水稻耐铝毒QTL分析与精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用Kinmaze/DV85重组自交系群体、Nipponbare/Kasalath回交重组自交系群体以及其置换系群体、Asominori/IR24重组自交系群体和以IR24为背景的Asominori染色体片段置换系群体进行了耐铝毒QTLs分析。并在第9染色体上定位了一个稳定表达的耐铝毒QTL。据此,利用目标QTL对应的置换系与背景亲本杂交构建次级F_2群体,将稳定表达的QTL分解为单基因,并精细定位,为水稻抗铝毒QTL图位克隆奠定基础。主要结果如下:
     1利用重组自交系群体检测水稻耐铝毒QTLs
     利用Kinmaze/DV85 81个重组自交家系(RIL)作图群体,采用苗期单营养液水培鉴定方法,以相对根伸长量(RRE)作为耐铝毒性状的表型值,分析亲本和重组自交系群体对铝毒的耐性表现。利用Windows QTL Cartographer软件共检测到5个耐铝毒QTLs,分别位于第1、5、8、9和11染色体上,各个QTL的贡献率在8.64%~18.60%之间,其中,位于第5、8和11染色体上的QTLs对铝毒的抗性基因来自亲本DV85,位于第1和9染色体上的QTLs对铝毒的抗性基因来自亲本Kinmaze。结合前人研究结果,讨论了稳定表达的耐铝毒基因座,为进一步水稻耐铝毒分子标记辅助选择育种和耐铝毒基因的图位克隆奠定了基础。
     2利用回交重组自交系群体检测水稻耐铝毒相关性状QTLs
     利用98个株系组成的Nipponbare(japonica)/Kasalath(indica)∥Nipponbare(japonica)回交重组自交系(backcross inbred lines,BIL)群体,采用苗期水培鉴定方法,测定了亲本及98个BILs在对照根伸长量、处理根伸长量以及由此计算得到的相对根伸长量。三个性状总共检测到7个QTLs,其中对照根伸长量分别在第6、8和9染色体上检测到3个QTLs;处理根伸长量在第4染色体上检测到1个QTL;相对根伸长量分别在第5、9和10染色体上检测到3个QTLs。位于9和10染色体上的qRRE-9和的贡献率为9.7%和11.8%,对铝毒耐性的增效等位基因来自Nipponbare;位于第5染色体的qRRE-5的贡献率为9.8%,增效等位基因来自Kasalath。相对根伸长量检测的3个QTL中qRRE-5显示与玉米第6染色体上的一个耐铝毒主基因正同源。另一个qRRE-9在染色体上的位置与先前利用不同群体报道的耐铝毒QTL位置相近。在第9染色体上检测到对照根伸长量和相对根伸长量共有的QTL也表明此QTL的候选基因的功能可能与根生长速率相关。而qRRE-10为新检测到的耐铝毒基因座。同时,利用对应的置换系我们验证了这些QTLs的功能。这些结果为通过分子标记辅助选择和聚合QTLs来增进水稻铝毒耐性提供了可能。
     3水稻耐铝毒QTL分析与精细定位
     (1)利用Asominori×IR24的重组自交系群体在2004年检测水稻耐铝毒QTLs,结果发现重组自交系群体在相对根伸长量的次数分布图呈现正态分布,并出现双向超亲遗传现象;分别在第1、9、11染色体上检测到一个耐铝毒加性效应QTL;其中位于第9染色体上的QTL qRRE-9在不同的群体中都重复出现,该QTL的稳定表达的QTL。利用以IR24为遗传背景的全基因组片段置换系(CSSL)群体的相关株系,验证了上述QTLs等位基因的功能和表达稳定性。在水稻中新检测到的qRRE-11也显示与玉米第10染色体上存在的一个主效的耐铝毒基因相一致。
     (2)利用QTL qRRE-9对应的1个置换系CSSL51与IR24回交和自交,构建次级F_2群体(192个单株,2004年南京)及其F_3群体(192个株系,2005年南京),将QTL qRRE-9分解为单基因(Alt-9)。应用6对SSR引物,结合CSSL51×IR24次级F_2群体192个单株的分子数据和F_2、F_3群体的耐铝毒表型数据,将Alt-9基因定位在SSR标记RM553和RM215之间。
     2005年在南京,将CSSL51×IR24次级F_2群体扩大到1043个单株。利用本研究中开发的SSR标记和InDel标记和Zhang QF等(1994)“隐性极端个体基因作图”的分析方法,调查224个耐铝毒极端个体的分子数据,将Alt-9基因精细定位在RM24702和ID47-2之间,距离RM24702和ID47-2分别为0.90 cM,并与该区间中的SSR标记RM5765共分离。
     4 T-DNA插入产生的水稻铝毒敏感突变体的遗传分析
     通过筛选水稻T-DNA插入突变体,获得一个铝毒敏感的突变体。在100μM Al~(3+)浓度下,野生型亲本Nipponbare的根伸长被抑制了34%,而突变体根伸长量被抑制59%。对该铝毒敏感突变体进行遗传分析的结果表明,分离群体后代中出现铝毒敏感:耐铝毒分离比率为3∶1,表明控制耐铝毒的基因是一个隐性单基因。对突变体及其后代分离群体做Basta和潮霉素抗性检测及PCR分子检测,证实该突变体是由T-DNA插入所引起的,突变表型与T-DNA共分离。该材料可用于插入座位的基因克隆。
Aluminum (Al) toxicity is considered as one of the primary causes of low rice productivity on acidupland and lowland acid sulfate soils. In the present study, different populations were used to detectquantitative trait loci (QTLs) for Aluminum tolerance. Meanwhile, one of stable QTLs were dissectedinto single genes using secondary F_2 populations, derived from the cross between target CSSLs andgenetic background parent, IR24. Then, fine mapping was further conducted for these single genesusing the data of SSR and InDel markers and phenotypic evaluation. The results thus obtained shouldbe useful for rice MAS breeding and map- based cloning of target QTLs. The main conclusions are asfollows:
     1 Mapping of quantitative trait loci associated with aluminum tolerance inrice (Oryza sativa L.), using recombinant inbred lines
     In this study, a mapping population of 81 F_(11) lines (recombinant inbred lines: RILs),derived from a cross between a japonica variety Kinmaze and an indica variety DV85 bythe single-seed descent methods, was used to detect quantitative trait loci (QTLs) forAluminum tolerance. Aluminum tolerance in roots of two cultivars (Asominori and IR24)of rice was studied using relative root length (RRL) and relative root elongation (RRE).Results indicated that RRE is a parameter more directly related to Al tolerance andconvenient than RRL Furthermore, relative root elongation (RRE) of scedlings whichgrew on nets floating on 0.5mM CaCl_2 (pH 4.5) solution with Al stress or non-stressconditions, was evaluated for the Al toxicity tolerance of RILs and the parents at seedlingstage. QTL analysis was performed with Windows QTL Cartographer 1.13a program bycomposite interval mapping, as the result, five QTLs controlling Aluminum toxicitytolerance for RRE were detected on chromosomes 1, 5, 8, 9 and 11, respectively.Individual QTL accounted for 8.64%~18.60%of the phenotypic variation in the RILpopulation. In the five QTLs for RRE, Kinmaze contributed favorable alleles (lessimpaired by stress) for qRRE1 and qRRE9, while DV85 contributed favorable alleles forqRRE5, qRRE8 and qRRE11. Comparing with the other mapping results, QTLs for RRE,which mapped on chromosomes 1、8、9 and 11, appear to be consistent among different rice populations. These QTLs would be highly useful in breeding cultivars tolerant to Altoxicity in marker-assisted selection (MAS) program and map-based cloning forAl-tolerance genes.
