同轴腔回旋自谐振脉塞(CARM)的线性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子回旋脉塞器件——回旋自谐振脉塞(CARM)作为强功率、高效率毫米亚毫米波源,结合了传统回旋管和自由电子激光的优点,在线性加速器、等离子体加热、雷达、通信以及电子对抗等领域有着广泛的应用前景,因此受到了国际上的高度重视。特别是在最近20年来,不管是在理论研究还是在实验上都取得了很大的成绩。其中研究得最多的是以圆柱腔为波导的CARM振荡器,并在实验中取得了可观的成绩。而关于CARM放大器,人们在理论上作过很多研究,但从实验方面而言,目前只有美国麻省理工学院有相关的报导。
     随着对器件输出功率的要求越来越高,器件的散热性能成了一个倍受关注的问题。针对目前的研究现状,张世昌教授提出一种新型器件——同轴腔CARM放大器的设想。采用同轴腔波导一来可以有效地增大腔体的散热面积,改善器件的散热性能;二来可以有效的抑制模式之间的竞争,同时还结合了CARM放大器自身输出功率大、效率高等优势。本文首先在电子回旋脉塞机理和CARM的工作原理基础上阐述了同轴腔CARM放大器的工作机理及可实现性;第三章从电子回旋脉塞的回旋动力学理论入手,分析了电子与波互作用机理,根据圆柱腔CARM放大器的回旋动力学理论,推导出同轴腔CARM放大器中电磁波的色散方程;然后利用FORTRAN语言分别编制出求解圆柱腔和同轴腔波导中波的色散方程的相关程序;论文的第四章通过对已有的圆柱腔CARM放大器以及回旋行波管实验进行数值模拟,验证了所编制程序的可靠性;在论文第五章,参考德国卡尔斯鲁厄技术物理研究中心(FZK)的实验条件,根据已有的回旋动力学理论,通过数值模拟和对参数不断优化,最后得出当电磁波选取工作模式TE_(31,17),工作频率为165GHz时,所设计的同轴腔CARM放大器最大增益能达到295.19dB/m。从理论和数值模拟上为同轴腔CARM放大器的理论研究和实验研究提供参考。
Being high power, high efficiency resources of millimeter and submillimeter-wave radiation, based on electron cyclotron maser, cyclotron autoresonance maser (CARM) has some advantages both conventional gyrotron and free electron laser and has been paid much respect in the world for vast applications in many areas such as plasma heating, linear accelerators, millimeter wave radar,communications, electronic countermeasure and so forth.Specitically in twenty years later, the CARM has been subjected to extensive theoretical and experimental studies. A lot of studies have been done on the cylindrical-cavity CARM oscillator and received considerable achievements. On the cylindrical-cavith CARM amplifer, the theoretical studies have been done a lot, but the experimental studies have been reported only by the MIT.
    With the higher request on output power of the millimeter- wave devices, the problemes of the ohmic wall loading and mode competition have been paid much attention. Aim at the study actuality,
    a new type device--coaxial-cavity CARM amplifier has been brought
    forward in this task. One of the advantages of the coaxial-cavity is increase the area of dispersing heat and improve the capability of dispersing heat; in addition, the coaxial structures can be successfully employed to achieve higher power levels with reduced the problem of mode competition. At the same time, cylindrical-cavity CARM amplifier and gyro-twt's advantages have been combined. This thesis expatiates the theory of coaxial-cavity CARM and its practicable based on electron cyclotron maser and the operational principle of CARM. The third chapter analyzed the interplay of the electrons and wave using the gyrokinetics theory of electron cyclotron maser. The dispersion equations have been educed based on the gyrokinetics theory of electron cyclotron maser, and a simulation code has been made by FORTRAN to compute both dispersion equations of
    
    
    
