不同胎龄和HIE新生儿脑(18)~F-FDG PET显像的临床意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     正电子发射断层显像(position emission tomography, PET)利用正电子发射体标记的药物为示踪剂,以解剖图象方式、从分子水平显示机体及病灶组织细胞的代谢、功能、血流、细胞增殖和受体分布等状况,为临床提供更多生理和病理方面的诊断信息,尤其在中枢神经系统疾病的诊断方面具有独特的优势,是近年应用临床的新的影像诊断技术,已较广泛应用成人临床,但在儿童应用甚少。新生儿脑功能发育、损伤以及修复的过程一直是新生儿学以及神经科学的重要研究内容,利用PET对新生儿脑功能发育和损伤进行研究,并在此基础上建立相应的诊断标准,将大大提高新生儿脑发育和损伤相关疾病的诊断水平。18氟脱氧葡萄糖(18F-fluorodeoxyglucose, 18F-FDG)是临床最常用的PET显像测定脑葡萄糖代谢的显像剂,应用PET显像测定脑葡萄糖代谢,尤其是在不同胎龄新生儿及新生儿缺氧缺血性脑病(hypoxic-ischemic encephalopathy, HIE)中的应用,目前国外的研究甚少,国内则未见报道。
     目的
     对不同胎龄新生儿及新生HIE患儿应用~(18)F-FDG PET测定脑葡萄糖代谢,探讨PET测定脑葡萄糖代谢在不同胎龄新生儿中的变化及新生儿HIE中的临床应用价值。
     方法
     研究对象包括不同胎龄新生儿及新生儿HIE患儿,共计67例,其中7例因各种原因导致PET数据采集失败未纳入统计,失败原因包括注射部位不当、注射剂量偏小、新生儿哭闹、活动导致PET数据采集失败等。其余60例新生儿纳入统计。其中,不同胎龄新生儿36例,包括≤32wk 4例,33-34wk 5例,35-36wk 12例,≥37wk15例;新生儿HIE患儿24例,其中,轻度13例,中度7例,中度4例。以RDSⅢ型回旋加速器获得~(18)F后,通过自动化学合成装置制备~(18)F-FDG溶液,在注射0.1mCi /kg ~(18)F-FDG后应用PET成像仪采集数据,并通过测定新生儿脑不同部位的标准摄取值(standardized uptake values, SUV)进行脑葡萄糖代谢半定量分析。
     结果
     比较不同胎龄新生儿~(18)F-FDG PET脑显像,可见随着胎龄的成熟,新生儿脑葡萄糖活性呈现逐步增高的趋势,结构也变得较为清晰,尤其以胎龄达到足月新生儿标准(≥37wk)后更为显著。
     不同胎龄新生儿脑~(18)F-FDG PET显像的结果显示:其葡萄糖代谢活性在大脑皮层普遍较低,在丘脑则较高,其次为小脑、感觉运动皮质、基底节。胎龄≥37wk的足月新生儿,其不同部位的葡萄糖代谢活性较胎龄<32wk的早产儿显著增高(p<0.01)。
     新生儿HIE患儿脑存在明显葡萄糖代谢异常,主要表现为:大脑皮层18 F-FDG摄取量不一致,如损伤一侧明显低于对侧,或某区域低于其他区域,或全脑葡萄糖代谢偏低,尤其是皮层下白质、丘脑、基底节等部位最为明显。
     与胎龄≥37wk的足月新生儿相比,HIE患儿~(18)F-FDG PET脑显像在所有测定的脑组织均呈现低代谢状况(p<0.05),而且,病情越重越为明显,HIE患儿重度HIE患儿脑葡萄糖代谢较轻、中度HIE患儿显著降低(p<0.05)。
     结论
     随着胎龄的成熟,新生儿脑葡萄糖活性呈现逐步增高的趋势,结构也变得较为清晰,尤其以胎龄达到足月新生儿标准(≥37wk)后更为显著。
     新生儿HIE患儿PET脑显像存在明显~(18)F-FDG代谢异常,新生儿HIE的~(18)F-FDG PET脑显像特征为:1)大脑皮层~(18)F-FDG摄取量不一致,如损伤一侧明显低于对侧,或某区域低于其他区域;2)全脑葡萄糖代谢偏低。
     应用~(18)F-FDG PET测定脑葡萄糖代谢为研究新生儿脑发育和损伤提供了新的方法,其临床意义值得进一步研究。
Background
     PET (position emission tomography) is a noninvasive measurement of the levels of radiopharmaceuticals labeled with positron emitters, which can provide anatomically physiological and pathophysiological information on metabolism, function, blood supply, cell proliferation, and distribution of receptor of organs and tissues from molecular level. The most frequently used tracer for the assessment of tissue glucose metabolism is ~(18)F-fluorodeoxyglucose(~(18)F-FDG). PET has been widely used in a lot of cerebral diseases in adults. Only a few pediatric and even fewer neonatal PET studies have been presented so far. The measurement, however, of the cerebral glucose metabolism is important to study the physiology and pathophysiology of the developing brain in preterm, term infants, and in neonatal patients suffering from hypoxic-ischemic encephalopathy (HIE).
