.
    [109]张红宇,彭海,吴绍华,等.双胚苗水稻中单倍体和二倍体不同器官的cDNA-AFLP分析[J].遗传,2009,31(03):305-10.
    [110]Ventelon-Debout M, Tranchant-Dubreuil C, Nguyen T T, et al. Rice yellow mottle virus stress responsive genes from susceptible and tolerant rice genotypes [J]. BMC plant biology,2008, 8:26, doi:10.1186/1471-2229-8-26.
    [111]Akihiro T, Umezawa T, Ueki C, et al. Genome wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells [J]. FEBS letters.2006, 580(25):5947-52.
    [112]Ganeshan S, Sharma P, Young L, et al. Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance [J]. Plant molecular biology,2011,75(4-5):379-98.
    [113]Rampino P, Pataleo S, Falco V, et al. Identification of candidate genes associated with senescence in durum wheat (Triticum turgidum subsp. durum) using cDNA-AFLP [J]. Molecular biology reports,2011. doi:10.1007/s11033-010-0673-2.
    [114]Sestili S, Polverari A, Luongo L, et al. Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis [J]. BMC genomics,2011,12:1, doi:10.1186/ 1471-2164-12-122.
    [115]Inostroza-Blancheteau C, Aquea F, Reyes-Diaz M, et al. Identification of aluminum-regulated genes by cDNA-AFLP analysis of roots in two contrasting genotypes of highbush blueberry (Vaccinium corymbosum L.) [J]. Molecular biotechnology.2011,49(01):32-41.
    [116]钱小红.贺福初,主编.蛋白质组学:理论与方法[M].北京:科学出版社.2003.
    [117]Orchard S, Taylor C, Hermjakob H, et al. Current status of proteomic standards development [J]. Expert review of proteomics,2004,1(02):179-83.
    [118]Vercauteren F G, Arckens L, Quirion R. Applications and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis [J]. Amino acids,2007,33(03): 405-14.
    [119]Park O K. Proteomic studies in plants [J]. Journal of biochemistry and molecular biology,2004, 37(01):133-8.
    [120]Tanaka N, Fujita M, Handa H, et al. Proteomics of the rice cell:systematic identification of the protein populations in subcellular compartments [J]. Molecular genetics and genomics:MGG, 2004,271(05):566-76.
    [121]Han F, Chen H, Li X J, et al. A comparative proteomic analysis of rice seedlings under various high-temperature stresses [J]. Biochimica et biophysica acta,2009,1794(11):1625-34.
    [122]Lin S K, Chang M C, Tsai Y G, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression [J]. Proteomics,2005,5(08):2140-56.
    [123]吴宪章,林李,李路平,等.中国稻区的风土环境和种植区别[M].北京:中国农业出版社,1992.
    [124]王世耆,程延年,主编.作物产量与天气气候[M].北京:科学出版社,1991,158-9.
    [125]高亮之,林李,主编.水稻气象生态[M].北京:农业出版社,1992:446-61.
    [126]农业部优质农产品开发服务中心.中国南方粮食结构优化研究[M].北京:气象出版社,1999,71-5、105-8.
    [127]Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants:rice endosperm as a model tissue. Plant Cell Physiol,2002,43:718-725.
    [128]Hu P, Zhai H, Tang S. Rice Quality Improvement in China [J]. Chinese Rice Research Newsletter,2002,10(01):13-5.
    [129]Jojee L, Madonna D. Comparative Analysis of Genetic Diversity and Structure in Rice Using ILP and SSR Markers [J]. Rice Science,2010,17(04):257-68.
    [130]Satake T, Yoshida S. High temperature induced sterility in indica rices at flowering [J]. Japan Jour Crop Sci,1978.47(01):6-17.
    [131]Janadish S, Craufurd P, Wheeler T. High temperature stress and spikelet fertility in rice (Oryza sativa L.) [J]. Journal of experimental botany,2007,58(07):1627-35.
    [132]张桂莲,陈立云,张顺堂,等.抽穗开花期高温对水稻剑叶理化特性的影响[J].中国农业科学,2007,40(07):1345-52.
    [133]张顺堂,张桂莲,陈立云,等.高温胁迫对水稻剑叶净光合速率和叶绿素荧光参数的影响[J].中国水稻科学,2011,25(03):335-8.
    [134]蒋开锋.水稻产量和品质性状的遗传与相关研究、耐热QTL定位及直链淀粉含量分子标记辅助选择[D];四川农业大学,2007,博士学位论文.
    [135]Lin S-K, Chang M-C. Tsai Y-G, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression [J]. Proteomics,2005,5(08):2140-56.
    [136]潘敖大,高苹,刘梅,等.基于海温的江苏省水稻高温热害预测[J].应用生态学报,2010,21(01):136-44.