     2 Identification of quantitative trait loci associated with aluminum tolerancein rice (Oryza sativa L.), using backeross inbred lines
     Quantitative trait loci (QTL) analysis for Al tolerance was performed in rice using amapping population of 98 BC_1F_(10) lines (backcross inbred lines: BILs), derived from across of Al-tolerant cultivar of rice (Oryza sativa L. cv. Nipponbare) and Al-sensitivecultivar (cv. Kasalath). Three characters related to Al tolerance, including root elongationunder non-stress conditions (CRE), root elongation under Al stress (SRE) and the relativeroot elongation (RRE) under Al stress versus non-stress conditions, were evaluated for theBILs and the parents at seedling stage. A total of seven QTLs for the three traits wereidentified. Among them, three putative QTLs for CRE (qCRE-6, qCRE-8 and qCRE-9)were mapped on chromosomes 6, 8 and 9, respectively. One QTL for SRE (qSRE-4) wasidentified on chromosome 4. Three QTL_s (qRRE-5, qRRE-9 and qRRE-10) for RRE weredetected on chromosomes 5, 9, 10 and accounted for 9.7%-11.8%of total phenotypicvariation. Interestingly, the QTL qRRE-5 appears to be syntenic with the genomic regioncarrying a major Al tolerance gene on chromosome 6 of maize. Another QTL, qRRE-9,appears to be similar among different rice populations, while qRRE-10 is unique in theBIL population. The common QTLs for CRE and RRE indicate that candidate genesconferring Al tolerance in the rice chromosome 9 may be associated with root growth rates.The existence of QTLs for Al tolerance was confirmed in substitution lines forcorresponding chromosomal segments. These results also provide the possibilities ofenhancing Al tolerance in rice through using marker-assisted selection (MAS) andpyramiding QTLs.
     3 QTL analysis and fine-mapping for aluminum tolerance in rice
     (1) Aluminum (Al) toxicity is considered as one of the primary causes of low riceproductivity on acid upland and lowland acid sulfate soils. In the present study,quantitative trait loci (QTLs) controlling Al tolerance based on relative rootelongation (RRE) were dissected using a complete linkage map and arecombinant inbred lines (RILs) derived from a cross of Al-tolerant japonica cultivar Asominori and Al-sensitive indica cultivar IR24. A total of three QTLs(qRRE-1, qRRE-9 and qRRE-11) were detected on chromosomes 1, 9 and 11 withLOD score ranging from 2.64 to 3.60 and the total phenotypic variance explainedfrom 13.5%to 17.7%. The Asominori alleles were all associated with Altolerance at all the three QTLs. The existence of these QTLs was confirmed usingAsominori chromosome segment substitution lines (CSSLs) in IR24 geneticbackground (IAS). By QTL comparative analysis, the two QTLs (qRRE-1 andqRRE-9) on chromosomes 1 and 9 appeared to be consistent among different ricepopulations while qRRE-11 was newly detected and syntenic with a major Altolerance gene on chromosome 10 of maize. This region may provide animportant case for isolating genes responsible for different mechanisms ofaluminum tolerance among different cereals. These results also provide thepossibilities of enhancing Al tolerance in rice breeding program bymarker-assisted selection (MAS) and pyramiding QTLs.
     (2) Phenotypic values were significantly different between the recurrent parent,cultivar IR24, and the six CSSLs harboring qRRE-9 allele, indicating the effectsof the qRRE-9 allele were significant and stable. Based on F_2 and F_3 populationsderived from the cross of CSSL51 and IR24, the QTL qRRE-9 was dissected intoa single gene, namely, the Alt-9 allele in Asominori was a recessive gene, Alt-9,controlling Aluminum tolerance. Then, the Alt-9 gene was further mappedbetween RM24702 and ID47-2 on chromosome 9, and co-separated withRM5765, using the 1043 CSSL51/IR24 F_2 plants and SSR/InDel markers.