    cylindrical-cavity and coaxial-cavity CARM amplifier. The simulation code's reliability has been attested by simulating the expriements of cylindrical-cavity CARM and cylindrical-cavity gyro-twt in the forth chapter. In the fifth chapter, the TE31,17,165 GHz coaxial-cavity CARM amplifier has been simulated and the parameters has been optimized, and the highest gain is 295.19dB/m.The thesis contributes to the theoretical and exprimental studies of coaxial-cavity CARM amplifier from the theory and computer simulation.
引文
[1] 应嘉年,顾茂章,张克潜.微波与光导波技术.国防工业出版社,1994
    [2] V.L.Granatstein,R.K.Parker,C.M.Armstrong."Sanning the technology: Vac-uum electronics at the dawn of the twenty-first century".Proceedings of IEEE, 87(5)(1999)702—716.
    [3] Andrei V.Gaponov Grekhov and Victor.Granatstein.Applications of High Power Microwaves, Artech house, INC 685 Canton Street Norwood,MA02062,1994
    [4] 高功率微波.吴诗信,莫伯锦译.电子科技大学出版社,1996
    [5] J.Y.Choe H.S.Vhm S.Ahn "Analysis of the wide band gyrotron amplifier in a di-electric loaded ivaveguide"J. Appl.Phys. 52(7)(1981)4508-4516
    [6] Twiss R. Q., Roberts J. A. Electromagnetic radiation from electrons rotating in an ionized medium under the action of a uniform magnetic field.Aust. J. Phys. 1958, 11,424-432.
    [7] Schneider J. Stimulated emission of radiation by relativistic electrons in a magnetic field. Phys. Rev. Lett, 1959, 2:504-508.
    [8] A. V. Gaponov,"Interaction between irrectilinear electron beams and electromagnetic waves in transmission lines," I zv. VUZov. Radi of iz.vol. 2, pp. 836-837, 1959.
    [9] K.K.Chow R.H.Pantell "The cyclotron resonance backward wave oscillator" RTOc. IRE, 48(1960) 1865-1870.
    [10] I.I.Antakov V.M.Bokov R.R.Vasilyev A.V.Gaponoy, "Interaction of a trochoidal electron beam with electromagnetic waves in a rectangular waveguide "Izv Vuzov Radiofizika 3 (1960) 1033.
    [11] J.L.Hirshfield J.M.Wachtell,"Electron cyclotron maser" Phys. Rev. Lett. 12(1964) 533.
    [12] 刘盛纲,相对论电子学,北京,科学出版社,1987.4
    [13] 董志伟、田世洪等,三维回旋自共振微波放大器的理论计算,强激光与粒子束,第6卷第4期,1994年11月
    [14] V. L. Bartman, A. E. Fedotov, N. G. Kolganov, S. V. Samsonov, and A. V.
    
    Savilov, Experimental study of CRM with simultaneous excitation of traveling and near-cutoff waves (CARM-gyrotron) IEEE Trans. Plasma Sci.,2001,29, 609-612
    [15] A. V. Savilov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, Effective coupling of cyclotron autoresonance maser and "gyrotron" modes on a phase-synchronized electron beam,Phys. Rev. Lett.,2000,62, 4207-4215
    [16] V. L. Bratman, A. D. R. Phelps, and A. V. Savilov, Recovery of electron energy in cyclotron autoresonance masers, Phys. Plasmas.,1997,4, 2285-2291
    [17] S. J. Cooke, A. W. Cross, W. He, and A. D. R. Phelps,Experimental operation of a cyclotron autoresonance maser oscillator at the second harmonic, Phys. Rev. Lett.,1996,77, 4836-4839
    [18] V. L. Bratman, G. G. Denisov, B. D. Kol'chugin, S. V. Samsonov, and A. B. Volkov, Experimental demonstration of high-efficiency cyclotron-autoresonance-maser operation,Phys. Rev. Lett., 1995,75, 3102-3105
    [19] S. Alberti, B. G. Danly, G. Gulotta, E. Giguet, T. Kimura, W. L. Menninger, J. Lo Rullier, and R. J. Temkin, Experimental study of a high-power long-pulse cyclotron autoresonance maser oscillator, Phys. Rev. Lett., 1993,71, 2018-2021
    [20] G. Bekefi, et al., 35 GHz cyclotron autoresonance maser amplifier, Appl. Phus. Lett., 1989, 3 April ,54(14),1302-1304
    [21] Q.S.Wang,M.Caplan,K.R.Chu,et al,Cyclotron autoresonance maser amplifiers and oscillators, IEEE IEDM technical digest 1989.
    [22] Q,S.Wang,C.S.Kou, K.R.Chu,et al.Cyclotron autoresonance maser amplifiers and oscillators. IEEE IEDM technical digest. 1989,31.5.1-31.5.4
    [23] 张世昌,M Thumm.同轴腔自由电子回旋脉塞的输出功率.强激光与粒子束,第9卷.第4期1997年11月
    [24] 刘盛纲 电子回旋脉塞和回旋管的进展.四川教育出版社,1988.4
    [25] 张世昌,自由电子脉塞的一种统一理论——回旋动力学,《中国科学》A辑,1991,第,1期,55-63(中文版);1991,A34,489-498,(英文版).
    [26] Bernhard Piosczyk, Oliver Braz, Gunter Dammertz, Christos T. Iatrou,et al. A 1.5-MW, 140-GHz, TE28,16-Coaxial Cavity Gyrotron. IEEE transactions on plasma science.vol.25,no.3.June. 1997,460-469"70
    [27] C.T.Iattou,O.Braz,G.Dammertz,et al.Design and experimental operation of a
    
