未来网络虚拟化资源管理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网经过几十年的发展,已成为当今世界上覆盖范围最广、规模最大、信息资源最丰富的全球信息基础设施。然而,随着网络规模的不断扩大以及新兴网络通信技术和互联网业务的发展,传统互联网的“僵化”问题逐渐凸显,已经不能适应未来网络的可持续发展,主要表现在可扩展性、可管可控可测性、安全性、可移动性、绿色节能等方面。为此,国内外积极开展未来网络理论的研究工作,涉及未来网络体系结构、网络虚拟化技术、网络测量与预测等研究领域。
     为了从根本上解决当前互联网面临的问题,本论文从网络虚拟化资源管理架构、虚拟化资源分配机制和网络流量预测算法三个方面对未来网络虚拟化资源管理进行深入的研究,主要研究内容及创新包括:
     (1)针对虚拟化资源管理架构可扩展性不强、自治性差、缺乏测量感知能力等问题,本文提出了一种基于预测的智能化分布式虚拟化资源管理架构(IDP-VRMA),采用分层分域的管理策略,实现了对本管理域的“集中式管理和分布式控制”。每个管理域中的管理系统负责接收虚网请求、注册、虚网拓扑分割以及与其他管理域的管理系统联系完成跨域的虚拟化资源分配;集成在底层网络节点内的智能控制器可以自治地执行资源分配、故障修复、威胁处理等;知识处理部分实时监控整个管理域内的网络运行情况,挖掘出有效的知识信息,从而为管理系统和智能控制器执行相关的管理和控制策略提供必要的依据。该架构有效地解决可扩展性问题,自治地实现虚拟化资源配置、网络故障和威胁处理,并且具备测量感知能力,大大提高了虚拟化资源分配的有效性和可靠性。
     (2)在IDP-VRMA架构中,要实时地为动态到达的属于不同SPs的众多虚网请求分配底层网络资源,这些虚网请求有着不同的拓扑结构,以及对多种异构资源的需求和约束,使得多个VNs之间以及与InPs之间存在着复杂的关系,即多个VNs同时竞争底层网络多个组件中的多种资源。为了建模该复杂关系,本文提出了一种基于多维非合作博弈的虚拟化资源分配机制,通过效用函数、价格函数、拥塞函数三部分建模了多维非合作博弈模型中各虚网的总支付函数,并证明了该模型的多维Nash均衡的存在性和唯一性。仿真结果表明,该模型在博弈的各个领域内能够达到多维Nash均衡,有效地抑制VNs的自私行为,公平、合理、高效地分配网络虚拟化资源。
     (3) IDP-VRMA虚拟化资源管理架构下,需要一种稳定、快速并具有良好预测性能的网络流量预测算法。针对这一问题,本文提出了一种具有环形反馈动态池结构的确定回声状态网络(ALR),并应用到网络流量预测中。通过在最简单环形动态池中相邻的神经元之间引入邻接反馈,构建了该模型的动态池,并且设置其输入权值绝对值和内部权值相等,都为r,因此仅仅需要调节一个自由参数,极大地简化了回声状态网络的结构。通过该模型的状态更新方程和输出方程,进一步证明了其良好的记忆能力。仿真结果表明,该模型能够很好地刻画网络流量的自相似性,具有良好的预测性能。
After decades of development, Internet has become a globe information infrastructure with the widest coverage, largest scale and most abundant infor-mation resource in today's world. With the continuous expansion of network scale, as well as the development of new network communication technolo-gy and Internet business, the "ossification" problems of the traditional Internet have become prominent gradually. It has been unable to meet the sustainable development of future network, mainly in scalability, controllability, manage-ability, measurability, security, mobility and green energy. To this end, the research for future network theory has been actively carried out at home and abroad, involved in the research areas of the future network architecture, net-work virtualization technology, network measurement and prediction.