     4 Selection and identification of aluminum-sensitive mutant by T-DNAinsertion in Rice (Oryza sativa L.)
     As the nearly completed rice genome sequence is currently public available, T-DNAinsertional mutagenesis has been successfully used as a powerful tool to identify a numberof genes in rice. To identify aluminum-responsive genes in rice, we screened T-DNAtagging lines that had been subjected to aluminum toxicity stress at 100μM Al~(3+) (pH 4.5).The T-DNA-tagged lines were previously constructed through transformation of vectorpDsBar1300 into Nipponbare (Oryza sativa L. subsp, japonica cv. Nipponbare) usingAgrobacterium mediated methods. Vector pDsBar1300 was based on pCAMBIA1300,with an insertion of Ds elements harboring a PHOSPHINOTHRICIN (PPT)-resistance gene bar into the multicloning site of the T-DNA fight side. On the left side of the T-DNA,there is a hygromycin-resistant gene under the control of the CaMV35S promoter forselecting rice transformants. This T-DNA was of the nopalinetype. An aluminum-sensitivemutant caused by T-DNA insertion in rice was identified by measuring root elongationduring a 24-h period. Root elongation of Nipponbare was inhibited by 34%after exposureto100μM Al~(3+) for 24h, while that of the Aluminum-sensitive Mutant was inhibited by59%. Genetic analysis of the mutant showed that the phenotype of relative root elongationin the segregating populations derived from the T-DNA heterozygotes fit the ratio of 3:1.Test for Basta resistance and hygromycin resistance showed the aluminum toleranceplants were all susceptible whereas the aluminum sensitivity plants were resistant, and theratio of resistant and susceptible plants was nearly 3:1, which indicated that thealuminum-sensitive mutant was co-segregated with Basta resistance and hygromycinresistance. Furthermore, the aluminum-sensitive mutant caused by T-DNA insertion wasconfirmed by T-DNA detection using PCR method. This Aluminum-sensitive mutant willbe used for isolation of the tagged gene in rice.
引文
Aida Y, Tsunematsu H, Doi K, et al. Development of series of introgression lines of Japonica in the background of Indica rice. Rice Genetics Newsletter, 1997, 14:41-43
    Alluri K. Screening rice varieties in acid upland soils. In: Progress in upland rice research, 1986, pp. 263-270. International Rice Research Institute. Manila, Philippines.
    Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 15503-15507
    Aniol A, Gustafson J P. Chromosome location of genes controlling aluminum tolerance in wheat, rye andtriticale. Canadian Journal of Genetics and Cytology, 1984, 26: 701-705.
    Aniol A. 1984. Introduction of aluminum tolerance by low doses of aluminum in the nutrient solution. Plant Physiology, 76: 551-555
    Ashikari M, Wu JZ, Yano M, et al. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the a-subunit of GTP-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96:10284-10289
    Azpiroz-Leehan R, Feldmann KA. T-DNA insertion mutagenesis in Arabidopsis: Going back and forth. Trends in Genetics, 1997, 13:152-156
    Barcelo J, Poscllenrleder CH, wzquez MD, Gunse B. Aluminum phytotoxicity: A challenge for plant scientists. Fertilizer Research, 1996, 43: 217—223
    Basten CJ, Weir BS, Zeng ZB. QTL Cartographer version 1.13: A reference manual and tutorial for QTL mapping. 1999, World Wide Web URL: Http://statgen.ncsu.edu/qtlcart/cartographer.html
    Basu U, Basu A, Taylor GJ. Differential exudation polypeptides by roots of aluminum-tolerance and-sensitive cultivars Triticum aestivum L. In response to aluminum stress. Plant Physiology, 1994b, 106: 151-158
    Basu U, Godbold D, Taylor GJ. Aluminum tolerance In Triticum aestivum L. associated with enhanced exudation of malate. Journal Plant Physiology, 1994a, 144:745—753
    Bell LC, Edwards DG. The role of aluminum acid soil Infertility In M. Latham (ed. Proceedings of the first regional seminar on soil management under humid conditions in Asia and Pacifi Phitsanulok. Thailand.1986, pp: 201-223.
    Blarney FPC. Effects of aluminum, OH: A1 and P: A1 molar ratios, and ionic strength on soybean root elongation in solution culture. Soil Science, 1983, 136:197-209
    Buol S W, Eswaran H. Assessment and conquest of poor soils. In: Maranville, J W. (ed.), Adaptation of Plants to Soil Stresses. Intsormil Publication No. 94-2, University of Nebraska, Lincoln. 1993, 17-27.
    Caldwell CR. Analysis of aluminum and divalent cation on binding to wheat root plasma membrane protein using terbium phosphorescence. Plant Physiology, 1989, 91:233—241
    Campbell TA, Jackson PR, Xia ZL. Effects of aluminum stress of alfalfa root proteins. Journal of Plant Nutrition, 1994, 17:461-471
    Cansse MA, Fulton TM, Cho YG, et al. Saturated molecular map of rice genome based on an interspecic backcross population. Genetics, 1994, 138:1251-1274
    Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971
    Cocker KM, Evans DE, Hodson MJ. The amelioration of aluminum toxicity by silicon in wheat: malate exudation as evidence for an in plant mechanism. Planta, 1998, 204:318-323
    Cogliatti DH, Santa MGE. Influx and efflux of phosphorus in roots of wheat plants in non-growth-limiting concentrations of phosphorus. Journal of Experimental Botany, 1990, 41: 601-607
    Cruz Ortega R, Cushman JC, Ownby JD. cDNA clones encoding 1, 3-beta-glucanase and a fimbrin-like cytoskelet al protein are induced by A1 toxicity in wheat roots. Plant Physiology, 1997, 114: 1453-1460:
    Delhaize E, Ryan PR Aluminum toxicity and tolerance in plants. Plant Physiology 1995, 107:315-321
    Delhaize E, Ryan PR, Randall PJ. Aluminum tolerance In wheat (Triticum aestivum L.). Ⅱ. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiology, 1993, 103:695-702
    Delhaize E, Ryan PR. Aluminum toxicity and tolerance in plants. Plant Physiology 1995 (7): 315-321
    Dellaporta SL, Wood T, TB Hicks. A plant DNA mini preparation: version Ⅱ. Plant Molecular Biology Reporter, 1983, 1:19-21
    Dodge CS, Hiatt AJ. Relationships of pH to ion uptake imbalance by carieties of wheat (Triticum aestivum L.) .Agronomy Journal, 1992 (64): 476-481
    Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice. Rice Genetics Newsletter, 1997, 14:39-41
    Doi K, Izawa T, Fuse T, et al. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independent of Hd1. Genes & Development, 2004, 18:926-936
    Ezaki B, Tsugita S, Matsumoto H. Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isoenzymes in aluminum ion stress. Physiologia Plantarum, 1996, 96:1, 21-28;
    Ezaki bunichi et al. Different Mechanisms of four Aluminum (A1)oresistant transgenes for A1 toxicity in Arabidosis. Plant Physiology, 2001 127 918-927;
    Fageria NK, Wright RJ, Baligar VC. Rice cultivars response to aluminum in nutrient solution. C ommunicntions in Soil Science and Plant Analysis, 1988, 19: 1133-1142.