     Objective
     To study the clinical value of cerebral glucose metabolism measure by ~(18)F-fluorodeoxyglucose ~(18)F-FDG PET in preterm, term newborn infants and neonatal hypoxic-ischemic encephalopathy (HIE).
     Methods
     To measure the cerebral glucose metabolism by ~(18)F-FDG PET imaging in 67 newborn infants. Seven neonates were excluded due to failure of data collection by PET, which caused by inadequate of administration of ~(18)F-FDG, low dose of ~(18)F-FDG , and crying or movement of the infants during PET course. Sixty infants were included in the study. Among them, 36 preterm and term infants without any sign of brain injury were divided into 4 groups, including≤32wk (n=4), 33-34wk (n=5), 35-36wk (n=12), and≥37wk group (n=15), and the other 24 newborn infants suffering from HIE were divided into 3 groups, including mild HIE (n=13), medium HIE (n=7), and severe HIE group (n=4).
     ~(18)F was obtained by RDSⅢCyclotron, and then, ~(18)F-FDG was produced by Chemistry Process Control Unit. The data was collected by PET instrument after administration of 0.1mCi /kg ~(18)F-FDG in the newborns, and standardized uptake values (SUV) were calculated to estimate the cerebral glucose metabolism.
     Results
     The cerebral glucose metabolism was found to have a trend to be increased, and the structure of brain ~(18)F-FDG PET imaging to be clear with the increase of gestational age, especially when the gestational age was older than 37wk.
     The brain ~(18)F-FDG PET imaging in different gestational age showed that the uptake of ~(18)F-FDG was relatively higher in thalamus, cerebellum, sensorimotor cortex and basal ganglia, where as relatively lower in cerebral cortex. The uptakes of ~(18)F-FDG in≥37wk group were found to be significantly higher than those in≤32wk group (p<0.01).
     The cerebral glucose metabolism was significantly changed in neonatal HIE as measured by ~(18)F-FDG PET. The cerebral uptake of ~(18)F-FDG was either unbalanced bilaterally or relatively low in all sites especially in subcortical alba, thalamus, basal ganglia in HIE patients. Moreover, The uptakes of ~(18)F-FDG in severe HIE patients were found to be significantly lower than those in mild and medium HIE patients(p<0.05 respectively).
     Conclusions
     1. The uptakes of ~(18)F-FDG in≥37wk term infants were significantly higher than those in≤32wk preterm infants.
     2. The cerebral uptake of ~(18)F-FDG was either unbalanced bilaterally or relatively low in all regions or some places as compared with other areas of the brain in neonatal patients with HIE.
     3. Cerebral glucose metabolism measured by ~(18)F-FDG PET might be a useful tool for estimating the brain development and injury in newborn infants, and its clinical values need further investigating.
引文
[1] Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol, 2009, 8(1):110-124.
    [2] Limperopoulos C, Bassan H, Gauvreau K, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics, 2007,120(3):584-593.
    [3] Woodward LJ, Anderson PJ, Austin NC, et al. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med, 2006, 355(7):685-694.
    [4] Koukourakis G, Maravelis G, Koukouraki S,Overview of positron emission tomography chemistry: clinical and technical considerations and combination with computed tomography. J BUON, 2009, 14(4): 575-580.
    [5] Cohade C, Wahl RL. Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation methods, diagnostic improvements. J. Semin Nucl Med, 2003, 33(3):228-237.
    [6] Schirmer M, Calamiab KT, Wenger M, et al. 18F-fluorodeoxyglucose positron emission tomography: a new explorative perspective. Exp Gerontol, 2003, 38(4): 463-470.