    [137]石春林,金之庆,郑建初,等.减数分裂期高温对水稻颖花结实率影响的定量分析[J].作物学报,2008,34(04):627-31.
    [138]人工气候箱课题组.高温对早稻开花结实的影响及其防治Ⅱ.早稻开花期高温对开花结实的影响[J].植物学报,1976,4:323-9 357-9.
    [139]Zakaria S, Matsud T, Tajima S, et al. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars [J]. Plant Prod Sci,2002,5(2):160-8.
    [140]Ohsugi R, Yamagishi T, Sasaki H. Effect of High Temperature on Sucrose Content and Sucrose Cleaving Enzyme Activity in Rice Grain During the Filling Stage [J]. Rice Science,2006, 13(03):205-10.
    [141]Zhang G, Chen L, Zhang S, et al. Effects of High Temperature Stress on Microscopic and Ultrastructural Characteristics of Mesophyll Cells in Flag Leaves of Rice [J]. Rice Science, 2009,16(01):65-71.
    [142]Zhou H F, Xie Z W, Ge S. Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza rufipogon Griff.) in China [J]. Theor Appl Genet,2003,107(02): 332-9.
    [143]彭海燕,周曾奎,赵永玲,等.2003年夏季长江中下游地区异常高温的分析[J].气象科学,2005,25(04):4355-61.
    [144]Ishll T, Xu Y, McCouch S R. Nuclear-and chloroplast-microsatellite variation in A-genome species of rice [J]. Genome,2001,44(04):658-66.
    [145]Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis [J]. Mol Breeding,1996,2(03):225-38.
    [146]杨学辉,袁洁,陈小均,等.贵州旱稻种质资源的SSR遗传多样性分析[J].分子植物育种.2009,7(05):890-6.
    [147]王一平,魏兴华,华蕾,等.不同地理来源旱稻种质资源的遗传多样性分析[J].作物学报.2007,33(12):2034-40.
    [148]刘炜,李自超,史延丽,等.利用SSR标记进行粳稻品种的遗传多样性研究[J].西南农业学报,2005,18(05):509-13
    [149]王艳红,王辉,高立志.普通野生稻Oryza rufipogon Griff.的SSR遗传多样性研究[J].西北植物学报,2003,23(10):1750-4.
    [150]赵勇,杨凯,Cheema A A,等.利用水稻功能基因SSR标记鉴定水稻种质资源[J].中国农业科学,2002,35(04):349-53.
    [151]石庆华,李木英,许锦彪,等.高温胁迫对早稻根系质膜ATPase活性及NH4+吸收的影响[J].作物学报,2006,32(07):1044-8.
    [152]赵华绥,帅晋仁.程良怀.协青早A的特征特性和利用研究[J].杂交水稻,1986.3:9-11.
    [153]赵华绥,帅晋仁,程良怀.协青早不育系选育[J].杂交水稻,1986,4:9-13.
    [154]王胜军,陆作楣,万建民.采用表型和分子标记聚类研究杂交籼稻亲本的遗传多样性[J].中国水稻科学,2006,20(05):475-80.
    [155]Zhang J, Nilda R B, Ma K. Genetic diversity and relationship of weedy rice in Taizhou City Jiangsu Province, China [J]. Rice Science,2008,15(04):295-302.
    [156]张天真,主编.作物育种总论[M].中国农业出版社,2003,20-22.
    [167]Hurkman W J, Wood D F. High temperature during grain fill alters the morphology of protein and starch deposits in the starchy endosperm cells of developing wheat (Triticum aestivum L.) grain [J]. Journal of agricultural and food chemistry,2011,59(09):4938-46.
    [158]Kintisch E. Global warming:Projections of climate change go from bad to worse, scientists report [J]. Science,2009,323(5921):1546-7.
    [159]David R. E, Briony H, Philip D. J, et al. Maximum and minimum temperature trends for the globe [J]. Science,1997,277(18):364-7.
    [160]Sanderson M G, Hemming D L, Betts R A. Regional temperature and precipitation changes under high-end (>/=4 degrees C) global warming [J]. Philosophical transactions Series A, Mathematical, physical, and engineering sciences,2011,369(1934):85-98.
    [161]陈秀晨.杂交中稻耐热性生理生化及聚类分析的相关研究[D];南昌大学,2008,硕士学位论文.
    [162]张宪政,主编.作物研究法[M].北京:中国农业出版社,1992,197-212.
    [163]Michiels C, Raes M, Toussaint O, et al. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress [J]. Free radical biology & medicine, 1994,17(03):235-48.