    Falconer DS. Introduction to quantitative genetics, 2nd edn, London and New York, 1981
    Fink W, Liefland M, Mendgen K. Comparsion of various stress responses in oat in compatible and nonhost resistant interactions with rust fungi. Molecular Plant Pathology, 1990, 37:309—321
    Foy CD, Lee EH. Differential aluminum tolerances of barley cultivars related to organic acids in their roots. Journal of Plant Nutrition, 1987, 10:1089-1101
    Foy CD. Plant adaptation to acid, A1-toxic soils. Communications in Soil Science and Plant Analysis, 1988, 19:959-987
    Foy, C. D. Physiological effects of hydrogen, alumlnum and manganese toxicities in acid soils.In: Adams, F.ed., Soil Acidity and liming.2nd.Ed., Social Soil Science and Social Agronomy, 1984, 12:57-97
    FoyCD, Burns GR, Brown JC. Differential aluminum tolerance of two wheat varieties associated with plant induced pH changes around their roots. Soil Science Society of American Proceeding, 1965b, 29:64-67
    Franzmann LH, Yoon ES, Meinke DW. Saturating the genetic map of Arabidopsis thaliana with embryonic mutations. Plant Journal, 1995, 7:341-350
    Frary An, Nesbitt TC, Frary Am, et al. fw2.2: A quantitative trait locus key to the evolution of Tomato fruit size. Science, 2000, 289:85-88
    Gallardo F, Borie F, Alvear M, Baer EV. Evaluation of aluminum tolerance of three Barley cultivars by two short—term screening methods and field experiments. Soil Science and Plant nutrition, 1999, 45:713-719
    Gallego FJ, Benito C. Genetic control of aluminum tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics, 1997, 95: 393-399.
    Gallego FJ, Calles B, Benito C. Molecular markers linked to the aluminum tolerance gene Altl in rye. Theoretical and Applied Genetics, 1998, 97: 1104-1109.
    Goff S, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L ssp. japonica). Science, 2002, 296:92-100
    Grabski S, Schindler M. Aluminum induced rigor within the action network of soybean cells. Plant Physiology, 1995, 108:897-901
    Gunse B, Poschenieder C, Barcelo J. Water transpot properties of roots and root cortical cells in proton-and A1-stressed maize varieties. Plant Physiology, 1997, 113:595-602
    Hammond KE, Evans DE, Hidson MJ. Aluminum/silicon interaction in barley (hordeum Vulgare L.) seedlings. Plant and Soil, 1995, 173:89—95
    Huang JW, Grunes DL, Kochian LV. Aluminum effect on calcium translocation In A1-tolerant and A1-sensitive Wheat (Triticum aestivum L.) cultivar. Plant Physiology, 1993, 102:85-93
    Huang JW, Pellet DM, Papermik LA. Aluminum interaction with voltage-dependent calcium transport in plasma membrane vesicles isolaed from roots of aluminum-sensitive and tolerant whteat cultivars. Plant Physiology, 1996, 110: 561-569
    Hue NV, Craddock GR, Adams F. Effect of organic acids on aluminum toxicity in subsoil. Soil Science and Plant Nutrition, 1986, 50:28-34
    International Rice Research Institute, Annual report for 1977. 1978. IRRI, Manila, Philippines
    Ishikawa S, Wagatsuma T, Ikarashi T. Comparative toxicity of Al~(3+), Yb~(3+)and la~(3+)to root-tip cells differing in tolerance to high Al~(3+)in terms of ionic potentials of dehydrated trivalent cations. Soil Science and Plant Nutrition, 1996, 42:613-625
    Ishikawa S, Wagatsuma T, Takano T. The plasma membrane Intactness of root-tip cells is a primary factor for Al tolerance in cultivars of five species. Soil Science and Plant Nutrition 2001, 47: 489-501
    Jeon JS, Lee S, Jung K H, et al. T-DNA insertional mutagcnesis for functional genomics in rice. Plant Journal, 2000, 22: 561-570.