    [7] Nair VS, Krupitskaya Y, Gould MK . Positron emission tomography 18F-fluorodeoxyglucose uptake and prognosis in patients with surgically treated, stage I non-small cell lung cancer: a systematic review. J Thorac Oncol, 2009, 4(12):1473-1479.
    [8]李奇明,金榕兵,王艳武. 18F-FDG制备因素探讨[J].中华核医学杂志,2003,23(S1):52-53.
    [9]中华医学会儿科学会新生儿学组.新生儿缺氧缺血性脑病诊断依据和临床分度.中华儿科杂志, 1997, 35 (2) : 99-100.
    [10] Ruotsalainen U, Suhonen-Polvi H, Eronen E, et al. Estimated radiation dose to the newborn in FDG-PET studies. J Nucl Med, 1996; 37(2): 387-393
    [11] Boellaard R, Oyen WJ, Hoekstra CJ, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging, 2008, 32(15): 2320-2333.
    [12]Cohade C, Wahl RL. Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med, 2003, 33(3): 228-237.
    [13] Barthel H, Cleij MC, Collingridge DR, et al. 3’-deoxy-3’[18F]fluorothymidine as a new marker for monitor tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res,2003,63(13):3791-3798.
    [14] Baron JC,Bousser MG, Comar D, et al. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol, 1981, 20(3): 273-284.
    [15] Volpe JJ, Herscovitch P, Perlman JM, et al. Positron emission tomography in the newborn: extensive impairment of regional cerebral blood flow with intraventricular hemorrhage and hemorrhagic intracerebral involvement. Pediatrics, 1983, 72(5): 589-601.
    [16] Volpe JJ, Herscovitch P, Perlman JM, et al. Positron emission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol, 1985, 17(3): 287-296.
    [17] Altman DI,Perlman JM, Volpe JJ, et al. Cerebral oxygen metabolism in newborns. Pediatrics, 1993, 92(1): 99-104.
    [18] Sann L, Simonnet C. Recent data on cerebral circulation and metabolism of the brain in newborn infants. Presse-Med, 1985, 14(27): 1465-1469.
    [19] Chugani HT, Phelps ME. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science, 1986, 231(4740): 840-843.
    [20] Altman DI, Volpe JJ. Positron emission tomography in newborn infants.Clin Perinatol, 1991, 18(3): 549-562.
    [21] Suhonen-Polvi H, Ruotsalainen U, Kinnala A, et al. FDG-PET in early infancy: simplified quantification methods to measure cerebral glucose utilization. J Nucl Med, 1995, 36(7): 1249-1254.
    [22] Kinnala A, Nuutila P, Ruotsalainen U, et al. Cerebral metabolic rate for glucose after neonatal hypoglycaemia. Early Hum Dev, 1997, 49(1): 63-72.
    [23] Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med, 1998, 27(2): 184-188.
    [24] Chugani HT, Hovda DA, Villablanca JR, et al. Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat. J Cereb Blood Flow Metab, 1991, 11(1): 35-47.
    [25] Brust P, Walter B, Hinz R, et al. Developmental changes in the activities of aromatic amino acid decarboxylase and catechol-O-methyl transferase in the porcine brain: a positron emission tomography study. NeurosciLett, 2004, 364(3): 159-163.
    [26] Bauer R, Walter B, Vorwieger G, et al.Effect of moderate hypercapnic hypoxia on cerebral dopaminergic activity and brain O2 uptake in intrauterine growth-restricted newborn piglets. Pediatr Res, 2005, 57(3): 363-370.
    [27] Machado CJ, Snyder AZ, Cherry SR, et al. Effects of neonatal amygdala or hippocampus lesions on resting brain metabolism in the macaque monkey: a microPET imaging study. Neuroimage, 2008, 39(2): 832-846.
    [28] Ichise M, Vines DC, Gura T, et al. Effects of early life stress on [11C]DASB positron emission tomography imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. J Neurosci, 2006, 26(17): 4638-4643.
    [29] Thorngren-Jerneck K, Ley D, Hellstrom-Westas L, et al. Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs. J Neurosci Res, 2001, 66(5):844-850.