    [164]Singer A L, Bunnell S C, Obstfeld A E, et al. Roles of the proline-rich domain in SLP-76 subcellular localization and T cell function [J]. The Journal of biological chemistry,2004, 279(15):15481-90.
    [165]Tashiro T and Wardlaw 1 F. The effect of high temperature on kernel dimension and the type and occurrence of kernel damage in rice [J]. Australian Journal of Agricultural Research,1991, 42(03):485-96.
    [166]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(04):237-43.
    [167]潘瑞炽,主编.植物生理学(第五版)[M].北京:高等教育出版社,2004:56-94.
    [168]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,1:15-21.
    [169]Dolferus R, Ji X, Richards R A. Abiotic stress and control of grain number in cereals [J]. Plant science:an international journal of experimental plant biology,2011,181(04):331-41.
    [170]Craufurd P Q, Wheeler T R. Climate change and the flowering time of annual crops [J]. Journal of experimental botany,2009,60(09):2529-39.
    [171]Challinor A J, Ewert F, Arnold S, et al. Crops and climate change:progress, trends, and challenges in simulating impacts and informing adaptation [J]. Journal of experimental botany. 2009,60(10):2775-89.
    [172]Jiang H, Dian W, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme [J]. Phytochemistry,2003, 63(01):53-9.
    [173]The map-based sequence of the rice genome [J]. Nature,2005,436(7052):793-800.
    [174]Floris M, Mahgoub H, Lanet E, et al. Post-transcriptional regulation of gene expression in plants during abiotic stress [J]. International journal of molecular sciences,2009,10(07): 3168-85.
    [175]Mcmanus C J, Graveley B R. RNA structure and the mechanisms of alternative splicing [J]. Current opinion in genetics & development,2011,21(04):373-9.
    [176]Reijans M, Lascaris R, Groeneger A O, et al. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae [J]. Genomics,2003, 82(06):606-18.
    [177]Wang L, Zhou B, Wu L, et al. Differentially expressed genes in Populus simonii x Populus nigra in response to NaCl stress using cDNA-AFLP [J]. Plant science:an international journal of experimental plant biology,2011,180(06):796-801.
    [178]Suprunova T, Krugman T, Distelfeld A, et al. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley [J]. Plant molecular biology,2007,64(1-2):17-34.
    [179]Li Q-F, Sun S S M, Yuan D-Y, et al. Validation of Candidate Reference Genes for the Accurate Normalization of Real-Time Quantitative RT-PCR Data in Rice During Seed Development [J]. Plant Molecular Biology Reporter,2009,28(01):49-57.
    [180]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method [J]. Methods,2001,25(04):402-8.
    [181]Guo Y Q, Tian Z Y, Qin G Y, et al. Gene expression of halophyte Kosteletzkya virginica seedlings under salt stress at early stage [J]. Genetica,2009,137(02):189-99.
    [182]Hwang S, Kim S, Shin H, et al. Context-dependent transcriptional regulations between signal transduction pathways [J]. BMC bioinformatics,2011,12:19, doi:10.1186/1471-2105-12-19.
    [183]Bordo D, Bork P. The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations [J]. EMBO reports,2002,3(08):741-6.
    [184]Lu J, Bao Q, Wu J, et al. CSCDB:the cAMP and cGMP signaling components database [J]. Genomics,2008,92(01):60-4.
    [185]Hatzfeld Y, Saito K. Evidence for the existence of rhodanese (thiosulfate:cyanide sulfurtransferase) in plants:preliminary characterization of two rhodanese cDNAs from Arabidopsis thaliana [J]. FEBS letters.2000,470(02):147-50.
    [186]Pantoja-Uceda D, Lopez-Mendez B. Koshiba S. et al. Solution structure of the rhodanese homology domain At4g01050(175-295) from Arabidopsis thaliana [J]. Protein science:a publication of the Protein Society.2005.14(01):224-30.
    [187]Circu M L, Aw T Y. Reactive oxygen species, cellular redox systems, and apoptosis [J]. Free radical biology & medicine,2010,48(06):749-62.
    [188]Teixeira F K, Menezes-Benavente L, Margis R, et al. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family:inferences from the rice genome [J]. Journal of molecular evolution,2004,59(06):761-70.
    [189]Faltin Z, Holland D. Velcheva M, et al. Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation [J]. Plant & cell physiology,2010, 51(07):1151-62.
    [190]Shen W, Wei Y, Dauk M, et al. Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana:evidence for a mitochondrial glycerol-3-phosphate shuttle in plants [J]. FEBS letters,2003,536(1-3):92-6.
    [191]Molin M, Blomberg A. Dihydroxyacetone detoxification in Saccharomyces cerevisiae involves formaldehyde dissimilation [J]. Molecular microbiology,2006,60(04):925-38.