    Jcon JS, An G. Gone tagging in rice: a high throughput system for functional gcnomics. Plant Science, 2001, 161:211-219
    Jones DL, Kochian LV. Aluminum inhibition of the inositol 1, 4, 5-trisphosphatc signal transduction Pathway in wheat roots: a role in aluminum toxicity. Plant Cell, 1995, 7:1913-1922
    Jones DL. Orgnic acid in the rhizospherc-a critical review. Plant and Soil, 1998, 205:25-44
    Keightley PD, Bulfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genetics Research, 1993, 62:195-203
    Kennedy CW, Smith WCJr, Ba MT. Root caation-exchange capacity of cotton culivars in relation to aluminum toxicity. Journal of Plant Nutrition, 1986, 9:1123-1133
    Khatiwada SP, Senadhira D, Carpena AL, et al. Variability and genetics of tolerance for aluminum toxicity in rice(Oryza sativa L.). Theoretical and Applied Genetics, 1996, 93: 738-744
    Kinralde TB, Parker DR. Cation amelioration of aluminum toxicity in wheat. Plant Physiology,1987b, 83: 546-551
    Kitagawa T, Morishita T, Tachibana Y, Namai H, Ohta. Differential aluminum resistance of wheat varieties and organic acid secretion. Japanese Journal of Soil Science and Plant Nutrition, 1986, 57: 532-358
    Knapp SJ, Bridges WC, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps. Theoretical and Applied Genetics, 1990, 79: 583-592
    Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46:237-260
    Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiology, 2002, 43(10): 1096-1105
    Konzak CF, Polle E, Kittrick JA. Screening several crops for aluminum tolerance. In: M. J. Wright, A.S. Ferrari (Eds.), Plant Adaptation to Mineral Stress in Problem Soils, 1976, pp 311-327. Cornell Univ, Agaric Exp Stn, Ithaca, N.Y.
    Krysan PJ, Young JC, Sussman MR. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell, 1999,11: 2283-2290
    Kubo A, Fujita N, Harada K, et al. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology, 1999b, 121:399-409
    Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genetics Newsletter, 1999a, 16: 104-106
    Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits RFLP linkage maps. Genetics, 1989, 121: 185-199
    Lander ES, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1:174-181.
    Larsen PB, Degenhardt J, Tai CY, et al. Aluminum-resistant Axabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiology, 1998, 117:9-18
    Lazof DB, Glosdwith JQ, Rufty TW. Rapid uptake of aluminum into cells of intact soybean root tips. A mlcroananlytical study using secondary ion mass spectrometry. Plant Physiology, 1994, 106: 1107-1114
    Le Van H, Kuraishi S, Sakurai N. Aluminum induced rapid root inhibition and changes in cell wall components of squash seeding. Plant Physiology, 1994, 106: 971-976
    Li XF, Ma JF, Matsumoto H. Pattern of aluminum—induced secretion of organic acids differs between rye and wheat. Plant Physiology, 2000, 123: 1537-1543
    Li XY, Qian Q, Fu ZM, et al. Control of tillering in rice. Nature, 2003, 422: 618-621
    Li Z K, Pinson S R M, Park W D, et al. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145:453-465
    Lin SY, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Qryza sativa L. using backcross inbred lines. Theoretical and Applied Genetics, 1998, 96: 997-1003
    Lin XY, Wang JL. Mechanisms of adaptation to aluminum toxicity in plant.In Ecotogical Physiology and Genetics of plant Nutrition; Zhang FS cd. China Science and Technology Press:Beijing, China, 1993, 248-290.
    Lincoln S, Daly M, Lander E. Constructing genetics maps with Mapmaker/Exp 3.0 3 rd ed, Whitehead Institute Technical Report, Cambridge, Massachusetts, 1992
    Lincoln SE, Daly MJ, Lander ES. Mapping genes controlling quantitative traits using MAPMAKER/QTL version 1.1: a tutorial and reference manual. 2nd ed. 1993, Cambridge Mass: Whitehead Institute for Biometrical Research.
    Liu JP, Eck JV, Cong B, et al. A new class of regulatory genes underlying the cause of pear-shape tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 13302-13306
    Long D, Martin M, Sunderg M. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: Identification of an albino mutation induced by Ds insertion. Genetics, 1993, 90: 10370-10374
    Lynch JF. Whipps JM. Subtrate flow in the rhizosphere. Plant and soil, 1990, 129: 1-10
    Ma J F, Furukawa J. Recent progress in the research of external Al detoxification in higher plants: a minireview. Journal of Inorganic Biochemistry, 2003, 97: 46-51.
    Ma J F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H. Internal detoxification mechanism of Al in Hydrangea. Identification of Al form in the leaves. Plant Physiology, 1997a, 113:1033-1039
    Ma J F, Nagao S, Sato K, et al. Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. Journal of Experimental Botany, 2004, 55: 1335-1341
    Ma J F, Shen R F, Zhao Z Q, et al. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiology, 2002, 43(6): 652-659
    Ma JF, Hiradate S, Matsumotol-H. High aluminum resistance in buckwheat. Ⅱ. Oxalic acid detoxlfies aluminum Internally. Plant Physiology, 1998, 117:753-759
    Ma JF, Hiradate S. Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta, 2000, 211: 355-360
    Ma JF, Ryan PR, Delhaize E. Ahminium tolerance in plants and the complexing role of organic acids. TRENDS in Plant Science, 2001, Vol.6 (6): 273-278
    Ma JF, Taketa S, Yang ZM. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiology, 2000, 122: 687-694
    Ma JF, Zheng SJ, Matsumeto H. Detoxifying aluminum with buckwheat. Nature,1997b, 390: 569-570
    Macdonald TL, Homplkeys WG, Martin RB. Promotion of tubulin assembly by aluminum ion in Vitro, Science, 1981, 236: 183-186
    Maiko K, Etsuro Y, Naoko KN, et al. Time course study of aluminum—induced callose formation in barley roots as observed by digital microscope and low-vacuum scanning electron microscope. Soil Science and Plant Nutrition, 1999, 45:701-712
    Mao CZ, Yang L, Zhong BS, et al. Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes. Journal of Zhejiang University Science, 2004,5: 634-643
    Marshner H, Romheld V, Cakmak I. Root induced changes of nutrient availability in the rhizosphere. Journal of Plant Nutrition, 1987, 10: 1175-1184
    Martin F, Rubini P, Cote R. Aluminum polyphosphate conplenes in the mycorrhizal basidiomysete Laccaris bicolor A 27 Al-nuclear magnetic resonance study. Planta, 1994,194: 241-246
    Martin R. B. Aluminum speciation in biology In Aluminum in Biology and Medicine, ed. DJ Chadwi, CK J Whelan, 1992, pp.5-25.New York: Wiley
    McCouch SR., Teytelman. L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 2002, 9:199-207
    McCouch SR, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14: 11-13
    Mccouch SR, Cho YG, Yano M, et al. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14: 11-13.