    [30] Bauer R, Walter B, Vorwieger G, Effect of moderate hypercapnic hypoxia on cerebral dopaminergic activity and brain O2 uptake in intrauterine growth-restricted newborn piglets. Pediatr Res, 2005, 57(3): 363-370.
    [31] Lou HC, Rosa P, Pryds O, et al. ADHD: increased dopamine receptor availability linked to attention deficit and low neonatal cerebral blood flow. Dev Med Child Neurol, 2004, 46(3): 179-183.
    [32] Bauer R, Brust P Walter B, et al. Relation between brain tissue pO2 and dopamine synthesis of basal ganglia--a 18FDOPA-PET study in newborn piglets. J Perinat Med, 2000, 28(1): 54-60.
    [33] Powers WJ, Rosenbaum JL, Dence CS, et al. Cerebral glucose transport and metabolism in preterm human infants. J Cereb Blood Flow Metab, 1998, 18(6): 632-638.
    [34] Kinnala A, Suhonen-Polvi H, Aarimaa T, et al. Cerebral metabolic rate for glucose during the first six months of life: an FDG positron emission tomography study. Arch Dis Child Fetal Neonatal Ed, 1996, 74(3): F153-157.
    [35] Suhonen-Polvi H, Kero P, Korvenranta H, et al. Repeated fluorodeoxyglucose positron emission tomography of the brain in infants with suspected hypoxic-ischaemic brain injury. Eur J Nucl Med, 1993, 20(9): 759-765.
    [36] Blennow M, Ingvar M, Lagercrantz H, et al. Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr, 1995, 84(11): 1289-1295.
    [37] Higuchi Y, Maihara T, Hattori H, et al. [18F]–fluoro- deoxyglucose-positron emission tomography findings in proterm infants with severe periventricular leukomalacia and hypsarrhythmia. Eur J Pediatr, 1997, 156(3): 236-238.
    [38] Shi Y, Jin RB, Zhao JN, et al. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev, 2009, 85(7): 429-432.
    [39] Kusaka T, Ijichi S, Yamamoto Y, et al. Changes in cerebral glucose metabolism in newborn infants with cerebral infarction. Pediatr Neurol, 2005; 32(1): 46-49.
    [40] Batista CE, Chugani HT, Juhász C, et al. Transient hypermetabolism of the basal ganglia following perinatal hypoxia. Pediatr Neurol, 2007, 36(5): 330-333.
    [41] Thorngren-Jerneck K, Ohlsson T, Sandell A, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res, 2001, 49(4):495-501.
    [42] Azzarelli B, Caldemeyer KS, Phillips JP, et al. Hypoxic-ischemic encephalopathy in areas of primary myelination: a neuroimaging and PET study. Pediatr Neurol, 1996, 14(2):108-116.
    [43] Kuchukhidze G, Unterberger I, Dobesberger J, et al. Electroclinical and imaging findings in ulegyria and epilepsy: a study on 25 patients. J Neurol Neurosurg Psychiatry, 2008, 79(5): 547-552.
    [44] Kumada T, Okazawa H, Yamauchi H, et al. Focal glucose hypermetabolism in interictal state of West syndrome. Pediatr Neurol, 2006, 34(1): 47-50.
    [45] Zovein A, Flowers-Ziegler J, Thamotharan S, et al. Postnatal hypoxic-ischemic brain injury alters mechanisms mediating neuronal glucose transport. Am J Physiol Regul Integr Comp Physiol, 2004, 286(2): R273-282.
    [46] Uller PM, Di Nardo A, Goldman JE, et al. Murine Glut-1 transporter haploinsufficiency: postnatal deceleration of brain weight and reactive astrocytosis. Nurobiol Dis, 2009, 36(1):60-69.
    [47] Hardy OT, Hernandez-Pampaloni M, Saffer JR, et al. Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr, 2007, 150(2):140-145.
    [48] Thorngren-Jerneck K, Hellstrom-Westas L, Ryding E, et al. Cerebral glucose metabolism and early EEG/aEEG in term newborn infants with hypoxic-ischemic encephalopathy. Pediatr Res, 2003, 54(6): 854-860.
    [49] Johnston MV. Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev, 2009, 15(2): 94-101.
    [50] Ruotsalainen U, Suhonen-Polvi H, Eronen E, et al. Estimated radiation dose to the newborn in FDG-PET studies. J Nucl Med, 1996, 37(2): 387-393.