     In order to fundamentally solve the problems of the current Internet, this paper studies the virtual resource management for future network from the as-pects of network virtual resource management architecture, virtual resource allocation mechanism and network traffic prediction algorithm. Major research and innovation include:
     (1) For poor Scalability and autonomy of current network virtual resource management architecture, as well as the lack of measurement&perception, this paper proposes a prediction-based intelligent and distributed virtual resource management architecture (IDP-VRMA). The architecture, using the manage-ment strategy based on multi-layer and multi-domain, realizes the centralized management and distributed control in the local management domain. In each management domain, the management system is responsible for receiving vir-tual network requests, registration, virtual network partition, and contacting with management systems in other management domains to complete cross-domain virtual resource allocation; the intelligent controllers integrated in the substrate network nodes can autonomously perform virtual resource allocation, fault repair, threat handling; the knowledge processing element can monitor the network operation, mine effective knowledge, contributed to perform the corresponding management and control strategies for management system and intelligent controllers. The IDP-VRMA can effectively solve the scalability problem, autonomously implement virtual resource configuration and network failure&threats treatment, have network measurement and perception, greatly improve the validity and reliability of the virtual resource allocation.
     (2) In the IDP-VRMA architecture, the substrate network resource is allo-cated to many dynamic virtual network requests, affiliated with different SPs. These virtual network requests have different topologies, as well as the needs and constraints of various heterogeneous resource. Hence, there exists complex relationships among multiple VNs or between multiple VNs and InP. That is, multiple VNs simultaneously compete for different resource in different com-ponents of the substrate network. To model the complex relationship, this paper proposes a multidimensional non-cooperative game based virtual resource al-location mechanism. That using the utility function, price function and conges-tion function models the total pay function of each virtual network. Moreover, we prove the existence and uniqueness of the multidimensional Nash equilibri-um in the model. The simulation results show that the multidimensional Nash equilibrium can be achieved in various areas of the game model, the selfish be-haviors of the virtual networks are effectively suppressed, and virtual resource is fairly, reasonably, efficiently allocated.
     (3) The IDP-VRMA needs a stable and fast network traffic prediction al-gorithm with good prediction performance. For the problem, this paper pro-poses a deterministic echo state network with a loop-feedback reservoir, and applies it to network traffic prediction. The reservoir of the model is con-structed by introducing adjacent feedbacks between adjacent units based on the simplest loop reservoir structure. The absolute of the input weight is the same as the internal weights, and equal to r. Therefore, only one free param-eter is tuned, which greatly simplifies the echo state network. Furthermore, using state update equation and output equation, we prove the good memory capacity of the model. Simulation results show that the model can characterize the self-similarity of network traffic, and have good prediction performance.
引文
[1]Meyer D, Zhang L, Fall K, et al. Report from the IAB Workshop on Routing and Addressing [J]. RFC2439, September,2007.
    [2]Menth M, Hartmann M, Tran-Gia P, Klein D. Future Internet Routing:Motivation and Design Issues Routing im Internet der Zukunft:Hintergrunde und Gestaltungsansatze [J]. it-Information Technolo-gy,2009,50 (6):358-366.
    [3]Narten T. Routing and Addressing Problem Statement [J]. draft-narten-radir-problem-statement-00. txt (work in progress),2007.
    [4]Global Environment for Network Innovations (GENI)Project,http://www.geni.net/.
    [5]NSF NeTS FIND Initiative.http://www.nets-find.net/.
    [6]FIRE:Future Internet Research and Experimentation, http://cordis.europa.eu/fp7/ict/fire/.
    [7]The FP74WARD Project,http://www.4ward-project.eu/.
    [8]AKARI Architecture Design Project, http://akari-project.nict.go.jp/.
    [9]FIRST, http://www.apan.net/meetings/kualalumpur2009/proposals/FutureInternet/2009.07-FIRST-APAN-vO2.pdf.