    McCouch SR, Teytelman L, Xu YB, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 2002, 9:199-207
    Miftahudin G, Scoles J, Gustafson JP. AFLP markers tightly linked to the aluminum tolerance gene Alt3 in rye (Secale cereale L.). Theoretical and Aplied Genetics, 2002, 104:626-631
    Minella E, Sorrells ME. Aluminum tolerance in barley: Genetic relationships among genotypes of diverse origin. Crop Science, 1992, 32:593-598
    Minocha R, Minoch SC, Long SL. Effects of aluminum on DNA synthesis, cellular polyamines, polyamine biosynthetic enzymes and inorganic in cell suspension cultures of a woody plant,Catiaranthun roseun Physiologia Plantum, 1992, 85: 417-424
    Miyasaka SC, Buta JQ, Howell RK, et al. Mechanism of aluminum tolerance in snapbeans root exudation of citric acid. Plant Physiology, 1991, 96: 737-743
    Minella E, Sorrells ME. Inheritance and chromosome location of Alp, a gene controlling aluminum tolerance in 'Dayton' barley. Plant Breeding, 1997, 116: 465-569
    Miyasaka SC, Kochian LV, Shaft JE, et al. Mechanisms of aluminum tolerance in wheat. An investigation of genotypic difference in rhizosphere pH, K+ and H+ transport, and root-cell membrane potentials. Plant Physiology, 1989, 91: 1188-1196
    Miyoshi K, Ahn BO, Kawakatsu T, et al. PLASTOCHRON 1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 875-880
    Nakazaki T, Okumoto Y, Horibata A, et al. Mobilization of a transposon in the rice genome. Nature, 2003, 421: 170-172
    Nauyen V T, Nguyen B D, Sarkarung S, Martinez C, Paterson A H, Nguyen H T. Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Molecular Genetics Genomics, 2002, 267:772-780
    Nguyen B D, Brar D S, Bui B C, et al. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, ORYZA RUFIPOGON Griff., into indica rice (Oryza sativa L.). Theoretical and Applied Genetics, 2003, 106: 583-593
    Nguyen V T, Burrow M D, Nguyen H T, et al. Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2001, 102: 1002-1010
    Nguyen V T, Nguyen B D, Sarkarung S, et al. Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Molecular Genetics Genomics, 2002, 267:772~780
    Ninamango-Cardenas FE, Guimaraes CT, Martins PR, et al. Mapping QTLs for aluminum tolerance in maize. Euphytica, 2003, 130: 223-232
    Olivett GP, Cumming Gr, Rhtertor B. Membrane potential depolarization of root cap cells precedes aluminum tolerance in snapbean. Piant Physiology, 1995, 109: 123-129
    Ownby JD, Popham HR. Citrate reverses the inhibition of wheat root growth caused by aluminum. Journal of Plant Physiology, 1989, 135:588-591
    Parker DR, Bertsch PM. Formation of the Al~(3+) tridecameic polyeation under diverse synthesis condtions. Environmental Science and Technology, 1992, 26: 914-921
    Pellet DM, Grunes DL, Kochian LV. Organic acid exudation as an aluminum tolerance mechamism in maize (Zea may L. ). Planta, 1995, 196:788-795
    Pellet DM, Papernik LA, John DJ, et al. Involvement of multiple aluminum exclusion mechanism in aluminum tolerance in wheat. Plant and Soil, 1997, 192:63-68
    Pellet DM, Papernik LA, Kochian LV. Multiple aluminum tolerance mechanisms in wheat. Roles of root apical phosphate and malate exudation, Plant Physiology, 1996, 112: 591—597
    Polle E, Konzak C F, Kittrick J A. Visual detection of aluminum tolerance levels in wheat by hemotoxylin staining of seedling. Crop Science, 1978,18: 823-827
    Ponnamperuma FN. Varietal resistance to adverse chemical environements of upland rice soils. In: Major research in upland rice. 1975, pp. 126-142. International Rice Research Institute, Manila, Philippines.
    Qi F, Zhang YJ, Wang S Y, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420:316-320
    Ramachandran S, Sundaresan V. Transposons as tools for functional genomics. Plant Physiology Biochemistry, 2001, 39: 243-252
    Reid DA. Genetic control of reaction to aluminum in winter barley.In: Nilan RA (ed) Barley Genetics Ⅱ. Proc 2nd Int Barley Genet Syrup. Washington State University Press.Pullman, 1970, pp. 409-413
    Renat AJ, Marcelo M, Paulo A. Probing the role of calmodulin in aluminum toxicity in maize. Phytochemistry, 2001, 58: 415-422
    Rengel Z. Role of calcium in aluminum toxicity. New Phytologist, 1992, 121: 499-513
    Richards KD, Snowden KC, Gardner PC. Wali6 and wali7, Genes induced by aluminium in wheat (Triticum aestivum L.) roots. Plant Physiology. 1994 105: 4, 1455-1456;
    Riede CR, Anderson JA. Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Science, 1996, 36: 905-909.