    [51] Brenner DJ, Hall ej. Computed tomography: an increasing source of radiation. N Eng J Med, 2007, 357(22): 2277-2284.
    1. Koukourakis G, Maravelis G, Koukouraki S,Overview of positron emission tomography chemistry: clinical and technical considerations and combination with computed tomography. J BUON, 2009, 14(4):575-580.
    2. Cohade C, Wahl RL. Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography-clinical use, interpretation methods, diagnostic improvements. J. Semin Nucl Med, 2003, 33(3):228-237.
    3. Zaidi H, Montandon ML, Alavi A. The clinical role of fusion imaging using PET, CT, and MR imaging. Magn Reson Imaging Clin N Am, 2010, 18(1):133-149.
    4. Agdeppa ED, Spilker M. A review of imaging agent development. AAPS J. 2009 11(2):286-99..
    5. Schirmer M, Calamiab KT, Wenger M, et al. 18F-fluorodeoxyglucose positron emission tomography: a new explorative perspective. Exp Gerontol, 2003, 38(4): 463-470.
    6. Nair VS, Krupitskaya Y, Gould MK . Positron emission tomography 18F-fluorodeoxyglucose uptake and prognosis in patients with surgically treated, stage I non-small cell lung cancer: a systematic review. J Thorac Oncol, 2009, 4(12):1473-1479.
    7. Barthel H, Cleij MC, Collingridge DR, et al. 3’-deoxy-3’[18F]fluorothymidine as a new marker for monitor tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res, 2003, 63(13):3791-3798.
    8. Heiss WD, Herholz K, et al. Brain receptor imaging. J Nucl Med,2006,47(2):302-312.
    9. Tanaka K, Fukase K, Katsumura S.New strategy in synthetic biology: from enzyme inhibition and natural products synthesis to PET imaging by 6pi-azaelectrocyclization. Chem Rec, 2010 Mar 26. [Epub ahead of print]
    10. Archer HA, Edison P, Brooks DJ, et al. Amyloid load and cerebral atrophy in Alzheimer’s disease: An 11C-PIB positron emission tomography study. Ann Neurol, 2006, 60(1): 145-147.
    11. Berti V, Osorio RS, Mosconi L,Early Detection of Alzheimer's Disease with PET Imaging. Neurodegener Dis, 2010, 7(1-3):131-135.
    12. Kim SH, Seo SW, Yoon DS,et al. Comparison of Neuropsychological and FDG-PET Findings between Early- versus Late-Onset Mild Cognitive Impairment: A Five-Year Longitudinal Study. Dement Geriatr Cogn Disord, 2010, 29(3):213-223.
    13. Mosconi L, Santi SD, Li Y, et al. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer's disease using FDG-PET. Eur J Nucl Med Mol Imaging, 2006,33(2):210-221.
    14. Goffin K, Van Paesschen W, Dupont P,et al. Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI. Eur J Nucl Med Mol Imaging, 2010 Mar 20. [Epub ahead of print]
    15. Lau EW, Drummond KJ, Ware RE,et al. Comparative PET study using F-18 FET and F-18 FDG for the evaluation of patients with suspected brain tumour. J Clin Neurosci, 2010, 17(1):43-49.
    16. Lapi SE, Voller TF, Welch MJ. Positron Emission Tomography Imaging of Hypoxia. PET Clin, 2009, 4(1): 39-47.
    17. Klumpers UM, Veltman DJ, et al. Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: preliminary results. Eur J Nucl Med Mol Imaging, 2010, 37(3): 565-574.
    18. Biju G, de la Fuente-Fernández R. Dopaminergic function and progression of Parkinson's disease: PET findings. Parkinsonism Relat Disord, 2009, 15 Suppl 4: S38-40.
    19. Lepron E, Péran P, Cardebat D, Démonet JF.A PET study of word generation in Huntington's disease: effects of lexical competition and verb/noun category. Brain Lang, 2009, 110(2): 49-60.
    20.龚萍,张明敏,江丽明,等.针刺三阴交的PET脑功能研究.中国中西医结合杂志,2006,26(2):119-122.
    21. Maidment AD.THE FUTURE OF MEDICAL IMAGING. Radiat Prot Dosimetry, 2010 Mar 18. [Epub ahead of print]
    22. Law I.Human brain mapping under increasing cognitive complexity using regional cerebral blood flow measurements and positron emission tomography. Dan Med Bull, 2007, 54(4): 289-305.