    [10]张宏科.“一体化可信网络与普适服务体系基础研究”项目计划任务书[R][Dl.[S.1.]:北京交通大学,2007.
    [1 1]孟洛明.IP网的可测可控可管:问题,现状和若干重要研究方向[J].中兴通讯技术,2010(B08):30-35.
    [12]吴建平,吴茜,徐恪.下一代互联网体系结构基础研究及探索[J].计算机学报,2008,31(9):1536-1548.
    [13]Chowdhury N M K, Boutaba R. Network virualization:state of the art and research challenges [J]. Communications Magazine, IEEE,2009,47 (7):20-26.
    [14]Chowdhury N, Boutaba R. A survey of network virtualization [J]. Computer Networks,2010,54 (5):862-876.
    [15]Schaffrath G, Werle C, Papadimitriou P, Feldmann A, Bless R, Greenhalgh A, Wundsam A, et al. Network virtualization architecture:proposal and initial prototype [C]. In Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and architectures,2009:63-72.
    [16J Carapinha J, Jimenez J. Network virtualization:a view from the bottom [C]. In Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and architectures,2009:73-80.
    [17]Rixner S. Network virtualization:Breaking the performance barrier [J]. Queue,2008,6 (1):36-ff.
    [18]Niebert N, Khayat I E, Baucke S, Keller R, Rembarz R, Sachs J. Network virtualization:A viable path towards the future internet [J]. Wireless Personal Communications,2008,45 (4):511-520.
    [19]Papadimitriou P, Maennel O, Greenhalgh A, Feldmann A, Mathy L. Implementing network virtual-ization for a future internet [C]. In 20th ITC Specialist Seminar on Network Virtualization-Concept and Performance Aspects,2009.
    [20]Tutschku K, Zinner T, Nakao A, Tran-Gia P. Network virtualization:Implementation steps towards the future internet [J]. Electronic Communications of the EASST,2009,17.
    [21]Marquezan C C, Granville L Z, Nunzi G, Brunner M. Distributed autonomic resource management for network virtualization [C]. In Network Operations and Management Symposium (NOMS),2010 IEEE,2010:463-470.
    [22]Haider A, Potter R, Nakao A. Challenges in resource allocation in network virtualization [C]. In 20th ITC Specialist Seminar,2009:20.
    [23]Leon-Garcia A, Mason L G. Virtual network resource management for next-generation networks [J]. Communications Magazine, IEEE,2003,41 (7):102-109.
    [24]Beloglazov A, Buyya R. Energy efficient resource management in virtualized cloud data centers [C]. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,2010:826-831.
    [25]Lv B, Wang Z, Huang T, Chen J, Liu Y. A Hierarchical Virtual Resource Management Architecture for Network Virtualization [C]. In Wireless Communications Networking and Mobile Computing (WiCOM),2010 6th International Conference on,2010:1-4.
    [26]Sun X, Cui H, Chen J, Liu Y. IDP-VRMA:An intelligent and distributed virtual resource manage-ment architecture based on prediction for future networks [C]. In Advanced Intelligence and Aware-ness Internet (AIAI 2011),2011 International Conference on,2011:255-259.
    [27]Anderson T, Peterson L, Shenker S, Turner J. Overcoming the Internet impasse through virtualiza-tion [J]. Computer,2005,38 (4):34-41.
    [28]Feamster N, Gao L, Rexford J. How to lease the Internet in your spare time [J]. ACM SIGCOMM Computer Communication Review,2007,37 (1):61-64.
    [29]Turner J S, Taylor D E. Diversifying the internet [C]. In Global Telecommunications Conference, 2005. GLOBECOM'05. IEEE,2005:6-pp.
    [30]Boucadair M, Levis P, Griffin D, Wang N, Howarth M, Pavlou G, Mykoniati E, et al. A framework for end-to-end service differentiation:Network planes and parallel Internets [J]. Communications Magazine, IEEE,2007,45 (9):134-143.