    [192]Herbert B. Advances in protein solubilisation for two-dimensional electrophoresis [J]. Electrophoresis,1999,20(4-5):660-3.
    [193]Sarma A D, Oehrle N W, Emerich D W. Plant protein isolation and stabilization for enhanced resolution of two-dimensional polyacrylamide gel electrophoresis [J]. Analytical biochemistry, 2008,379(02):192-5.
    [194]Anderson L, Aanderson N G. High resolution two-dimensional electrophoresis of human plasma proteins [J]. Proceedings of the National Academy of Sciences of the United States of America,1977,74(12):5421-5.
    [195]O'Farrell P H. High resolution two-dimensional electrophoresis of proteins [J]. The Journal of biological chemistry,1975,250(10):4007-21.
    [196]Walton S P, Jayaraman A. Proteomics:technology development and applications [J]. Expert review of proteomics,2009,6(01):23-5.
    [197]Sanchez J C, Hochstarsser D F. High-resolution, IPG-based, mini two-dimensional gel electrophoresis [J]. Methods Mol Biol,1999,112:227-33.
    [198]Keidel E M, Dosch D, Brunner A, et al. Evaluation of protein loading techniques and improved separation in OFFGEL isoelectric focusing [J]. Electrophoresis.2011,32(13):1659-66.
    [199]Keating D H, Shulla A, Klein A H, et al. Optimized two-dimensional thin layer chromatography to monitor the intracellular concentration of acetyl phosphate and other small phosphorylated molecules [J]. Biological procedures online,2008,10(01):36-46.
    [200]Poon H F. Abullah L, Reed J, et al. Improving image analysis in 2DGE-based redox proteomics by labeling protein carbonyl with fluorescent hydroxylamine [J]. Biological procedures online, 2007,9(01):65-72.
    [201]Kahn P. From genome to proteome:looking at a cell's proteins [J]. Science.1995.270(5235): 369-70.
    [202]Wilkins M R, Sanchez J C, Gooley A A, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it [J]. Biotechnology & genetic engineering reviews,1996,13:19-50.
    [203]Kennedy D. The importance of rice [J]. Science,2002,296(5565):13.
    [204]Tsugita A, Kawakami T, Uchiyama Y, et al. Separation and characterization of rice proteins [J]. Electrophoresis,1994,15(05):708-20.
    [205]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical biochemistry,1976,72: 248-54.
    [206]Rabilloud T. Silver staining of 2-D electrophoresis gels [J]. Methods Mol Biol,1999,112: 297-305.
    [207]Sinha P, Poland J, Schnolzer M, et al. A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis [J]. Proteomics,2001,1(07):835-40.
    [208]Hochstrasser D F, Patchornik A, Merril C R. Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining [J]. Analytical biochemistry, 1988,173(02):412-23.
    [209]Yan J X, Wait R, Berkelman T, et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry [J]. Electrophoresis,2000,21(17):3666-72.
    [210]Heukeshoven J, Dernick R. Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels [J]. Electrophoresis,1988,9(01): 28-32.
    [211]Wang X. Li X, Li Y. A modified Coomassie Brilliant Blue staining method at nanogram sensitivity compatible with proteomic analysis [J]. Biotechnology letters,2007,29(10): 1599-603.
    [212]Chen H, Cheng H, Bjerknes M. One-step Coomassie brilliant blue R-250 staining of proteins in polyacrylamide gel [J]. Analytical biochemistry,1993,212(01):295-6.
    [213]Pink M, Verma N, Rettenmeier A W, et al. CBB staining protocol with higher sensitivity and mass spectrometric compatibility [J]. Electrophoresis,2010,31(04):593-8.
    [214]Choi J K, Yoo G S. Fast protein staining in sodium dodecyl sulfate polyacrylamide gel using counter ion-dyes, Coomassie brilliant blue R-250 and neutral red [J]. Archives of pharmacal research,2002,25(05):704-8.
    [215]Brown R C, Lemmon B E. Stone B A, et al. Cell wall (1-->3)-and (1-->3.1-->4)-beta-glucans during early grain development in rice (Oryza sativa L.) [J]. Planta,1997,202(04):414-26.
    [216]Bao S, Corke H, Sun M. Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.) [J]. Theor Appl Genet,2002, 105(6-7):898-905.
    [217]Xue Y, Zhou Y, Wu T. et al. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping [J]. Molecular cell,2009,36(06):996-1006.
    [218]Black D L, Grabowski P J. Alternative pre-mRNA splicing and neuronal function [J]. Progress in molecular and subcellular biology,2003,31:187-216.
    [219]Black D L. Protein diversity from alternative splicing:a challenge for bioinformatics and post-genome biology [J]. Cell,2000.103(03):367-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700