    23. Goffin K, Van Paesschen W, Dupont P, et al. Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI. Eur J Nucl Med Mol Imaging, 2010 Mar 20. [Epub ahead of print]
    24. Watson JD, Myers R, Frackowiak RS, et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex, 1993, 3(2): 79-94.
    25. Tsuda H, Aoki T, Oku N, et al. Functional brain areas associated with manipulation of a prehensile tool: a PET study. Hum Brain Mapp, 2009, 30(9): 2879-2889.
    26. Habib M, Démonet JF, Frackowiak R. Cognitive neuroanatomy of language: contribution of functional cerebral imaging. Rev Neurol (Paris), 1996, 152(4): 249-260.
    27. Depas G, Decortis T, Francotte N, et al. F-18 FDG PET in infectious diseases in children. Clin Nucl Med, 2007, 32(8): 593-598.
    28. Bauer R, Walter B, Vorwieger G, et al.Effect of moderate hypercapnic hypoxia on cerebral dopaminergic activity and brain O2 uptake in intrauterine growth-restricted newborn piglets. Pediatr Res, 2005, 57(3): 363-370.
    29. Kusaka T, Ijichi S, Yamamoto Y, et al. Changes in cerebral glucose metabolism in newborn infants with cerebral infarction. Pediatr Neurol, 2005, 32(1): 46-49.
    30. Thorp PS, Levin SD, Garnett ES, et al. Patterns of cerebral glucose metabolism using 18FDG and positron tomography in the neurologic investigation of the full term newborn infant. Neuropediatrics, 1988;19(3):146-153.
    31. Bauer R, Walter B, Vorwieger G, Effect of moderate hypercapnic hypoxia on cerebral dopaminergic activity and brain O2 uptake in intrauterine growth-restricted newborn piglets. Pediatr Res, 2005, 57(3):363-370.
    32.史源,金榕兵,赵锦宁等. 18F-FDG PET在新生儿缺氧缺血性脑病中的临床应用.第三军医大学学报, 2010,15(1): 51-53.
    33 Azzarelli B, Caldemeyer KS, Phillips JP, et al. Hypoxic-ischemic encephalopathy in areas of primary myelination: a neuroimaging and PET study. Pediatr Neurol, 1996,14(2):108-116.
    34. Chugani HT. Positron emission tomography scanning: applications in newborns. Clin Perinatol, 1993, 20(2):395-409.
    35. Mohnike K, Blankenstein O, Minn H, et al. [18F]-DOPA positron emission tomography for preoperative localization in congenital hyperinsulinism. Horm Res, 2008,70(2):65-72.
    36. Bauer R, Walter B, Vorwieger G, et al. Intrauterine growth restriction induces up-regulation of cerebral aromatic amino acid decarboxylase activity in newborn piglets: [18F]fluorodopa positron emission tomographis study. Pediatr Res. 2001, 49(4):474-480.
    37. Thorngren-Jerneck K, Ohlsson T, Sandell A, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res, 2001, 49(4):495-501.
    38. Kremer S, Nicolas-Ong C, Schunck T, et al. Usefulness of functional MRI associated with PET scan and evoked potentials in the evaluation of brain functions after severe brain injury: Preliminary results. J Neuroradiol, 2009 Sep 23.[Epub ahead of print]
    39. Bauer R, Brust P, Walter B et al. Effect of hypoxia/hypercapnia on metabolism of 6-[(18)F]fluoro-L-DOPA in newborn piglets. Brain Res, 2002, 934(1):23-33.
    40. Thorngren-Jerneck K, Ohlsson T, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res, 2001, 49(4):495-501.
    41. Shi Y, Jin RB, Zhao JN, et al. Brain positron emission tomography in preterm and term newborn infants. Early Human Develop, 2009, 85(7): 429-432.
    42. Ruotsalainen U, Suhonen-Polvi H, Eronen E, et al. Estimated radiation dose to the newborn in FDG-PET studies. J Nucl Med, 1996, 37(2): 387-393.
    1. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009 Jan;8(1):110-24.
    2. Limperopoulos C, Bassan H, Gauvreau K, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics. 2007 Sep;120(3):584-93.
    3. Woodward LJ, Anderson PJ, Austin NC, et al. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006 Aug 17;355(7):685-94.