    [31]Boucadair M, Decraene B, Garcia-Osma M, Elizondo A, Sanchez J R, Lemoine B, Mykoniati E, et al. Parallel internets framework [J]. AGAVE deliv. D,2006,1.
    [32]Leland W E, Taqqu M S, Willinger W, Wilson D V. On the self-similar nature of Ethernet traffic (extended version) [J]. Networking, IEEE/ACM Transactions on,1994,2 (1):1-15.
    [33]Taqqu M S, Teverovsky V, Willinger W. Is network traffic self-similar or multifractal? [J]. Fractals, 1997,5 (01):63-73.
    [34]Park K, Willinger W. Self-similar network traffic and performance evaluation [M]. Wiley Online Library,2000.
    [35]王孝礼,夏军,et al.水文时序趋势与变异点的R/S分析法[J].武汉大学学报:工学版,2002,35(2):10-12.
    [36]Karagiannis T, Molle M, Faloutsos M, Broido A. A nonstationary Poisson view of Internet traffic [C]. In INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Commu-nications Societies,2004:1558-1569.
    [37]Lombardo A, Morabito G, Schembra G. An accurate and treatable Markov model of MPEG-video traffic [C]. In INFOCOM'98. Seventeenth Annual Joint Conference of the IEEE Computer and Com-munications Societies. Proceedings. IEEE,1998:217-224.
    [38]Zare Moayedi H, Masnadi-Shirazi M. Arima model for network traffic prediction and anomaly detection [C]. In Information Technology,2008. ITSim 2008. International Symposium on,2008: 1-6.
    [39]Basu S, Mukherjee A, Klivansky S. Time series models for internet traffic [C]. In INFOCOM'96. Fifteenth Annual Joint Conference of the IEEE Computer Societies. Networking the Next Generation. Proceedings IEEE,1996:611-620.
    [40]Ju F, Yang J, Liu H. Analysis of Self-Similar Traffic Based on the On/Off Model [C]. In Chaos-Fractals Theories and Applications,2009. IWCFTA'09. International Workshop on,2009:301-304.
    [41]Resnick S I. Heavy-tail phenomena:probabilistic and statistical modeling [M]. Springer,2006.
    [42]Feldmann A. Internet clean-slate design:what and why? [J]. ACM SIGCOMM Computer Commu-nication Review,2007,37 (3):59-64.
    [43]Rexford J, Dovrolis C. Future Internet architecture:clean-slate versus evolutionary research [J]. Communications of the ACM,2010,53 (9):36-40.
    [44]McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, et al. OpenFlow:enabling innovation in campus networks [J]. ACM SIGCOMM Computer Communica-tion Review,2008,38 (2):69-74.
    [45]Zhang L, Estrin D, Burke J, Jacobson V, Thornton J D, Smetters D K, Zhang B, et al. Named data networking (ndn) project [J]. Relatorio Tecnico NDN-0001, Xerox Palo Alto Research Center-PARC, 2010.
    [46]Dovrolis C, Streelman J T. Evolvable network architectures:What can we learn from biology? [J]. ACM SIGCOMM Computer Communication Review,2010,40 (2):72-77.
    [47]Dovrolis C. What would Darwin think about clean-slate architectures? [J]. ACM SIGCOMM Com-puter Communication Review,2008,38 (1):29-34.
    [48]Peterson L, Wroclawski J. Overview of the GENI architecture [J]. GENI Design Document GDD-06-11, GENI:Global Environment for Network Innovations,2007.
    [49]Houidi I, Louati W, Zeghlache D. A distributed and autonomic virtual network mapping framework [C]. In Autonomic and Autonomous Systems,2008. ICAS 2008. Fourth International Conference on, 2008:241-247.
    [50]Zhu Y, Ammar M. Algorithms for assigning substrate network resources to virtual network compo-nents [C]. In Proc. IEEE INFOCOM,2006:1-12.