    Ryan P R, Shaft J E, Kochian L V. Aluminum toxicity in roots: Correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiology., 1992, 99: 1193-1200
    Ryan PR, Kinraid TB, Kochian LV. Al~(3+)-Ca~(2+) interactions in aluminum toxicity. Inhibition of root growth is not caused by reduction of calcium uptake. Planta,1994, 192: 98-103
    Ryan PR, Delhalze E, Randsll PJ. Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta, 1995, 196:103-110
    Ryan PR, Reid EJ, Smith FA. Direct evaluation of the Ca-displacement hypothesis for Al toxicity. Plant Physiology, 1997, 113:1351-1357
    Sanguinetti CJ, Dias NE, Simpson AJG. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17:915-919
    Sarkarung S. Screening upland rice for aluminum tolerance and blast diseases. In: Progress in upland rice research, 1986, pp 271-281. International Rice Research Iusititute, Manila, Philippines.
    Sibov S T, Gaspar M, Silva M J, et al. Two genes control aluminum tolerance in maize: genetic and molecular mapping analyses. Genome, 1999, 42: 475~482.
    Silva IR, Smyth TJ, Raper CD, et al. Differential aluminum tolerance in soybean: An evaluation of the role of organic acids. Physiologia Plantarum, 2001, 112: 200-210
    Sivaguru M, James MR, Anbudurai P R, et al. Characterization of differential aluminum tolerance among rice genotypes cultivated in South India. Journal of Plant Nutrition, 1992,15: 233-246
    Snowden KC, Gardner RC. Five genes induced by aluminum in wheat(Triticum aestivum L.)roots. Plant Physiology, 1993, 103: 855-861
    Snowden KC. Aluminum-induced genes indution by toxic met als, low calcium, and wonding and pattern of expression in root tips. Plant Physiology, 1995, 107: 341-348
    Soller M, Beckmann JS. Marker-based mapping of quantitative trait loci using replicated progenies. Theoretical and Applied Genetics, 1990, 67: 25-33
    Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theoretical and Applied Genetics, 1976, 47:35-39
    Subhayda CG, Huang A. Organic acids reduce aluminum toxicity in maize root membranes. Physiologia Plantum, 1986, 68: 189-195
    Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the asubunit of protein kinase CK2. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14): 7922-7927
    Takeuchi Y, Lin SY, Sasaki T, et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theoretical and Applied Genetics, 2003, 107:1174-1180
    Tamas L, Huttova J, Gejdosova V, et al. Accumulation of membrane-bound polypeptides in roots of Al-sensitive and Al—resistant barley cultivars under Al, pH and metal stresses. Biologia, 2001, 56:271-276
    Tang C, Rengel Z, Diatloff E, et al. Responses of wheat and barley to liming on a sandy soil with subsoil acidity. Field Crop Research, 2003, 80: 235-244
    Tang Y, Garvin DF, Kochian LV, et al. Physiological genetics of aluminum tolerance in the wheat cultivar Atlas66. Crops Science, 2002, 42: 1541-1546
    Tang Y, Sorrells ME, Kochian LV et al. Identification of RFLP markers linked to barley aluminum tolerance gene Alp. Crop Science, 2000, 40: 778-782.
    Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics, 1996, 92: 191-203
    Taylor G J, Foy C D. Mechanisms of aluminum tolerance in Triticum aestivum L. I. Differential pH induced by winter cultivars in nutrient solutions. American Journal of Botany, 1985, 72: 695-701
    Taylor G T. The physiology of aluminum tolerance in higher plants. Communications in Soil Science and Plant Analysis, 1988,19: 1179-1194
    Taylor GJ The physiology of aluminum tolerance. In: Sigel H, Sigel A (eds). Metal Ions in Biological Systems: Aluminum and its Role in Biology. Vol. 24. New York: Marcel Dekker, 1988, 165-168
    Taylor GJ. The physology of aluminum phytotoxicity. In H Sigel, A Sigel, eds, Metal Ions in Biological Sysems, Vol 24, Marcel Dekker New York, 1988, pp123-163
    Taylor GJ, Foy CD. Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat) I. Differential pH induced by winter cultivars in nutrient solutions. American Journal of Botany, 1985, 72: 695-701
    Taylor GJ. Overcoming barriers to understanding the cellullar basis of aluminum resistance. Plant and Soil, 1995, 171:89-103
    Tayor GJ, Foy CD. Mechanisms ot aluminum tolerance in triticum aestivum L. (wheat). Ⅳ. The role of alluminum and nitrate nutrition. Canadian Journal of Botany, 1985b, 63:2181-2186
    Tsunematsu H, Yoshimura A, Harushima Y, et al. RFLP framework map using recombinant inbred lines in rice. Breeding Science, 1996, 46:279-284
    Van der Biezen EA, Brandwagt BF, van Leeuwen W, et al. Identification and isolation of the FEEBLY gene from tomato by transposon tagging. Molecular Genetics and Genomics, 1996, 251: 267-280
    Von Uexkull H R, Mutert E. Global extent, development and economic impact of acid soils. In: Date R A, Grundon N J, Raymet G E, Probert M E. Plant-Soil Interactions at Low pH: Principles and Management. Kluwer Academic Publishers, Dordrecht, The Netherland. 1995, 5-19
    Wagatsuma T. Effect of non-metabolic conditions on the uptake of aluminum by plant roots. Soil Science and Plant Nutrition, 1983, 29:323-333
    Wagatsuma T, Yamasaka K. Relationship between differential aluminum tolerance and plant induced pH change of medium among barely cultivars. Soil Science and Plant Nutrition, 1985, 31: 521-535
    Wang DL, Zhu J, Li ZK, et al. Mapping QTLs with epistatic effects and QTLxenvironment interactions by mixed linear model approaches. Theoretical and Applied Genetics, 1999, 99: 1255-1264
    Werner JD, Borevitz JO, Warthmann N, Trainer GT, Eeher JR, Chory J, Weigel D Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 2460-2465
    Wilson AW, Harrington SE, Woodman WL, et al. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoicls. Genetics, 1999, 153: 453-473.