    4. Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005 July; 102(27):9673-8.
    5. Dubois J, Benders M, Borradori-Tolsa C,et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain. 2008 Aug; 131(pt 8):2028-41.
    6. Shi Y, Jin RB, Zhao JN, et al. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009 Jul; 85(7): 429-32.
    7. Allen MC. Neurodevelopmental outcomes of preterm infants. Curr Opin Neurol. 2008 Apr;21(2):123-8.
    8. Ment LR, Hirtz D, Hüppi PS. Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol. 2009 Nov;8(11):1042-55.
    9. Charkaluk ML, Truffert P, Fily A, Ancel PY. Neurodevelopment of children born very preterm and free of severe disabilities: the Nord-Pas de Calais Epipage cohort study. Acta Paediatr. 2010 Jan 28. [Epub ahead of print]
    10. Gozzo Y, Vohr B, Lacadie C,et al. Alterations in neural connectivity in preterm children at school age. Neuroimage. 2009 Nov 1; 48(2): 458-63.
    11. Dubois J, Benders M, Cachia A, et al. Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex. 2008 Jun;18(6):1444-54.
    12. Striegel DA, Hurdal MK. Chemically based mathematical model for development of cerebral cortical folding patterns. PLoS Comput Biol. 2009 Sep;5(9):e1000524.
    13. Zhang Y, Zhou Y, Yu C et al. Reduced Cortical Folding in Mental Retardation. AJNR Am J Neuroradiol. 2010 Jan 14. [Epub ahead of print]
    14. Shim G, Jung WH, Choi JS, et al. Reduced cortical folding of the anterior cingulate cortex in obsessive-compulsive disorder. J Psychiatry Neurosci. 2009 Nov;34(6):443-9.
    15. Nanba Y, Matsui K, Aida N, et al. Magnetic resonance imaging regional T1 abnormalities at term accurately predict motor outcome in preterm infants. Pediatrics. 2007 Jul;120(1):e10-9.
    16. Sorensen AG, Heiss WD. Advances in imaging 2009. Stroke. 2010 Feb;41(2):e91-2.
    17. Ogawa S, Lee TM, Kay AR. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72.
    18. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449-76.
    19. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007 Sep;8(9):700-11.
    20. Lohmann G, Hoehl S, Brauer J, et al. Setting the Frame: The Human Brain Activates a Basic Low-Frequency Network for Language Processing. Cereb Cortex. 2009 Sep 25. [Epub ahead of print]
    21. Jardri R, Pins D, Bubrovszky M, et al. Self awareness and speech processing: an fMRI study. Neuroimage. 2007 May 1;35(4):1645-53.
    22. Tian L, Jiang T, Liang M, et al. Stabilities of negative correlations between blood oxygen level-dependent signals associated with sensory and motor cortices. Hum Brain Mapp. 2007 Jul;28(7):681-90.
    23. Fox MD, Corbetta M, Snyder AZ, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26): 10046-51.
    24. Greicius MD, Supekar K, Menon V, et al. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. 2009 Jan;19(1):72-8.
    25. Raichle ME, Gusnard DA. Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol. 2005 Dec 5;493(1):167-76.
    26. James GA, Lu ZL, VanMeter JW. Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Top Stroke Rehabil. 2009 Jul-Aug;16(4):270-81.
    27. Cao X, Cao Q, Long X, et al. Abnormal resting-state functional connectivity patterns of the putamen in medication-na?ve children with attention deficit hyperactivity disorder. Brain Res. 2009 Dec 15;1303:195-206.
    28. Heep A, Scheef L, Jankowski J, et al. Functional magnetic resonance imaging of the sensorimotor system in preterm infants. Pediatrics. 2009 Jan;123(1):294-300.
    29. Stevens MC, Pearlson GD, Calhoun VD. Changes in the interaction of resting-state neural networks from adolescence to adulthood. Hum Brain Mapp. 2009 Aug;30(8):2356-66.
    30. Fransson P, Ski?ld B, Engstr?m M, et al. Spontaneous brain activity in the newborn brain during natural sleep--an fMRI study in infants born at full term. Pediatr Res. 2009 Sep;66(3):301-5.
    31. Fransson P, Ski?ld B, Horsch S, et al. Resting-state networks in the infant brain. Proc Natl Acad Sci USA. 2007 Sep 25;104(39):15531-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700