    [51]Houidi I, Louati W, Zeghlache D, Papadimitriou P, Mathy L. Adaptive virtual network provisioning [C]. In Proceedings of the second ACM SIGCOMM workshop on Virtualized infrastructure systems and architectures,2010:41-48.
    [52]Fajjari I, Aitsaadi N, Pujolle G, Zimmermann H. VNE-AC:Virtual network embedding algorithm based on ant colony metaheuristic [C]. In Communications (ICC),2011 IEEE International Confer-ence on,2011:1-6.
    [53]Chowdhury N M K, Rahman M R, Boutaba R. Virtual network embedding with coordinated node and link mapping [C]. In INFOCOM 2009, IEEE,2009:783-791.
    [54]Chowdhury M, Rahman M R, Boutaba R. ViNEYard:Virtual network embedding algorithms with coordinated node and link mapping [J]. IEEE/ACM Transactions on Networking (TON).2012,20 (1):206-219.
    [55]Guo T, Wang N, Moessner K, Tafazolli R. Shared backup network provision for virtual network embedding [C]. In Communications (ICC),2011 IEEE International Conference on,2011:1-5.
    [56]Cao X-R, Shen H-X, Milito R, Wirth P. Internet pricing with a game theoretical approach:concepts and examples [J]. Networking, IEEE/ACM Transactions on,2002,10 (2):208-216.
    [57]Shu J, Varaiya P. Pricing network services [C]. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies.2003:1221-1230 vol.2.
    [58]Goodman D, Mandayam N. Network assisted power control for wireless data [C]. In Vehicular Technology Conference,2001. VTC 2001 Spring. IEEE VTS 53rd:1022-1026 vol.2.
    [59]Saraydar C, Mandayam N B, Goodman D. Efficient power control via pricing in wireless data net-works [J]. Communications, IEEE Transactions on,2002,50 (2):291-303.
    [60]Niyato D, Hossain E. Competitive Pricing in Heterogeneous Wireless Access Networks:Issues and Approaches [J]. Network, IEEE,2008,22 (6):4-11.
    [61]Zhou Y, Li Y, Sun G, Jin D, Su L, Zeng L. Game Theory Based Bandwidth Allocation Scheme for Network Virtualization [C]. In Global Telecommunications Conference (GLOBECOM 2010),2010 IEEE,2010.:1-5.
    [62]Seddiki M, Frikha M. A non-cooperative game theory model for bandwidth allocation in network virtualization [C]. In Telecommunications Network Strategy and Planning Symposium (NETWORK-S),2012 XVth International,2012:1-6.
    [63]Seddiki M, Frikha M. Resource Allocation for Virtual Routers through Non-Cooperative Games [C]. In Computer Communications and Networks (ICCCN),2012 21st International Conference on, 30 2012-Aug.2:1-6.
    [64]Wang C, Yuan Y, Wang C, Hu X, Zheng C. Virtual bandwidth allocation game in data centers [C]. In Information Science and Technology (ICIST),2012 International Conference on,2012:682-685.
    [65]谭德庆.多维博弈及应用研究[D].[S.1.]:成都:西南交通大学,2004.
    [66]施锡铨.博弈论[M].上海财经大学出版社,2000.
    [67]张维迎.博弈论与信息经济学[M].上海人民出版社,2004.
    [68]Hadji M, Louati W, Zeghlache D. Constrained Pricing for Cloud Resource Allocation [C]. In Net-work Computing and Applications (NCA),2011 10th IEEE International Symposium on,2011:359-365.
    [69]Al Daoud A, Alpcan T, Agarwal S, Alanyali M. A stackelberg game for pricing uplink power in wide-band cognitive radio networks [C]. In Decision and Control,2008. CDC 2008.47th IEEE Con-ference on,2008:1422-1427.
    [70]Ma R T, Lee S, Lui J, Yau D K. Incentive and service differentiation in P2P networks:a game theoretic approach [J]. IEEE/ACM Transactions on Networking (TON),2006,14 (5):978-991.