    165-GHz, 1.5-MW, coaxial-cavity gyrotron with axial rf output. IEEE transactions on plasma science.vol.25,no. 3. June. 1997,470-479
    [28] 刘盛纲,微波电子学导论.国防工业出版社,1985.9
    [29] Zhang Shichang, Science Bulletin,31 (1986),602-605
    [30] Kwo Ray Chu,Han-Ying Chen,Chien-Lung Hung,et al.Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE transactions on plasma science.vol.27,no.2.April, 1999,391-402
    [31] G. Bekefi, B.G. Danly, J.A. Davies. Cyclotron autoresonance maser amplifier experiments at MIT.
    [32] V. L. Granatstein. A high gain single stage gyrotron traveling wave amplifier.IEEE IEDM technical digest. 1980,79-82
    [33] K.R.Chu,ANTHONY T.LIN,Gain and bandwidth of the gyro-twt and carm amplifiers.IEEE transactions on plasma science vol. 16.no.2.April, 1988,90-104
    [34] W.L.Menninger, B.G..Danly, S.Alberti,et al.CARM and harmonic gyro-amplifier experiments at 17 GHz.0-7803-1203-1/$ 9303.00 1993 IEEE,2656-2658
    [35] A.T.Lin,Chih-Chien Lin,K.R.Chu.Stability of a High Order Mode CARM Amplifier. IEEE transactions on electron devictes.vol.36.no.4.April 1989
    [36] A.C.Dirienzo,G..Bekefi,C.Chen,J.S.Wurtele.Experimental and theoretical studies of a 35 GHz cyclotron autoresonance maser amplifier.Phys.Fluids B 3 (7),July 1991.1755-1765
    [37] W.L.Menninger, B.G.Danly, C.Chen,et al. Cyclotron autoresonance maser(CARM)amplifiers for RF accelerator drivers. Particle accelerator conference, 1991
    [38] Q.S.Wang,D.B.Mcdermott, C.S.Kou.K.R.Chu.Stable 1 MW, third-harmonic gyro-twt amplifier.IEEE transactions on plasma science.vol.22.no.5.October 1994,608-615
    [39] Patrick.E. Ferguson, Gerald.Valier, et al. Gyrotron-TWT Operating Characteristics. IEEE Transactions on microwave theory and techniques,vol.MTT-29,no. 8.August 1981
    [40] C.K.Chong,D.B.Mcdermott,et al,Nonlinear analysis of high-harmonic slotted
    
    gyro-twt amplifier. IEEE Transcations on plasma science.vol.20.no.3.June 1992
    [41] Bernard R.Cheo,et al.Linear and nonlinear analyses of a wideband gyro-twt. IEEE transactions on electron devictes.vol.36.no.4.April 1989,802-809
    [42] T.H.Jho,A.T.Lin.Efficiency optimization in an electron cyclotron autoresonance maser amplifier through magnetic field tapering. Physical review A.vol.40. September, 1989.2486-2493
    [43] G.S.Nusinovich,M.E.Read,et al.Theory of gyrotrons with coaxial resonators. IEEE transactions on electron devictes.vol.41.no. 3.March. 1994.433-438
    [44] M. V. Kartikeyan, Christos T. Iatrou, and Manfred Thumm. A Coaxial Gyro-TWT. IEEE Transcations on plasma science.vol.29.no. 1 .February 2001
    [45] Shi-Chang Zhang.Kinetic theory of travling wave gyro-peniotron.International journal of infrared and millimeter wave.vol.6.no. 12.1985
    [46] A. V. Savilov, CARM-amplifier in the regime of "nonresonant" trapping of the electron beam IEEE Trans. Plasma Sci. ,2002,30, 927-930
    [47] V. L. Bratman, et al.,Cyclotron autoresonance maser with high Doppler frequency up-conversion, Int. J. Infrared and Millimeter Waves, 1998 13,1857-1873
    [48] S.-C. Zhang(张世昌),Unified single-particle theory of free-electron-maser amplifiers, Phys. Rev., 1992, A46, 5154-5160
    [49] S.-C. Zhang (张世昌), General formula of the energy-transfer rate in gyrotron,cyclotron-autoresonance-maser,and nonwigglerfree-electron-laser oscillators,Phys. Rev., 1992,A45, 1177-1182
    [50] S.-C. Zhang (张世昌) and Y. Sun, A Large-orbit nonwiggler free-electron laser ,IEEE J. Quantum Electron.,1987, 23, 1646-1650
    [51] A.W.Fliflet,Linear and non-linear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes, Int. J.Electron., 1986,61,1049-1079
    [52] A.T. Lin, Doppler shift dominated cyclotron masers, Int. J. Electron., 1984,57,1097-1107
    
    
    [53] T. Y. Dawn, H. c. Chien, J. M. Chen, and S. H. Chen,Modified self-consistem nonlinear simulation of cyclotron autoresonance maser amplifiers, Phys. Plasmas., 1998, 5,529-535
    [54] A. T. Lin and C. C. Lin, Wiggler enhanced cyclotron autoresonance maser amplifiers,Appl. Phys. Lett.,1997,70, 906-908

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700