    Wissemeier AH. Aluminum induced callose synthesis in root of soybean. Journal of Plant Physiology, 1987, 129: 487-492
    Wu JZ, Maehara T, Shimokawa T, et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14:525-535
    Wu P, Zhao B, Yan J, et al. Genetic control of seeding tolerance to aluminum toxicity in rice. Euphytica, 1997, 97: 289-293
    Wu P, Liao C Y, Hu B, et al. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theoretical and Applied Genetics, 2000, 100: 1295-1303.
    Xiong L, Liu KD, Dai XK, et al. A high density RFLP map based on the F2 population of a cross between Oryza sativa and O. rufipogon using Cornell and RGP markers. Rice Genetics Newsletter, 1997,14: 110-116.
    Yamamoto T, Kuboki Y, Lin SY, et al. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theoretical and Applied Genetics, 1998, 97: 37-44
    Yamamoto T, Lin HX, Sasaki T, et al. Identification of heading date quantitative trait locus Hd-6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progency. Genetics, 2000, 154: 885-891
    Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive 1 homolog prevents internode elongation and breeding of the Lamina joint. Plant cell, 2000, 12(9): 1591-1606
    Yano M, Katayose Y, Ashikari M, et al. Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant cell, 2000, 12: 2473-2483
    Yano M, Sasaki T: Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology, 1997, 35: 145-153
    Yoshida S, Forno D A, Cock J H. Laboratory manual for physiological studies in rice. IRRI. Manila. Philippines. 1971. p. 53-57
    Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome ( Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92.
    Zelazny LM, Jardine PM. Surtace reactions of aqueous aluminum. In G. Suposito(eds.). Environmental chemistry of aluminum. 1989, CRC Press, Boca Raton, FL.
    Zhang GC, Slaski JJ, Alchambault DJ. Alternaton of plasma membrane lipids in alumlnum-resistant and aluminum—sensitive wheat genotypes in response to aluminum stress. Physiologial Plantum, 1997, 99: 302-308
    Zhang GC, Taylor GJ. Effets of biological inhibitions on kinetics of aluminum uptake by excised roots and purified cell wall material of aluminum-tolerant and aluminum-sensitive cutivars of Triticum aestivum L. Journal of Plant Physiology, 1992, 138: 533-539
    Zhang GC, Taylor GJ. Aluminum activates malate—permeable channels in the apical cells of wheat roots. Plant Physiology, 2001, 125: 1459-1472
    Zhang QF, Shen BZ, Dai XK, et al. Using bulked extremes and recessive class to map genes for photoperiod- sensitive genic male sterility in rice. Theoretical and Applied Genetics, 1994, 91: 8675-867
    Zheng SJ, Ma JF, Matsumoto H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiology, 1998, 117: 745-751
    Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits. In Chen LS, Ruan SG, Zhu J, ed. Advanced topics in biomathematics. Proceedings of international conference on mathematical biology. World Scientific Publishing Co., Singapore, 1998, 321-330
    Zhu Z G, Fu Y P, Xiao H, et al. The Ac/Ds transposition activity in transgenic rice population and the DNA flanking sequence of Ds insertion sites. Acta Phytotaxonomica Sinica, 2003,45 (1): 102-107.
    陈兆贵,王江,张泽民等.水稻Ds插入纯合体的筛选和鉴定.植物生理和分子生物学学报,2003,29(4):337-341
    董爱华,童微星,潘伟槐等,大麦耐Al3+性与诱导培养液pH改变的相关性研究.上海农学报,1999,15:38-41
    方宣均,吴为人,唐纪良.作物DNA标记辅助选择.科学出版社,2002
    盖钧镒,章元明,王建康.植物数量性状遗传体系.科学出版社,2003
    高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179
    何龙飞,刘友良,沈振国等.铝胁迫对小麦根呼吸作用和一些线粒体结合酶活性影响.作物学报,2001 b,27:857-861
    何龙飞,刘友良,沈振国等.铝对小麦根营养元素吸收和分布的影响.电子显微学报,2000,19:685-694
    何龙飞,沈振国,刘友良.铝胁迫对小麦根系液泡膜 ATP酶、焦磷酸酶活性和膜脂组成的效应.植物生理学报,1999,25:350-356
    何龙飞,沈振国,刘友良.铝胁迫对小麦根系液泡膜、ATP酶和膜脂组成的效应.中国农业科学,2001 a,34:526-531
    何龙飞,沈振国,刘友良.植物铝毒害机理研究.广西农业生物科学,2002,21:188-194
    胡红青,李学垣,贺纪正.有机酸对铝氧化物吸附磷的影响.植物营养与肥料学报,2000,6:35-41
    黄淑惠.细菌固定金属的机制.微生物学通报,1992,19:171-173
    李庆逢.中国红壤.北京:科学出版社,1983,74-193
    刘庆华,蒋悟生.铝对植物的毒害.植物学通报,1995,12:24-32
    刘文新,栾兆坤,汤鸿宵.铝的生物可给性及其生态效应研究进展.应用生态学报,1999,10(2):251-254
    陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用主态学报,1999,10:379-382
    莫惠栋.数量性状遗传基础研究的回顾与思考——后基因组时代数量遗传领域的挑战.扬州大学学报(农业与生命科学版),2003,24(2):2003
    王江,李琳,宛新杉等.插入Ds玉米转座因子的水稻转化群体及其分子分析.植物生理学报,2000,26(6):501-506.
    翟虎渠.应用数量遗传,中国农业出版社,2001
    张梅芳,张景六.插入含Ds因子的TDNA产生的水稻脆秆突变株的遗传和分子分析.植物生理与分子生物学学报,2002,28(2):111-116
    朱军.应用混合线性模型定位复杂数量性状基因的方法.浙江大学(自然科学版),1999,33(3):327-335
    朱睦元,周建华.大麦耐铝性与根际pH变化的关系.杭州大学学报:自然科学版1995,22:83-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700