    [71]Chiang A C. Fundamental methods of mathematical economics [M]. McGraw-Hill Kogakusha Tokyo,1974.
    [72]Cachon G P, Netessine S. Game theory in supply chain analysis [J]. Tutorials in Operations Re-search:Models, Methods, and Applications for Innovative Decision Making,2006.
    [73]Moh W, Chen M-J, Chu N-M, Liao C-D. Traffic prediction and dynamic bandwidth allocation over ATM:a neural network approach [J]. Computer Communications,1995,18 (8):563-571.
    [74]Abdennour A. Evaluation of neural network architectures for MPEG-4 video traffic prediction [J]. Broadcasting, IEEE Transactions on,2006,52 (2):184-192.
    [75]Park D-C, Woo D-M. Prediction of Network Traffic Using Dynamic Bilinear Recurrent Neural Network [C]. In Natural Computation,2009. ICNC'09. Fifth International Conference on,2009: 419-423.
    [76]Li Z, Lei Q, Kouying X, Xinyan Z. A novel BP neural network model for traffic prediction of next generation network [C]. In Natural Computation,2009. ICNC'09. Fifth International Conference on, 2009:32-38.
    [77]Junsong W, Jiukun W, Maohua Z, Junjie W. Prediction of internet traffic based on Elman neural network [C]. In Control and Decision Conference,2009. CCDC'09. Chinese,2009:1248-1252.
    [78]党小超.季节周期性Elman网络的网络流量分析与应用[J][J].计算机工程与应用,2010,46(28).
    [79]Ren Y Z, Xia K W, Wang Y. Shi J. Application on Network Traffic Prediction Based on Least Squares Support Vector Machine [J]. Applied Mechanics and Materials,2010,20:364-369.
    [80]Feng H, Shu Y, Wang S, Ma M. SVM-Based Models for Predicting WLAN Traffic [C]. In Commu-nications,2006. ICC'06. IEEE International Conference on,2006:597-602.
    [81]Feng H, Shu Y, Ma M. WLAN traffic prediction using support vector machine [J]. IEICE Transac-tions on Communications,2009, E92-B (9):2915-2921.
    [82]Keerthi S S, Lin C-J. Asymptotic behaviors of support vector machines with Gaussian kernel [J]. Neural computation,2003,15 (7):1667-1689.
    [83]邹晓玫,张欣.基于混沌算子网络模型的网络流量预测研究[J].天津工业大学学报,2012,31(2):78-81.
    [84]陆锦军,王执铨.基于混沌特性的网络流量预测[J].南京航空航天大学学报,2006,38(2):217-221.
    [85]冯海亮,陈涤,林青家,陈春晓.一种基于神经网络的网络流量组合预测模型[J].计算机应用,2006,26(9).
    [86]Alarcon-Aquino V, Barria J A. Multiresolution FIR neural-network-based learning algorithm ap-plied to network traffic prediction [J]. Systems, Man, and Cybernetics, Part C:Applications and Reviews, IEEE Transactions on,2006,36 (2):208-220.
    [87]Xiao H, Sun H, Ran B, Oh Y. Fuzzy-neural network traffic prediction framework with wavelet decomposition [J]. Transportation Research Record:Journal of the Transportation Research Board, 2003,1836 (-1):16-20.
    [88]Xiang L, Ge X-H, Liu C, Shu L, Wang C-X. A new hybrid network traffic prediction method [C]. In Global Telecommunications Conference (GLOBECOM 2010),2010 IEEE.2010:1-5.
    [89]Khotanzad A, Sadek N. Multi-scale high-speed network traffic prediction using combination of neural networks [C]. In Neural Networks,2003. Proceedings of the International Joint Conference on,2003:1071-1075.
    [90]Han-Lin S, Yue-Hui J, Yi-Dong C, Shi-Duan C. Network traffic prediction by a wavelet-based com-bined model [J]. Chinese Physics B,2009,18 (11):4760.
    [91]Jaeger H. The" echo state" approach to analysing and training recurrent neural networks-with an erratum note'[J]. Tecnical report GMD report.2001,148.
    [92]Jaeger H, Haas H. Harnessing nonlinearity:Predicting chaotic systems and saving energy in wireless communication [J]. Science.2004,304 (5667):78-80.
    [931 Jaeger H. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the" echo state network" approach [M]. GMD-Forschungszentrum Informationstechnik,2002.
    [94]Jaeger H, Lukosevicius M, Popovici D, Siewert U. Optimization and applications of echo state networks with leaky-integrator neurons [J]. Neural Networks,2007,20 (3):335-352.
    [95]彭宇,王建民,彭喜元.基于回声状态网络的时间序列预测方法研究[J].电子学报,2010,38(B02):148-154.
    [96]LukosEvicIus M, Jaeger H. Reservoir computing approaches to recurrent neural network training [J]. Computer Science Review,2009,3 (3):127-149.
    [97]Deng Z, Zhang Y. Collective behavior of a small-world recurrent neural system with scale-free distribution [J]. Neural Networks, IEEE Transactions on,2007,18 (5):1364-1375.
    [98]Song Q, Feng Z. Effects of connectivity structure of complex echo state network on its prediction performance for nonlinear time series [J]. Neurocomputing,2010,73 (10):2177-2185.
    [99]Zhang B, Miller D J, Wang Y. Nonlinear system modeling with random matrices:Echo state net-works revisited [J]. Neural Networks and Learning Systems, IEEE Transactions on,2012,23 (1): 175-182.
    [100]Rad A A. Dynamical Networks (miniporject) Effect of Topology of the Reservoir on Performance of Echo State Networks [J],2008.
    [101]Cui H, Liu X, Li L. The architecture of dynamic reservoir in the echo state network [J]. Chaos:An Interdisciplinary Journal of Nonlinear Science,2012,22 (3):033127-033127.
    [102]Jaeger H. Short term memory in echo state networks [M], GMD-Forschungszentrum Information-stechnik,2001.
    [103]Jaeger H, et al. Adaptive nonlinear system identification with echo state networks [J]. networks, 2003,8:9.
    [104]Rodan A, Tino P. Minimum complexity echo state network [J]. Neural Networks, IEEE Transac-tions on,2011,22 (1):131-144.
    [105]Steil J. Memory in backpropagation-decorrelation O (N) efficient online recurrent learning [J]. Artificial Neural Networks:Formal Models and Their Applications-ICANN 2005,2005:750-750.
    [106]Ikeda K, Daido H, Akimoto O. Optical turbulence:chaotic behavior of transmitted light from a ring cavity [J]. Physical Review Letters,1980,45 (9):709-712.
    [107]Henon M. A two-dimensional mapping with a strange attractor [J]. Communications in Mathemat-ical Physics,1976,50 (1):69-77.
    [108]Liang Y. Real-time VBR video traffic prediction for dynamic bandwidth allocation [J]. Systems, Man, and Cybernetics, Part C:Applications and Reviews, IEEE Transactions on,2004,34 (1):32-47.
    [109]Xiang L, Ge X-H, Liu C, Shu L, Wang C-X. A new hybrid network traffic prediction method [C]. In Global Telecommunications Conference (GLOBECOM 2010),2010 IEEE,2010:1-5.
    [110]Garrett M W. Willinger W. Analysis, modeling and generation of self-similar VBR video traffic [C]. In ACM SIGCOMM Computer Communication Review,1994:269-280.
    [111]李立.高突发性自相似网络业务流量理论及建模分析研究.2008.
    [112]Nolan J P. Numerical calculation of stable densities and distribution functions [J]. Communications in statistics. Stochastic models,1997,13 (4):759-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700